1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 const struct pinctrl_pin_desc *pin) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, pin->number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", 235 pin->number); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (!pindesc) 241 return -ENOMEM; 242 243 /* Set owner */ 244 pindesc->pctldev = pctldev; 245 246 /* Copy basic pin info */ 247 if (pin->name) { 248 pindesc->name = pin->name; 249 } else { 250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 251 if (pindesc->name == NULL) { 252 kfree(pindesc); 253 return -ENOMEM; 254 } 255 pindesc->dynamic_name = true; 256 } 257 258 pindesc->drv_data = pin->drv_data; 259 260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 pin->number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 struct pinctrl_pin_desc const *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range != NULL) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 542 543 /** 544 * pinctrl_generic_get_group_count() - returns the number of pin groups 545 * @pctldev: pin controller device 546 */ 547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 548 { 549 return pctldev->num_groups; 550 } 551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 552 553 /** 554 * pinctrl_generic_get_group_name() - returns the name of a pin group 555 * @pctldev: pin controller device 556 * @selector: group number 557 */ 558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 559 unsigned int selector) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) 566 return NULL; 567 568 return group->name; 569 } 570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 571 572 /** 573 * pinctrl_generic_get_group_pins() - gets the pin group pins 574 * @pctldev: pin controller device 575 * @selector: group number 576 * @pins: pins in the group 577 * @num_pins: number of pins in the group 578 */ 579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 580 unsigned int selector, 581 const unsigned int **pins, 582 unsigned int *num_pins) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) { 589 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 590 __func__, selector); 591 return -EINVAL; 592 } 593 594 *pins = group->pins; 595 *num_pins = group->num_pins; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 600 601 /** 602 * pinctrl_generic_get_group() - returns a pin group based on the number 603 * @pctldev: pin controller device 604 * @gselector: group number 605 */ 606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 607 unsigned int selector) 608 { 609 struct group_desc *group; 610 611 group = radix_tree_lookup(&pctldev->pin_group_tree, 612 selector); 613 if (!group) 614 return NULL; 615 616 return group; 617 } 618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 619 620 /** 621 * pinctrl_generic_add_group() - adds a new pin group 622 * @pctldev: pin controller device 623 * @name: name of the pin group 624 * @pins: pins in the pin group 625 * @num_pins: number of pins in the pin group 626 * @data: pin controller driver specific data 627 * 628 * Note that the caller must take care of locking. 629 */ 630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 631 int *pins, int num_pins, void *data) 632 { 633 struct group_desc *group; 634 635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 636 if (!group) 637 return -ENOMEM; 638 639 group->name = name; 640 group->pins = pins; 641 group->num_pins = num_pins; 642 group->data = data; 643 644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups, 645 group); 646 647 pctldev->num_groups++; 648 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 652 653 /** 654 * pinctrl_generic_remove_group() - removes a numbered pin group 655 * @pctldev: pin controller device 656 * @selector: group number 657 * 658 * Note that the caller must take care of locking. 659 */ 660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 661 unsigned int selector) 662 { 663 struct group_desc *group; 664 665 group = radix_tree_lookup(&pctldev->pin_group_tree, 666 selector); 667 if (!group) 668 return -ENOENT; 669 670 radix_tree_delete(&pctldev->pin_group_tree, selector); 671 devm_kfree(pctldev->dev, group); 672 673 pctldev->num_groups--; 674 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 678 679 /** 680 * pinctrl_generic_free_groups() - removes all pin groups 681 * @pctldev: pin controller device 682 * 683 * Note that the caller must take care of locking. The pinctrl groups 684 * are allocated with devm_kzalloc() so no need to free them here. 685 */ 686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 687 { 688 struct radix_tree_iter iter; 689 void **slot; 690 691 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 692 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 693 694 pctldev->num_groups = 0; 695 } 696 697 #else 698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 699 { 700 } 701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 702 703 /** 704 * pinctrl_get_group_selector() - returns the group selector for a group 705 * @pctldev: the pin controller handling the group 706 * @pin_group: the pin group to look up 707 */ 708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 709 const char *pin_group) 710 { 711 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 712 unsigned ngroups = pctlops->get_groups_count(pctldev); 713 unsigned group_selector = 0; 714 715 while (group_selector < ngroups) { 716 const char *gname = pctlops->get_group_name(pctldev, 717 group_selector); 718 if (!strcmp(gname, pin_group)) { 719 dev_dbg(pctldev->dev, 720 "found group selector %u for %s\n", 721 group_selector, 722 pin_group); 723 return group_selector; 724 } 725 726 group_selector++; 727 } 728 729 dev_err(pctldev->dev, "does not have pin group %s\n", 730 pin_group); 731 732 return -EINVAL; 733 } 734 735 /** 736 * pinctrl_request_gpio() - request a single pin to be used as GPIO 737 * @gpio: the GPIO pin number from the GPIO subsystem number space 738 * 739 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 740 * as part of their gpio_request() semantics, platforms and individual drivers 741 * shall *NOT* request GPIO pins to be muxed in. 742 */ 743 int pinctrl_request_gpio(unsigned gpio) 744 { 745 struct pinctrl_dev *pctldev; 746 struct pinctrl_gpio_range *range; 747 int ret; 748 int pin; 749 750 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 751 if (ret) { 752 if (pinctrl_ready_for_gpio_range(gpio)) 753 ret = 0; 754 return ret; 755 } 756 757 mutex_lock(&pctldev->mutex); 758 759 /* Convert to the pin controllers number space */ 760 pin = gpio_to_pin(range, gpio); 761 762 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 763 764 mutex_unlock(&pctldev->mutex); 765 766 return ret; 767 } 768 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 769 770 /** 771 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 772 * @gpio: the GPIO pin number from the GPIO subsystem number space 773 * 774 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 775 * as part of their gpio_free() semantics, platforms and individual drivers 776 * shall *NOT* request GPIO pins to be muxed out. 777 */ 778 void pinctrl_free_gpio(unsigned gpio) 779 { 780 struct pinctrl_dev *pctldev; 781 struct pinctrl_gpio_range *range; 782 int ret; 783 int pin; 784 785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 786 if (ret) { 787 return; 788 } 789 mutex_lock(&pctldev->mutex); 790 791 /* Convert to the pin controllers number space */ 792 pin = gpio_to_pin(range, gpio); 793 794 pinmux_free_gpio(pctldev, pin, range); 795 796 mutex_unlock(&pctldev->mutex); 797 } 798 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 799 800 static int pinctrl_gpio_direction(unsigned gpio, bool input) 801 { 802 struct pinctrl_dev *pctldev; 803 struct pinctrl_gpio_range *range; 804 int ret; 805 int pin; 806 807 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 808 if (ret) { 809 return ret; 810 } 811 812 mutex_lock(&pctldev->mutex); 813 814 /* Convert to the pin controllers number space */ 815 pin = gpio_to_pin(range, gpio); 816 ret = pinmux_gpio_direction(pctldev, range, pin, input); 817 818 mutex_unlock(&pctldev->mutex); 819 820 return ret; 821 } 822 823 /** 824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 825 * @gpio: the GPIO pin number from the GPIO subsystem number space 826 * 827 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 828 * as part of their gpio_direction_input() semantics, platforms and individual 829 * drivers shall *NOT* touch pin control GPIO calls. 830 */ 831 int pinctrl_gpio_direction_input(unsigned gpio) 832 { 833 return pinctrl_gpio_direction(gpio, true); 834 } 835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 836 837 /** 838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 839 * @gpio: the GPIO pin number from the GPIO subsystem number space 840 * 841 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 842 * as part of their gpio_direction_output() semantics, platforms and individual 843 * drivers shall *NOT* touch pin control GPIO calls. 844 */ 845 int pinctrl_gpio_direction_output(unsigned gpio) 846 { 847 return pinctrl_gpio_direction(gpio, false); 848 } 849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 850 851 /** 852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 853 * @gpio: the GPIO pin number from the GPIO subsystem number space 854 * @config: the configuration to apply to the GPIO 855 * 856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 857 * they need to call the underlying pin controller to change GPIO config 858 * (for example set debounce time). 859 */ 860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 861 { 862 unsigned long configs[] = { config }; 863 struct pinctrl_gpio_range *range; 864 struct pinctrl_dev *pctldev; 865 int ret, pin; 866 867 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 868 if (ret) 869 return ret; 870 871 mutex_lock(&pctldev->mutex); 872 pin = gpio_to_pin(range, gpio); 873 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 874 mutex_unlock(&pctldev->mutex); 875 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 879 880 static struct pinctrl_state *find_state(struct pinctrl *p, 881 const char *name) 882 { 883 struct pinctrl_state *state; 884 885 list_for_each_entry(state, &p->states, node) 886 if (!strcmp(state->name, name)) 887 return state; 888 889 return NULL; 890 } 891 892 static struct pinctrl_state *create_state(struct pinctrl *p, 893 const char *name) 894 { 895 struct pinctrl_state *state; 896 897 state = kzalloc(sizeof(*state), GFP_KERNEL); 898 if (!state) 899 return ERR_PTR(-ENOMEM); 900 901 state->name = name; 902 INIT_LIST_HEAD(&state->settings); 903 904 list_add_tail(&state->node, &p->states); 905 906 return state; 907 } 908 909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 910 struct pinctrl_map const *map) 911 { 912 struct pinctrl_state *state; 913 struct pinctrl_setting *setting; 914 int ret; 915 916 state = find_state(p, map->name); 917 if (!state) 918 state = create_state(p, map->name); 919 if (IS_ERR(state)) 920 return PTR_ERR(state); 921 922 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 923 return 0; 924 925 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 926 if (!setting) 927 return -ENOMEM; 928 929 setting->type = map->type; 930 931 if (pctldev) 932 setting->pctldev = pctldev; 933 else 934 setting->pctldev = 935 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 936 if (setting->pctldev == NULL) { 937 kfree(setting); 938 /* Do not defer probing of hogs (circular loop) */ 939 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 940 return -ENODEV; 941 /* 942 * OK let us guess that the driver is not there yet, and 943 * let's defer obtaining this pinctrl handle to later... 944 */ 945 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 946 map->ctrl_dev_name); 947 return -EPROBE_DEFER; 948 } 949 950 setting->dev_name = map->dev_name; 951 952 switch (map->type) { 953 case PIN_MAP_TYPE_MUX_GROUP: 954 ret = pinmux_map_to_setting(map, setting); 955 break; 956 case PIN_MAP_TYPE_CONFIGS_PIN: 957 case PIN_MAP_TYPE_CONFIGS_GROUP: 958 ret = pinconf_map_to_setting(map, setting); 959 break; 960 default: 961 ret = -EINVAL; 962 break; 963 } 964 if (ret < 0) { 965 kfree(setting); 966 return ret; 967 } 968 969 list_add_tail(&setting->node, &state->settings); 970 971 return 0; 972 } 973 974 static struct pinctrl *find_pinctrl(struct device *dev) 975 { 976 struct pinctrl *p; 977 978 mutex_lock(&pinctrl_list_mutex); 979 list_for_each_entry(p, &pinctrl_list, node) 980 if (p->dev == dev) { 981 mutex_unlock(&pinctrl_list_mutex); 982 return p; 983 } 984 985 mutex_unlock(&pinctrl_list_mutex); 986 return NULL; 987 } 988 989 static void pinctrl_free(struct pinctrl *p, bool inlist); 990 991 static struct pinctrl *create_pinctrl(struct device *dev, 992 struct pinctrl_dev *pctldev) 993 { 994 struct pinctrl *p; 995 const char *devname; 996 struct pinctrl_maps *maps_node; 997 int i; 998 struct pinctrl_map const *map; 999 int ret; 1000 1001 /* 1002 * create the state cookie holder struct pinctrl for each 1003 * mapping, this is what consumers will get when requesting 1004 * a pin control handle with pinctrl_get() 1005 */ 1006 p = kzalloc(sizeof(*p), GFP_KERNEL); 1007 if (!p) 1008 return ERR_PTR(-ENOMEM); 1009 p->dev = dev; 1010 INIT_LIST_HEAD(&p->states); 1011 INIT_LIST_HEAD(&p->dt_maps); 1012 1013 ret = pinctrl_dt_to_map(p, pctldev); 1014 if (ret < 0) { 1015 kfree(p); 1016 return ERR_PTR(ret); 1017 } 1018 1019 devname = dev_name(dev); 1020 1021 mutex_lock(&pinctrl_maps_mutex); 1022 /* Iterate over the pin control maps to locate the right ones */ 1023 for_each_maps(maps_node, i, map) { 1024 /* Map must be for this device */ 1025 if (strcmp(map->dev_name, devname)) 1026 continue; 1027 1028 ret = add_setting(p, pctldev, map); 1029 /* 1030 * At this point the adding of a setting may: 1031 * 1032 * - Defer, if the pinctrl device is not yet available 1033 * - Fail, if the pinctrl device is not yet available, 1034 * AND the setting is a hog. We cannot defer that, since 1035 * the hog will kick in immediately after the device 1036 * is registered. 1037 * 1038 * If the error returned was not -EPROBE_DEFER then we 1039 * accumulate the errors to see if we end up with 1040 * an -EPROBE_DEFER later, as that is the worst case. 1041 */ 1042 if (ret == -EPROBE_DEFER) { 1043 pinctrl_free(p, false); 1044 mutex_unlock(&pinctrl_maps_mutex); 1045 return ERR_PTR(ret); 1046 } 1047 } 1048 mutex_unlock(&pinctrl_maps_mutex); 1049 1050 if (ret < 0) { 1051 /* If some other error than deferral occurred, return here */ 1052 pinctrl_free(p, false); 1053 return ERR_PTR(ret); 1054 } 1055 1056 kref_init(&p->users); 1057 1058 /* Add the pinctrl handle to the global list */ 1059 mutex_lock(&pinctrl_list_mutex); 1060 list_add_tail(&p->node, &pinctrl_list); 1061 mutex_unlock(&pinctrl_list_mutex); 1062 1063 return p; 1064 } 1065 1066 /** 1067 * pinctrl_get() - retrieves the pinctrl handle for a device 1068 * @dev: the device to obtain the handle for 1069 */ 1070 struct pinctrl *pinctrl_get(struct device *dev) 1071 { 1072 struct pinctrl *p; 1073 1074 if (WARN_ON(!dev)) 1075 return ERR_PTR(-EINVAL); 1076 1077 /* 1078 * See if somebody else (such as the device core) has already 1079 * obtained a handle to the pinctrl for this device. In that case, 1080 * return another pointer to it. 1081 */ 1082 p = find_pinctrl(dev); 1083 if (p != NULL) { 1084 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1085 kref_get(&p->users); 1086 return p; 1087 } 1088 1089 return create_pinctrl(dev, NULL); 1090 } 1091 EXPORT_SYMBOL_GPL(pinctrl_get); 1092 1093 static void pinctrl_free_setting(bool disable_setting, 1094 struct pinctrl_setting *setting) 1095 { 1096 switch (setting->type) { 1097 case PIN_MAP_TYPE_MUX_GROUP: 1098 if (disable_setting) 1099 pinmux_disable_setting(setting); 1100 pinmux_free_setting(setting); 1101 break; 1102 case PIN_MAP_TYPE_CONFIGS_PIN: 1103 case PIN_MAP_TYPE_CONFIGS_GROUP: 1104 pinconf_free_setting(setting); 1105 break; 1106 default: 1107 break; 1108 } 1109 } 1110 1111 static void pinctrl_free(struct pinctrl *p, bool inlist) 1112 { 1113 struct pinctrl_state *state, *n1; 1114 struct pinctrl_setting *setting, *n2; 1115 1116 mutex_lock(&pinctrl_list_mutex); 1117 list_for_each_entry_safe(state, n1, &p->states, node) { 1118 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1119 pinctrl_free_setting(state == p->state, setting); 1120 list_del(&setting->node); 1121 kfree(setting); 1122 } 1123 list_del(&state->node); 1124 kfree(state); 1125 } 1126 1127 pinctrl_dt_free_maps(p); 1128 1129 if (inlist) 1130 list_del(&p->node); 1131 kfree(p); 1132 mutex_unlock(&pinctrl_list_mutex); 1133 } 1134 1135 /** 1136 * pinctrl_release() - release the pinctrl handle 1137 * @kref: the kref in the pinctrl being released 1138 */ 1139 static void pinctrl_release(struct kref *kref) 1140 { 1141 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1142 1143 pinctrl_free(p, true); 1144 } 1145 1146 /** 1147 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1148 * @p: the pinctrl handle to release 1149 */ 1150 void pinctrl_put(struct pinctrl *p) 1151 { 1152 kref_put(&p->users, pinctrl_release); 1153 } 1154 EXPORT_SYMBOL_GPL(pinctrl_put); 1155 1156 /** 1157 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1158 * @p: the pinctrl handle to retrieve the state from 1159 * @name: the state name to retrieve 1160 */ 1161 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1162 const char *name) 1163 { 1164 struct pinctrl_state *state; 1165 1166 state = find_state(p, name); 1167 if (!state) { 1168 if (pinctrl_dummy_state) { 1169 /* create dummy state */ 1170 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1171 name); 1172 state = create_state(p, name); 1173 } else 1174 state = ERR_PTR(-ENODEV); 1175 } 1176 1177 return state; 1178 } 1179 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1180 1181 /** 1182 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1183 * @p: the pinctrl handle for the device that requests configuration 1184 * @state: the state handle to select/activate/program 1185 */ 1186 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1187 { 1188 struct pinctrl_setting *setting, *setting2; 1189 struct pinctrl_state *old_state = p->state; 1190 int ret; 1191 1192 if (p->state == state) 1193 return 0; 1194 1195 if (p->state) { 1196 /* 1197 * For each pinmux setting in the old state, forget SW's record 1198 * of mux owner for that pingroup. Any pingroups which are 1199 * still owned by the new state will be re-acquired by the call 1200 * to pinmux_enable_setting() in the loop below. 1201 */ 1202 list_for_each_entry(setting, &p->state->settings, node) { 1203 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1204 continue; 1205 pinmux_disable_setting(setting); 1206 } 1207 } 1208 1209 p->state = NULL; 1210 1211 /* Apply all the settings for the new state */ 1212 list_for_each_entry(setting, &state->settings, node) { 1213 switch (setting->type) { 1214 case PIN_MAP_TYPE_MUX_GROUP: 1215 ret = pinmux_enable_setting(setting); 1216 break; 1217 case PIN_MAP_TYPE_CONFIGS_PIN: 1218 case PIN_MAP_TYPE_CONFIGS_GROUP: 1219 ret = pinconf_apply_setting(setting); 1220 break; 1221 default: 1222 ret = -EINVAL; 1223 break; 1224 } 1225 1226 if (ret < 0) { 1227 goto unapply_new_state; 1228 } 1229 } 1230 1231 p->state = state; 1232 1233 return 0; 1234 1235 unapply_new_state: 1236 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1237 1238 list_for_each_entry(setting2, &state->settings, node) { 1239 if (&setting2->node == &setting->node) 1240 break; 1241 /* 1242 * All we can do here is pinmux_disable_setting. 1243 * That means that some pins are muxed differently now 1244 * than they were before applying the setting (We can't 1245 * "unmux a pin"!), but it's not a big deal since the pins 1246 * are free to be muxed by another apply_setting. 1247 */ 1248 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1249 pinmux_disable_setting(setting2); 1250 } 1251 1252 /* There's no infinite recursive loop here because p->state is NULL */ 1253 if (old_state) 1254 pinctrl_select_state(p, old_state); 1255 1256 return ret; 1257 } 1258 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1259 1260 static void devm_pinctrl_release(struct device *dev, void *res) 1261 { 1262 pinctrl_put(*(struct pinctrl **)res); 1263 } 1264 1265 /** 1266 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1267 * @dev: the device to obtain the handle for 1268 * 1269 * If there is a need to explicitly destroy the returned struct pinctrl, 1270 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1271 */ 1272 struct pinctrl *devm_pinctrl_get(struct device *dev) 1273 { 1274 struct pinctrl **ptr, *p; 1275 1276 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1277 if (!ptr) 1278 return ERR_PTR(-ENOMEM); 1279 1280 p = pinctrl_get(dev); 1281 if (!IS_ERR(p)) { 1282 *ptr = p; 1283 devres_add(dev, ptr); 1284 } else { 1285 devres_free(ptr); 1286 } 1287 1288 return p; 1289 } 1290 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1291 1292 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1293 { 1294 struct pinctrl **p = res; 1295 1296 return *p == data; 1297 } 1298 1299 /** 1300 * devm_pinctrl_put() - Resource managed pinctrl_put() 1301 * @p: the pinctrl handle to release 1302 * 1303 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1304 * this function will not need to be called and the resource management 1305 * code will ensure that the resource is freed. 1306 */ 1307 void devm_pinctrl_put(struct pinctrl *p) 1308 { 1309 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1310 devm_pinctrl_match, p)); 1311 } 1312 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1313 1314 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1315 bool dup) 1316 { 1317 int i, ret; 1318 struct pinctrl_maps *maps_node; 1319 1320 pr_debug("add %u pinctrl maps\n", num_maps); 1321 1322 /* First sanity check the new mapping */ 1323 for (i = 0; i < num_maps; i++) { 1324 if (!maps[i].dev_name) { 1325 pr_err("failed to register map %s (%d): no device given\n", 1326 maps[i].name, i); 1327 return -EINVAL; 1328 } 1329 1330 if (!maps[i].name) { 1331 pr_err("failed to register map %d: no map name given\n", 1332 i); 1333 return -EINVAL; 1334 } 1335 1336 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1337 !maps[i].ctrl_dev_name) { 1338 pr_err("failed to register map %s (%d): no pin control device given\n", 1339 maps[i].name, i); 1340 return -EINVAL; 1341 } 1342 1343 switch (maps[i].type) { 1344 case PIN_MAP_TYPE_DUMMY_STATE: 1345 break; 1346 case PIN_MAP_TYPE_MUX_GROUP: 1347 ret = pinmux_validate_map(&maps[i], i); 1348 if (ret < 0) 1349 return ret; 1350 break; 1351 case PIN_MAP_TYPE_CONFIGS_PIN: 1352 case PIN_MAP_TYPE_CONFIGS_GROUP: 1353 ret = pinconf_validate_map(&maps[i], i); 1354 if (ret < 0) 1355 return ret; 1356 break; 1357 default: 1358 pr_err("failed to register map %s (%d): invalid type given\n", 1359 maps[i].name, i); 1360 return -EINVAL; 1361 } 1362 } 1363 1364 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1365 if (!maps_node) 1366 return -ENOMEM; 1367 1368 maps_node->num_maps = num_maps; 1369 if (dup) { 1370 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1371 GFP_KERNEL); 1372 if (!maps_node->maps) { 1373 pr_err("failed to duplicate mapping table\n"); 1374 kfree(maps_node); 1375 return -ENOMEM; 1376 } 1377 } else { 1378 maps_node->maps = maps; 1379 } 1380 1381 mutex_lock(&pinctrl_maps_mutex); 1382 list_add_tail(&maps_node->node, &pinctrl_maps); 1383 mutex_unlock(&pinctrl_maps_mutex); 1384 1385 return 0; 1386 } 1387 1388 /** 1389 * pinctrl_register_mappings() - register a set of pin controller mappings 1390 * @maps: the pincontrol mappings table to register. This should probably be 1391 * marked with __initdata so it can be discarded after boot. This 1392 * function will perform a shallow copy for the mapping entries. 1393 * @num_maps: the number of maps in the mapping table 1394 */ 1395 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1396 unsigned num_maps) 1397 { 1398 return pinctrl_register_map(maps, num_maps, true); 1399 } 1400 1401 void pinctrl_unregister_map(struct pinctrl_map const *map) 1402 { 1403 struct pinctrl_maps *maps_node; 1404 1405 mutex_lock(&pinctrl_maps_mutex); 1406 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1407 if (maps_node->maps == map) { 1408 list_del(&maps_node->node); 1409 kfree(maps_node); 1410 mutex_unlock(&pinctrl_maps_mutex); 1411 return; 1412 } 1413 } 1414 mutex_unlock(&pinctrl_maps_mutex); 1415 } 1416 1417 /** 1418 * pinctrl_force_sleep() - turn a given controller device into sleep state 1419 * @pctldev: pin controller device 1420 */ 1421 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1422 { 1423 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1424 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1425 return 0; 1426 } 1427 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1428 1429 /** 1430 * pinctrl_force_default() - turn a given controller device into default state 1431 * @pctldev: pin controller device 1432 */ 1433 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1434 { 1435 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1436 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1437 return 0; 1438 } 1439 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1440 1441 /** 1442 * pinctrl_init_done() - tell pinctrl probe is done 1443 * 1444 * We'll use this time to switch the pins from "init" to "default" unless the 1445 * driver selected some other state. 1446 * 1447 * @dev: device to that's done probing 1448 */ 1449 int pinctrl_init_done(struct device *dev) 1450 { 1451 struct dev_pin_info *pins = dev->pins; 1452 int ret; 1453 1454 if (!pins) 1455 return 0; 1456 1457 if (IS_ERR(pins->init_state)) 1458 return 0; /* No such state */ 1459 1460 if (pins->p->state != pins->init_state) 1461 return 0; /* Not at init anyway */ 1462 1463 if (IS_ERR(pins->default_state)) 1464 return 0; /* No default state */ 1465 1466 ret = pinctrl_select_state(pins->p, pins->default_state); 1467 if (ret) 1468 dev_err(dev, "failed to activate default pinctrl state\n"); 1469 1470 return ret; 1471 } 1472 1473 #ifdef CONFIG_PM 1474 1475 /** 1476 * pinctrl_pm_select_state() - select pinctrl state for PM 1477 * @dev: device to select default state for 1478 * @state: state to set 1479 */ 1480 static int pinctrl_pm_select_state(struct device *dev, 1481 struct pinctrl_state *state) 1482 { 1483 struct dev_pin_info *pins = dev->pins; 1484 int ret; 1485 1486 if (IS_ERR(state)) 1487 return 0; /* No such state */ 1488 ret = pinctrl_select_state(pins->p, state); 1489 if (ret) 1490 dev_err(dev, "failed to activate pinctrl state %s\n", 1491 state->name); 1492 return ret; 1493 } 1494 1495 /** 1496 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1497 * @dev: device to select default state for 1498 */ 1499 int pinctrl_pm_select_default_state(struct device *dev) 1500 { 1501 if (!dev->pins) 1502 return 0; 1503 1504 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1505 } 1506 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1507 1508 /** 1509 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1510 * @dev: device to select sleep state for 1511 */ 1512 int pinctrl_pm_select_sleep_state(struct device *dev) 1513 { 1514 if (!dev->pins) 1515 return 0; 1516 1517 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1518 } 1519 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1520 1521 /** 1522 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1523 * @dev: device to select idle state for 1524 */ 1525 int pinctrl_pm_select_idle_state(struct device *dev) 1526 { 1527 if (!dev->pins) 1528 return 0; 1529 1530 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1531 } 1532 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1533 #endif 1534 1535 #ifdef CONFIG_DEBUG_FS 1536 1537 static int pinctrl_pins_show(struct seq_file *s, void *what) 1538 { 1539 struct pinctrl_dev *pctldev = s->private; 1540 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1541 unsigned i, pin; 1542 1543 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1544 1545 mutex_lock(&pctldev->mutex); 1546 1547 /* The pin number can be retrived from the pin controller descriptor */ 1548 for (i = 0; i < pctldev->desc->npins; i++) { 1549 struct pin_desc *desc; 1550 1551 pin = pctldev->desc->pins[i].number; 1552 desc = pin_desc_get(pctldev, pin); 1553 /* Pin space may be sparse */ 1554 if (desc == NULL) 1555 continue; 1556 1557 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1558 1559 /* Driver-specific info per pin */ 1560 if (ops->pin_dbg_show) 1561 ops->pin_dbg_show(pctldev, s, pin); 1562 1563 seq_puts(s, "\n"); 1564 } 1565 1566 mutex_unlock(&pctldev->mutex); 1567 1568 return 0; 1569 } 1570 1571 static int pinctrl_groups_show(struct seq_file *s, void *what) 1572 { 1573 struct pinctrl_dev *pctldev = s->private; 1574 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1575 unsigned ngroups, selector = 0; 1576 1577 mutex_lock(&pctldev->mutex); 1578 1579 ngroups = ops->get_groups_count(pctldev); 1580 1581 seq_puts(s, "registered pin groups:\n"); 1582 while (selector < ngroups) { 1583 const unsigned *pins = NULL; 1584 unsigned num_pins = 0; 1585 const char *gname = ops->get_group_name(pctldev, selector); 1586 const char *pname; 1587 int ret = 0; 1588 int i; 1589 1590 if (ops->get_group_pins) 1591 ret = ops->get_group_pins(pctldev, selector, 1592 &pins, &num_pins); 1593 if (ret) 1594 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1595 gname); 1596 else { 1597 seq_printf(s, "group: %s\n", gname); 1598 for (i = 0; i < num_pins; i++) { 1599 pname = pin_get_name(pctldev, pins[i]); 1600 if (WARN_ON(!pname)) { 1601 mutex_unlock(&pctldev->mutex); 1602 return -EINVAL; 1603 } 1604 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1605 } 1606 seq_puts(s, "\n"); 1607 } 1608 selector++; 1609 } 1610 1611 mutex_unlock(&pctldev->mutex); 1612 1613 return 0; 1614 } 1615 1616 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1617 { 1618 struct pinctrl_dev *pctldev = s->private; 1619 struct pinctrl_gpio_range *range = NULL; 1620 1621 seq_puts(s, "GPIO ranges handled:\n"); 1622 1623 mutex_lock(&pctldev->mutex); 1624 1625 /* Loop over the ranges */ 1626 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1627 if (range->pins) { 1628 int a; 1629 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1630 range->id, range->name, 1631 range->base, (range->base + range->npins - 1)); 1632 for (a = 0; a < range->npins - 1; a++) 1633 seq_printf(s, "%u, ", range->pins[a]); 1634 seq_printf(s, "%u}\n", range->pins[a]); 1635 } 1636 else 1637 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1638 range->id, range->name, 1639 range->base, (range->base + range->npins - 1), 1640 range->pin_base, 1641 (range->pin_base + range->npins - 1)); 1642 } 1643 1644 mutex_unlock(&pctldev->mutex); 1645 1646 return 0; 1647 } 1648 1649 static int pinctrl_devices_show(struct seq_file *s, void *what) 1650 { 1651 struct pinctrl_dev *pctldev; 1652 1653 seq_puts(s, "name [pinmux] [pinconf]\n"); 1654 1655 mutex_lock(&pinctrldev_list_mutex); 1656 1657 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1658 seq_printf(s, "%s ", pctldev->desc->name); 1659 if (pctldev->desc->pmxops) 1660 seq_puts(s, "yes "); 1661 else 1662 seq_puts(s, "no "); 1663 if (pctldev->desc->confops) 1664 seq_puts(s, "yes"); 1665 else 1666 seq_puts(s, "no"); 1667 seq_puts(s, "\n"); 1668 } 1669 1670 mutex_unlock(&pinctrldev_list_mutex); 1671 1672 return 0; 1673 } 1674 1675 static inline const char *map_type(enum pinctrl_map_type type) 1676 { 1677 static const char * const names[] = { 1678 "INVALID", 1679 "DUMMY_STATE", 1680 "MUX_GROUP", 1681 "CONFIGS_PIN", 1682 "CONFIGS_GROUP", 1683 }; 1684 1685 if (type >= ARRAY_SIZE(names)) 1686 return "UNKNOWN"; 1687 1688 return names[type]; 1689 } 1690 1691 static int pinctrl_maps_show(struct seq_file *s, void *what) 1692 { 1693 struct pinctrl_maps *maps_node; 1694 int i; 1695 struct pinctrl_map const *map; 1696 1697 seq_puts(s, "Pinctrl maps:\n"); 1698 1699 mutex_lock(&pinctrl_maps_mutex); 1700 for_each_maps(maps_node, i, map) { 1701 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1702 map->dev_name, map->name, map_type(map->type), 1703 map->type); 1704 1705 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1706 seq_printf(s, "controlling device %s\n", 1707 map->ctrl_dev_name); 1708 1709 switch (map->type) { 1710 case PIN_MAP_TYPE_MUX_GROUP: 1711 pinmux_show_map(s, map); 1712 break; 1713 case PIN_MAP_TYPE_CONFIGS_PIN: 1714 case PIN_MAP_TYPE_CONFIGS_GROUP: 1715 pinconf_show_map(s, map); 1716 break; 1717 default: 1718 break; 1719 } 1720 1721 seq_printf(s, "\n"); 1722 } 1723 mutex_unlock(&pinctrl_maps_mutex); 1724 1725 return 0; 1726 } 1727 1728 static int pinctrl_show(struct seq_file *s, void *what) 1729 { 1730 struct pinctrl *p; 1731 struct pinctrl_state *state; 1732 struct pinctrl_setting *setting; 1733 1734 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1735 1736 mutex_lock(&pinctrl_list_mutex); 1737 1738 list_for_each_entry(p, &pinctrl_list, node) { 1739 seq_printf(s, "device: %s current state: %s\n", 1740 dev_name(p->dev), 1741 p->state ? p->state->name : "none"); 1742 1743 list_for_each_entry(state, &p->states, node) { 1744 seq_printf(s, " state: %s\n", state->name); 1745 1746 list_for_each_entry(setting, &state->settings, node) { 1747 struct pinctrl_dev *pctldev = setting->pctldev; 1748 1749 seq_printf(s, " type: %s controller %s ", 1750 map_type(setting->type), 1751 pinctrl_dev_get_name(pctldev)); 1752 1753 switch (setting->type) { 1754 case PIN_MAP_TYPE_MUX_GROUP: 1755 pinmux_show_setting(s, setting); 1756 break; 1757 case PIN_MAP_TYPE_CONFIGS_PIN: 1758 case PIN_MAP_TYPE_CONFIGS_GROUP: 1759 pinconf_show_setting(s, setting); 1760 break; 1761 default: 1762 break; 1763 } 1764 } 1765 } 1766 } 1767 1768 mutex_unlock(&pinctrl_list_mutex); 1769 1770 return 0; 1771 } 1772 1773 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1774 { 1775 return single_open(file, pinctrl_pins_show, inode->i_private); 1776 } 1777 1778 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1779 { 1780 return single_open(file, pinctrl_groups_show, inode->i_private); 1781 } 1782 1783 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1784 { 1785 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1786 } 1787 1788 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1789 { 1790 return single_open(file, pinctrl_devices_show, NULL); 1791 } 1792 1793 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1794 { 1795 return single_open(file, pinctrl_maps_show, NULL); 1796 } 1797 1798 static int pinctrl_open(struct inode *inode, struct file *file) 1799 { 1800 return single_open(file, pinctrl_show, NULL); 1801 } 1802 1803 static const struct file_operations pinctrl_pins_ops = { 1804 .open = pinctrl_pins_open, 1805 .read = seq_read, 1806 .llseek = seq_lseek, 1807 .release = single_release, 1808 }; 1809 1810 static const struct file_operations pinctrl_groups_ops = { 1811 .open = pinctrl_groups_open, 1812 .read = seq_read, 1813 .llseek = seq_lseek, 1814 .release = single_release, 1815 }; 1816 1817 static const struct file_operations pinctrl_gpioranges_ops = { 1818 .open = pinctrl_gpioranges_open, 1819 .read = seq_read, 1820 .llseek = seq_lseek, 1821 .release = single_release, 1822 }; 1823 1824 static const struct file_operations pinctrl_devices_ops = { 1825 .open = pinctrl_devices_open, 1826 .read = seq_read, 1827 .llseek = seq_lseek, 1828 .release = single_release, 1829 }; 1830 1831 static const struct file_operations pinctrl_maps_ops = { 1832 .open = pinctrl_maps_open, 1833 .read = seq_read, 1834 .llseek = seq_lseek, 1835 .release = single_release, 1836 }; 1837 1838 static const struct file_operations pinctrl_ops = { 1839 .open = pinctrl_open, 1840 .read = seq_read, 1841 .llseek = seq_lseek, 1842 .release = single_release, 1843 }; 1844 1845 static struct dentry *debugfs_root; 1846 1847 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1848 { 1849 struct dentry *device_root; 1850 1851 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1852 debugfs_root); 1853 pctldev->device_root = device_root; 1854 1855 if (IS_ERR(device_root) || !device_root) { 1856 pr_warn("failed to create debugfs directory for %s\n", 1857 dev_name(pctldev->dev)); 1858 return; 1859 } 1860 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1861 device_root, pctldev, &pinctrl_pins_ops); 1862 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1863 device_root, pctldev, &pinctrl_groups_ops); 1864 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1865 device_root, pctldev, &pinctrl_gpioranges_ops); 1866 if (pctldev->desc->pmxops) 1867 pinmux_init_device_debugfs(device_root, pctldev); 1868 if (pctldev->desc->confops) 1869 pinconf_init_device_debugfs(device_root, pctldev); 1870 } 1871 1872 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1873 { 1874 debugfs_remove_recursive(pctldev->device_root); 1875 } 1876 1877 static void pinctrl_init_debugfs(void) 1878 { 1879 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1880 if (IS_ERR(debugfs_root) || !debugfs_root) { 1881 pr_warn("failed to create debugfs directory\n"); 1882 debugfs_root = NULL; 1883 return; 1884 } 1885 1886 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1887 debugfs_root, NULL, &pinctrl_devices_ops); 1888 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1889 debugfs_root, NULL, &pinctrl_maps_ops); 1890 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1891 debugfs_root, NULL, &pinctrl_ops); 1892 } 1893 1894 #else /* CONFIG_DEBUG_FS */ 1895 1896 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1897 { 1898 } 1899 1900 static void pinctrl_init_debugfs(void) 1901 { 1902 } 1903 1904 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1905 { 1906 } 1907 1908 #endif 1909 1910 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1911 { 1912 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1913 1914 if (!ops || 1915 !ops->get_groups_count || 1916 !ops->get_group_name) 1917 return -EINVAL; 1918 1919 return 0; 1920 } 1921 1922 /** 1923 * pinctrl_init_controller() - init a pin controller device 1924 * @pctldesc: descriptor for this pin controller 1925 * @dev: parent device for this pin controller 1926 * @driver_data: private pin controller data for this pin controller 1927 */ 1928 static struct pinctrl_dev * 1929 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1930 void *driver_data) 1931 { 1932 struct pinctrl_dev *pctldev; 1933 int ret; 1934 1935 if (!pctldesc) 1936 return ERR_PTR(-EINVAL); 1937 if (!pctldesc->name) 1938 return ERR_PTR(-EINVAL); 1939 1940 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1941 if (!pctldev) 1942 return ERR_PTR(-ENOMEM); 1943 1944 /* Initialize pin control device struct */ 1945 pctldev->owner = pctldesc->owner; 1946 pctldev->desc = pctldesc; 1947 pctldev->driver_data = driver_data; 1948 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1949 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1950 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1951 #endif 1952 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1953 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1954 #endif 1955 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1956 INIT_LIST_HEAD(&pctldev->node); 1957 pctldev->dev = dev; 1958 mutex_init(&pctldev->mutex); 1959 1960 /* check core ops for sanity */ 1961 ret = pinctrl_check_ops(pctldev); 1962 if (ret) { 1963 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1964 goto out_err; 1965 } 1966 1967 /* If we're implementing pinmuxing, check the ops for sanity */ 1968 if (pctldesc->pmxops) { 1969 ret = pinmux_check_ops(pctldev); 1970 if (ret) 1971 goto out_err; 1972 } 1973 1974 /* If we're implementing pinconfig, check the ops for sanity */ 1975 if (pctldesc->confops) { 1976 ret = pinconf_check_ops(pctldev); 1977 if (ret) 1978 goto out_err; 1979 } 1980 1981 /* Register all the pins */ 1982 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1983 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1984 if (ret) { 1985 dev_err(dev, "error during pin registration\n"); 1986 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1987 pctldesc->npins); 1988 goto out_err; 1989 } 1990 1991 return pctldev; 1992 1993 out_err: 1994 mutex_destroy(&pctldev->mutex); 1995 kfree(pctldev); 1996 return ERR_PTR(ret); 1997 } 1998 1999 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2000 { 2001 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2002 if (PTR_ERR(pctldev->p) == -ENODEV) { 2003 dev_dbg(pctldev->dev, "no hogs found\n"); 2004 2005 return 0; 2006 } 2007 2008 if (IS_ERR(pctldev->p)) { 2009 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2010 PTR_ERR(pctldev->p)); 2011 2012 return PTR_ERR(pctldev->p); 2013 } 2014 2015 kref_get(&pctldev->p->users); 2016 pctldev->hog_default = 2017 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2018 if (IS_ERR(pctldev->hog_default)) { 2019 dev_dbg(pctldev->dev, 2020 "failed to lookup the default state\n"); 2021 } else { 2022 if (pinctrl_select_state(pctldev->p, 2023 pctldev->hog_default)) 2024 dev_err(pctldev->dev, 2025 "failed to select default state\n"); 2026 } 2027 2028 pctldev->hog_sleep = 2029 pinctrl_lookup_state(pctldev->p, 2030 PINCTRL_STATE_SLEEP); 2031 if (IS_ERR(pctldev->hog_sleep)) 2032 dev_dbg(pctldev->dev, 2033 "failed to lookup the sleep state\n"); 2034 2035 return 0; 2036 } 2037 2038 int pinctrl_enable(struct pinctrl_dev *pctldev) 2039 { 2040 int error; 2041 2042 error = pinctrl_claim_hogs(pctldev); 2043 if (error) { 2044 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2045 error); 2046 mutex_destroy(&pctldev->mutex); 2047 kfree(pctldev); 2048 2049 return error; 2050 } 2051 2052 mutex_lock(&pinctrldev_list_mutex); 2053 list_add_tail(&pctldev->node, &pinctrldev_list); 2054 mutex_unlock(&pinctrldev_list_mutex); 2055 2056 pinctrl_init_device_debugfs(pctldev); 2057 2058 return 0; 2059 } 2060 EXPORT_SYMBOL_GPL(pinctrl_enable); 2061 2062 /** 2063 * pinctrl_register() - register a pin controller device 2064 * @pctldesc: descriptor for this pin controller 2065 * @dev: parent device for this pin controller 2066 * @driver_data: private pin controller data for this pin controller 2067 * 2068 * Note that pinctrl_register() is known to have problems as the pin 2069 * controller driver functions are called before the driver has a 2070 * struct pinctrl_dev handle. To avoid issues later on, please use the 2071 * new pinctrl_register_and_init() below instead. 2072 */ 2073 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2074 struct device *dev, void *driver_data) 2075 { 2076 struct pinctrl_dev *pctldev; 2077 int error; 2078 2079 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2080 if (IS_ERR(pctldev)) 2081 return pctldev; 2082 2083 error = pinctrl_enable(pctldev); 2084 if (error) 2085 return ERR_PTR(error); 2086 2087 return pctldev; 2088 2089 } 2090 EXPORT_SYMBOL_GPL(pinctrl_register); 2091 2092 /** 2093 * pinctrl_register_and_init() - register and init pin controller device 2094 * @pctldesc: descriptor for this pin controller 2095 * @dev: parent device for this pin controller 2096 * @driver_data: private pin controller data for this pin controller 2097 * @pctldev: pin controller device 2098 * 2099 * Note that pinctrl_enable() still needs to be manually called after 2100 * this once the driver is ready. 2101 */ 2102 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2103 struct device *dev, void *driver_data, 2104 struct pinctrl_dev **pctldev) 2105 { 2106 struct pinctrl_dev *p; 2107 2108 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2109 if (IS_ERR(p)) 2110 return PTR_ERR(p); 2111 2112 /* 2113 * We have pinctrl_start() call functions in the pin controller 2114 * driver with create_pinctrl() for at least dt_node_to_map(). So 2115 * let's make sure pctldev is properly initialized for the 2116 * pin controller driver before we do anything. 2117 */ 2118 *pctldev = p; 2119 2120 return 0; 2121 } 2122 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2123 2124 /** 2125 * pinctrl_unregister() - unregister pinmux 2126 * @pctldev: pin controller to unregister 2127 * 2128 * Called by pinmux drivers to unregister a pinmux. 2129 */ 2130 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2131 { 2132 struct pinctrl_gpio_range *range, *n; 2133 2134 if (pctldev == NULL) 2135 return; 2136 2137 mutex_lock(&pctldev->mutex); 2138 pinctrl_remove_device_debugfs(pctldev); 2139 mutex_unlock(&pctldev->mutex); 2140 2141 if (!IS_ERR_OR_NULL(pctldev->p)) 2142 pinctrl_put(pctldev->p); 2143 2144 mutex_lock(&pinctrldev_list_mutex); 2145 mutex_lock(&pctldev->mutex); 2146 /* TODO: check that no pinmuxes are still active? */ 2147 list_del(&pctldev->node); 2148 pinmux_generic_free_functions(pctldev); 2149 pinctrl_generic_free_groups(pctldev); 2150 /* Destroy descriptor tree */ 2151 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2152 pctldev->desc->npins); 2153 /* remove gpio ranges map */ 2154 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2155 list_del(&range->node); 2156 2157 mutex_unlock(&pctldev->mutex); 2158 mutex_destroy(&pctldev->mutex); 2159 kfree(pctldev); 2160 mutex_unlock(&pinctrldev_list_mutex); 2161 } 2162 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2163 2164 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2165 { 2166 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2167 2168 pinctrl_unregister(pctldev); 2169 } 2170 2171 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2172 { 2173 struct pctldev **r = res; 2174 2175 if (WARN_ON(!r || !*r)) 2176 return 0; 2177 2178 return *r == data; 2179 } 2180 2181 /** 2182 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2183 * @dev: parent device for this pin controller 2184 * @pctldesc: descriptor for this pin controller 2185 * @driver_data: private pin controller data for this pin controller 2186 * 2187 * Returns an error pointer if pincontrol register failed. Otherwise 2188 * it returns valid pinctrl handle. 2189 * 2190 * The pinctrl device will be automatically released when the device is unbound. 2191 */ 2192 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2193 struct pinctrl_desc *pctldesc, 2194 void *driver_data) 2195 { 2196 struct pinctrl_dev **ptr, *pctldev; 2197 2198 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2199 if (!ptr) 2200 return ERR_PTR(-ENOMEM); 2201 2202 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2203 if (IS_ERR(pctldev)) { 2204 devres_free(ptr); 2205 return pctldev; 2206 } 2207 2208 *ptr = pctldev; 2209 devres_add(dev, ptr); 2210 2211 return pctldev; 2212 } 2213 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2214 2215 /** 2216 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2217 * @dev: parent device for this pin controller 2218 * @pctldesc: descriptor for this pin controller 2219 * @driver_data: private pin controller data for this pin controller 2220 * 2221 * Returns an error pointer if pincontrol register failed. Otherwise 2222 * it returns valid pinctrl handle. 2223 * 2224 * The pinctrl device will be automatically released when the device is unbound. 2225 */ 2226 int devm_pinctrl_register_and_init(struct device *dev, 2227 struct pinctrl_desc *pctldesc, 2228 void *driver_data, 2229 struct pinctrl_dev **pctldev) 2230 { 2231 struct pinctrl_dev **ptr; 2232 int error; 2233 2234 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2235 if (!ptr) 2236 return -ENOMEM; 2237 2238 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2239 if (error) { 2240 devres_free(ptr); 2241 return error; 2242 } 2243 2244 *ptr = *pctldev; 2245 devres_add(dev, ptr); 2246 2247 return 0; 2248 } 2249 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2250 2251 /** 2252 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2253 * @dev: device for which which resource was allocated 2254 * @pctldev: the pinctrl device to unregister. 2255 */ 2256 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2257 { 2258 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2259 devm_pinctrl_dev_match, pctldev)); 2260 } 2261 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2262 2263 static int __init pinctrl_init(void) 2264 { 2265 pr_info("initialized pinctrl subsystem\n"); 2266 pinctrl_init_debugfs(); 2267 return 0; 2268 } 2269 2270 /* init early since many drivers really need to initialized pinmux early */ 2271 core_initcall(pinctrl_init); 2272