xref: /openbmc/linux/drivers/pinctrl/core.c (revision aac5987a)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    const struct pinctrl_pin_desc *pin)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, pin->number);
233 	if (pindesc != NULL) {
234 		dev_err(pctldev->dev, "pin %d already registered\n",
235 			pin->number);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (!pindesc)
241 		return -ENOMEM;
242 
243 	/* Set owner */
244 	pindesc->pctldev = pctldev;
245 
246 	/* Copy basic pin info */
247 	if (pin->name) {
248 		pindesc->name = pin->name;
249 	} else {
250 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
251 		if (pindesc->name == NULL) {
252 			kfree(pindesc);
253 			return -ENOMEM;
254 		}
255 		pindesc->dynamic_name = true;
256 	}
257 
258 	pindesc->drv_data = pin->drv_data;
259 
260 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
261 	pr_debug("registered pin %d (%s) on %s\n",
262 		 pin->number, pindesc->name, pctldev->desc->name);
263 	return 0;
264 }
265 
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 				 struct pinctrl_pin_desc const *pins,
268 				 unsigned num_descs)
269 {
270 	unsigned i;
271 	int ret = 0;
272 
273 	for (i = 0; i < num_descs; i++) {
274 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * gpio_to_pin() - GPIO range GPIO number to pin number translation
284  * @range: GPIO range used for the translation
285  * @gpio: gpio pin to translate to a pin number
286  *
287  * Finds the pin number for a given GPIO using the specified GPIO range
288  * as a base for translation. The distinction between linear GPIO ranges
289  * and pin list based GPIO ranges is managed correctly by this function.
290  *
291  * This function assumes the gpio is part of the specified GPIO range, use
292  * only after making sure this is the case (e.g. by calling it on the
293  * result of successful pinctrl_get_device_gpio_range calls)!
294  */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 				unsigned int gpio)
297 {
298 	unsigned int offset = gpio - range->base;
299 	if (range->pins)
300 		return range->pins[offset];
301 	else
302 		return range->pin_base + offset;
303 }
304 
305 /**
306  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307  * @pctldev: pin controller device to check
308  * @gpio: gpio pin to check taken from the global GPIO pin space
309  *
310  * Tries to match a GPIO pin number to the ranges handled by a certain pin
311  * controller, return the range or NULL
312  */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 	struct pinctrl_gpio_range *range = NULL;
317 
318 	mutex_lock(&pctldev->mutex);
319 	/* Loop over the ranges */
320 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 		/* Check if we're in the valid range */
322 		if (gpio >= range->base &&
323 		    gpio < range->base + range->npins) {
324 			mutex_unlock(&pctldev->mutex);
325 			return range;
326 		}
327 	}
328 	mutex_unlock(&pctldev->mutex);
329 	return NULL;
330 }
331 
332 /**
333  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334  * the same GPIO chip are in range
335  * @gpio: gpio pin to check taken from the global GPIO pin space
336  *
337  * This function is complement of pinctrl_match_gpio_range(). If the return
338  * value of pinctrl_match_gpio_range() is NULL, this function could be used
339  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340  * of the same GPIO chip don't have back-end pinctrl interface.
341  * If the return value is true, it means that pinctrl device is ready & the
342  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343  * is false, it means that pinctrl device may not be ready.
344  */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 	struct pinctrl_dev *pctldev;
349 	struct pinctrl_gpio_range *range = NULL;
350 	struct gpio_chip *chip = gpio_to_chip(gpio);
351 
352 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
353 		return false;
354 
355 	mutex_lock(&pinctrldev_list_mutex);
356 
357 	/* Loop over the pin controllers */
358 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
359 		/* Loop over the ranges */
360 		mutex_lock(&pctldev->mutex);
361 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
362 			/* Check if any gpio range overlapped with gpio chip */
363 			if (range->base + range->npins - 1 < chip->base ||
364 			    range->base > chip->base + chip->ngpio - 1)
365 				continue;
366 			mutex_unlock(&pctldev->mutex);
367 			mutex_unlock(&pinctrldev_list_mutex);
368 			return true;
369 		}
370 		mutex_unlock(&pctldev->mutex);
371 	}
372 
373 	mutex_unlock(&pinctrldev_list_mutex);
374 
375 	return false;
376 }
377 #else
378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
379 #endif
380 
381 /**
382  * pinctrl_get_device_gpio_range() - find device for GPIO range
383  * @gpio: the pin to locate the pin controller for
384  * @outdev: the pin control device if found
385  * @outrange: the GPIO range if found
386  *
387  * Find the pin controller handling a certain GPIO pin from the pinspace of
388  * the GPIO subsystem, return the device and the matching GPIO range. Returns
389  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
390  * may still have not been registered.
391  */
392 static int pinctrl_get_device_gpio_range(unsigned gpio,
393 					 struct pinctrl_dev **outdev,
394 					 struct pinctrl_gpio_range **outrange)
395 {
396 	struct pinctrl_dev *pctldev = NULL;
397 
398 	mutex_lock(&pinctrldev_list_mutex);
399 
400 	/* Loop over the pin controllers */
401 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
402 		struct pinctrl_gpio_range *range;
403 
404 		range = pinctrl_match_gpio_range(pctldev, gpio);
405 		if (range != NULL) {
406 			*outdev = pctldev;
407 			*outrange = range;
408 			mutex_unlock(&pinctrldev_list_mutex);
409 			return 0;
410 		}
411 	}
412 
413 	mutex_unlock(&pinctrldev_list_mutex);
414 
415 	return -EPROBE_DEFER;
416 }
417 
418 /**
419  * pinctrl_add_gpio_range() - register a GPIO range for a controller
420  * @pctldev: pin controller device to add the range to
421  * @range: the GPIO range to add
422  *
423  * This adds a range of GPIOs to be handled by a certain pin controller. Call
424  * this to register handled ranges after registering your pin controller.
425  */
426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
427 			    struct pinctrl_gpio_range *range)
428 {
429 	mutex_lock(&pctldev->mutex);
430 	list_add_tail(&range->node, &pctldev->gpio_ranges);
431 	mutex_unlock(&pctldev->mutex);
432 }
433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
434 
435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
436 			     struct pinctrl_gpio_range *ranges,
437 			     unsigned nranges)
438 {
439 	int i;
440 
441 	for (i = 0; i < nranges; i++)
442 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
443 }
444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
445 
446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
447 		struct pinctrl_gpio_range *range)
448 {
449 	struct pinctrl_dev *pctldev;
450 
451 	pctldev = get_pinctrl_dev_from_devname(devname);
452 
453 	/*
454 	 * If we can't find this device, let's assume that is because
455 	 * it has not probed yet, so the driver trying to register this
456 	 * range need to defer probing.
457 	 */
458 	if (!pctldev) {
459 		return ERR_PTR(-EPROBE_DEFER);
460 	}
461 	pinctrl_add_gpio_range(pctldev, range);
462 
463 	return pctldev;
464 }
465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
466 
467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
468 				const unsigned **pins, unsigned *num_pins)
469 {
470 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
471 	int gs;
472 
473 	if (!pctlops->get_group_pins)
474 		return -EINVAL;
475 
476 	gs = pinctrl_get_group_selector(pctldev, pin_group);
477 	if (gs < 0)
478 		return gs;
479 
480 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
481 }
482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
483 
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
486 					unsigned int pin)
487 {
488 	struct pinctrl_gpio_range *range;
489 
490 	/* Loop over the ranges */
491 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
492 		/* Check if we're in the valid range */
493 		if (range->pins) {
494 			int a;
495 			for (a = 0; a < range->npins; a++) {
496 				if (range->pins[a] == pin)
497 					return range;
498 			}
499 		} else if (pin >= range->pin_base &&
500 			   pin < range->pin_base + range->npins)
501 			return range;
502 	}
503 
504 	return NULL;
505 }
506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
507 
508 /**
509  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
510  * @pctldev: the pin controller device to look in
511  * @pin: a controller-local number to find the range for
512  */
513 struct pinctrl_gpio_range *
514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
515 				 unsigned int pin)
516 {
517 	struct pinctrl_gpio_range *range;
518 
519 	mutex_lock(&pctldev->mutex);
520 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
521 	mutex_unlock(&pctldev->mutex);
522 
523 	return range;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
526 
527 /**
528  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
529  * @pctldev: pin controller device to remove the range from
530  * @range: the GPIO range to remove
531  */
532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
533 			       struct pinctrl_gpio_range *range)
534 {
535 	mutex_lock(&pctldev->mutex);
536 	list_del(&range->node);
537 	mutex_unlock(&pctldev->mutex);
538 }
539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
540 
541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
542 
543 /**
544  * pinctrl_generic_get_group_count() - returns the number of pin groups
545  * @pctldev: pin controller device
546  */
547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
548 {
549 	return pctldev->num_groups;
550 }
551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
552 
553 /**
554  * pinctrl_generic_get_group_name() - returns the name of a pin group
555  * @pctldev: pin controller device
556  * @selector: group number
557  */
558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
559 					   unsigned int selector)
560 {
561 	struct group_desc *group;
562 
563 	group = radix_tree_lookup(&pctldev->pin_group_tree,
564 				  selector);
565 	if (!group)
566 		return NULL;
567 
568 	return group->name;
569 }
570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
571 
572 /**
573  * pinctrl_generic_get_group_pins() - gets the pin group pins
574  * @pctldev: pin controller device
575  * @selector: group number
576  * @pins: pins in the group
577  * @num_pins: number of pins in the group
578  */
579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
580 				   unsigned int selector,
581 				   const unsigned int **pins,
582 				   unsigned int *num_pins)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group) {
589 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
590 			__func__, selector);
591 		return -EINVAL;
592 	}
593 
594 	*pins = group->pins;
595 	*num_pins = group->num_pins;
596 
597 	return 0;
598 }
599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
600 
601 /**
602  * pinctrl_generic_get_group() - returns a pin group based on the number
603  * @pctldev: pin controller device
604  * @gselector: group number
605  */
606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
607 					     unsigned int selector)
608 {
609 	struct group_desc *group;
610 
611 	group = radix_tree_lookup(&pctldev->pin_group_tree,
612 				  selector);
613 	if (!group)
614 		return NULL;
615 
616 	return group;
617 }
618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
619 
620 /**
621  * pinctrl_generic_add_group() - adds a new pin group
622  * @pctldev: pin controller device
623  * @name: name of the pin group
624  * @pins: pins in the pin group
625  * @num_pins: number of pins in the pin group
626  * @data: pin controller driver specific data
627  *
628  * Note that the caller must take care of locking.
629  */
630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
631 			      int *pins, int num_pins, void *data)
632 {
633 	struct group_desc *group;
634 
635 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
636 	if (!group)
637 		return -ENOMEM;
638 
639 	group->name = name;
640 	group->pins = pins;
641 	group->num_pins = num_pins;
642 	group->data = data;
643 
644 	radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups,
645 			  group);
646 
647 	pctldev->num_groups++;
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
652 
653 /**
654  * pinctrl_generic_remove_group() - removes a numbered pin group
655  * @pctldev: pin controller device
656  * @selector: group number
657  *
658  * Note that the caller must take care of locking.
659  */
660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
661 				 unsigned int selector)
662 {
663 	struct group_desc *group;
664 
665 	group = radix_tree_lookup(&pctldev->pin_group_tree,
666 				  selector);
667 	if (!group)
668 		return -ENOENT;
669 
670 	radix_tree_delete(&pctldev->pin_group_tree, selector);
671 	devm_kfree(pctldev->dev, group);
672 
673 	pctldev->num_groups--;
674 
675 	return 0;
676 }
677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
678 
679 /**
680  * pinctrl_generic_free_groups() - removes all pin groups
681  * @pctldev: pin controller device
682  *
683  * Note that the caller must take care of locking.
684  */
685 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
686 {
687 	struct radix_tree_iter iter;
688 	struct group_desc *group;
689 	unsigned long *indices;
690 	void **slot;
691 	int i = 0;
692 
693 	indices = devm_kzalloc(pctldev->dev, sizeof(*indices) *
694 			       pctldev->num_groups, GFP_KERNEL);
695 	if (!indices)
696 		return;
697 
698 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
699 		indices[i++] = iter.index;
700 
701 	for (i = 0; i < pctldev->num_groups; i++) {
702 		group = radix_tree_lookup(&pctldev->pin_group_tree,
703 					  indices[i]);
704 		radix_tree_delete(&pctldev->pin_group_tree, indices[i]);
705 		devm_kfree(pctldev->dev, group);
706 	}
707 
708 	pctldev->num_groups = 0;
709 }
710 
711 #else
712 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
713 {
714 }
715 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
716 
717 /**
718  * pinctrl_get_group_selector() - returns the group selector for a group
719  * @pctldev: the pin controller handling the group
720  * @pin_group: the pin group to look up
721  */
722 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
723 			       const char *pin_group)
724 {
725 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
726 	unsigned ngroups = pctlops->get_groups_count(pctldev);
727 	unsigned group_selector = 0;
728 
729 	while (group_selector < ngroups) {
730 		const char *gname = pctlops->get_group_name(pctldev,
731 							    group_selector);
732 		if (!strcmp(gname, pin_group)) {
733 			dev_dbg(pctldev->dev,
734 				"found group selector %u for %s\n",
735 				group_selector,
736 				pin_group);
737 			return group_selector;
738 		}
739 
740 		group_selector++;
741 	}
742 
743 	dev_err(pctldev->dev, "does not have pin group %s\n",
744 		pin_group);
745 
746 	return -EINVAL;
747 }
748 
749 /**
750  * pinctrl_request_gpio() - request a single pin to be used as GPIO
751  * @gpio: the GPIO pin number from the GPIO subsystem number space
752  *
753  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
754  * as part of their gpio_request() semantics, platforms and individual drivers
755  * shall *NOT* request GPIO pins to be muxed in.
756  */
757 int pinctrl_request_gpio(unsigned gpio)
758 {
759 	struct pinctrl_dev *pctldev;
760 	struct pinctrl_gpio_range *range;
761 	int ret;
762 	int pin;
763 
764 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
765 	if (ret) {
766 		if (pinctrl_ready_for_gpio_range(gpio))
767 			ret = 0;
768 		return ret;
769 	}
770 
771 	mutex_lock(&pctldev->mutex);
772 
773 	/* Convert to the pin controllers number space */
774 	pin = gpio_to_pin(range, gpio);
775 
776 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
777 
778 	mutex_unlock(&pctldev->mutex);
779 
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
783 
784 /**
785  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
786  * @gpio: the GPIO pin number from the GPIO subsystem number space
787  *
788  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789  * as part of their gpio_free() semantics, platforms and individual drivers
790  * shall *NOT* request GPIO pins to be muxed out.
791  */
792 void pinctrl_free_gpio(unsigned gpio)
793 {
794 	struct pinctrl_dev *pctldev;
795 	struct pinctrl_gpio_range *range;
796 	int ret;
797 	int pin;
798 
799 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
800 	if (ret) {
801 		return;
802 	}
803 	mutex_lock(&pctldev->mutex);
804 
805 	/* Convert to the pin controllers number space */
806 	pin = gpio_to_pin(range, gpio);
807 
808 	pinmux_free_gpio(pctldev, pin, range);
809 
810 	mutex_unlock(&pctldev->mutex);
811 }
812 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
813 
814 static int pinctrl_gpio_direction(unsigned gpio, bool input)
815 {
816 	struct pinctrl_dev *pctldev;
817 	struct pinctrl_gpio_range *range;
818 	int ret;
819 	int pin;
820 
821 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
822 	if (ret) {
823 		return ret;
824 	}
825 
826 	mutex_lock(&pctldev->mutex);
827 
828 	/* Convert to the pin controllers number space */
829 	pin = gpio_to_pin(range, gpio);
830 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
831 
832 	mutex_unlock(&pctldev->mutex);
833 
834 	return ret;
835 }
836 
837 /**
838  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
839  * @gpio: the GPIO pin number from the GPIO subsystem number space
840  *
841  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
842  * as part of their gpio_direction_input() semantics, platforms and individual
843  * drivers shall *NOT* touch pin control GPIO calls.
844  */
845 int pinctrl_gpio_direction_input(unsigned gpio)
846 {
847 	return pinctrl_gpio_direction(gpio, true);
848 }
849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
850 
851 /**
852  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
853  * @gpio: the GPIO pin number from the GPIO subsystem number space
854  *
855  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
856  * as part of their gpio_direction_output() semantics, platforms and individual
857  * drivers shall *NOT* touch pin control GPIO calls.
858  */
859 int pinctrl_gpio_direction_output(unsigned gpio)
860 {
861 	return pinctrl_gpio_direction(gpio, false);
862 }
863 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
864 
865 /**
866  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
867  * @gpio: the GPIO pin number from the GPIO subsystem number space
868  * @config: the configuration to apply to the GPIO
869  *
870  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
871  * they need to call the underlying pin controller to change GPIO config
872  * (for example set debounce time).
873  */
874 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
875 {
876 	unsigned long configs[] = { config };
877 	struct pinctrl_gpio_range *range;
878 	struct pinctrl_dev *pctldev;
879 	int ret, pin;
880 
881 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
882 	if (ret)
883 		return ret;
884 
885 	mutex_lock(&pctldev->mutex);
886 	pin = gpio_to_pin(range, gpio);
887 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
888 	mutex_unlock(&pctldev->mutex);
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
893 
894 static struct pinctrl_state *find_state(struct pinctrl *p,
895 					const char *name)
896 {
897 	struct pinctrl_state *state;
898 
899 	list_for_each_entry(state, &p->states, node)
900 		if (!strcmp(state->name, name))
901 			return state;
902 
903 	return NULL;
904 }
905 
906 static struct pinctrl_state *create_state(struct pinctrl *p,
907 					  const char *name)
908 {
909 	struct pinctrl_state *state;
910 
911 	state = kzalloc(sizeof(*state), GFP_KERNEL);
912 	if (!state)
913 		return ERR_PTR(-ENOMEM);
914 
915 	state->name = name;
916 	INIT_LIST_HEAD(&state->settings);
917 
918 	list_add_tail(&state->node, &p->states);
919 
920 	return state;
921 }
922 
923 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
924 		       struct pinctrl_map const *map)
925 {
926 	struct pinctrl_state *state;
927 	struct pinctrl_setting *setting;
928 	int ret;
929 
930 	state = find_state(p, map->name);
931 	if (!state)
932 		state = create_state(p, map->name);
933 	if (IS_ERR(state))
934 		return PTR_ERR(state);
935 
936 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
937 		return 0;
938 
939 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
940 	if (!setting)
941 		return -ENOMEM;
942 
943 	setting->type = map->type;
944 
945 	if (pctldev)
946 		setting->pctldev = pctldev;
947 	else
948 		setting->pctldev =
949 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
950 	if (setting->pctldev == NULL) {
951 		kfree(setting);
952 		/* Do not defer probing of hogs (circular loop) */
953 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
954 			return -ENODEV;
955 		/*
956 		 * OK let us guess that the driver is not there yet, and
957 		 * let's defer obtaining this pinctrl handle to later...
958 		 */
959 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
960 			map->ctrl_dev_name);
961 		return -EPROBE_DEFER;
962 	}
963 
964 	setting->dev_name = map->dev_name;
965 
966 	switch (map->type) {
967 	case PIN_MAP_TYPE_MUX_GROUP:
968 		ret = pinmux_map_to_setting(map, setting);
969 		break;
970 	case PIN_MAP_TYPE_CONFIGS_PIN:
971 	case PIN_MAP_TYPE_CONFIGS_GROUP:
972 		ret = pinconf_map_to_setting(map, setting);
973 		break;
974 	default:
975 		ret = -EINVAL;
976 		break;
977 	}
978 	if (ret < 0) {
979 		kfree(setting);
980 		return ret;
981 	}
982 
983 	list_add_tail(&setting->node, &state->settings);
984 
985 	return 0;
986 }
987 
988 static struct pinctrl *find_pinctrl(struct device *dev)
989 {
990 	struct pinctrl *p;
991 
992 	mutex_lock(&pinctrl_list_mutex);
993 	list_for_each_entry(p, &pinctrl_list, node)
994 		if (p->dev == dev) {
995 			mutex_unlock(&pinctrl_list_mutex);
996 			return p;
997 		}
998 
999 	mutex_unlock(&pinctrl_list_mutex);
1000 	return NULL;
1001 }
1002 
1003 static void pinctrl_free(struct pinctrl *p, bool inlist);
1004 
1005 static struct pinctrl *create_pinctrl(struct device *dev,
1006 				      struct pinctrl_dev *pctldev)
1007 {
1008 	struct pinctrl *p;
1009 	const char *devname;
1010 	struct pinctrl_maps *maps_node;
1011 	int i;
1012 	struct pinctrl_map const *map;
1013 	int ret;
1014 
1015 	/*
1016 	 * create the state cookie holder struct pinctrl for each
1017 	 * mapping, this is what consumers will get when requesting
1018 	 * a pin control handle with pinctrl_get()
1019 	 */
1020 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1021 	if (!p)
1022 		return ERR_PTR(-ENOMEM);
1023 	p->dev = dev;
1024 	INIT_LIST_HEAD(&p->states);
1025 	INIT_LIST_HEAD(&p->dt_maps);
1026 
1027 	ret = pinctrl_dt_to_map(p, pctldev);
1028 	if (ret < 0) {
1029 		kfree(p);
1030 		return ERR_PTR(ret);
1031 	}
1032 
1033 	devname = dev_name(dev);
1034 
1035 	mutex_lock(&pinctrl_maps_mutex);
1036 	/* Iterate over the pin control maps to locate the right ones */
1037 	for_each_maps(maps_node, i, map) {
1038 		/* Map must be for this device */
1039 		if (strcmp(map->dev_name, devname))
1040 			continue;
1041 
1042 		ret = add_setting(p, pctldev, map);
1043 		/*
1044 		 * At this point the adding of a setting may:
1045 		 *
1046 		 * - Defer, if the pinctrl device is not yet available
1047 		 * - Fail, if the pinctrl device is not yet available,
1048 		 *   AND the setting is a hog. We cannot defer that, since
1049 		 *   the hog will kick in immediately after the device
1050 		 *   is registered.
1051 		 *
1052 		 * If the error returned was not -EPROBE_DEFER then we
1053 		 * accumulate the errors to see if we end up with
1054 		 * an -EPROBE_DEFER later, as that is the worst case.
1055 		 */
1056 		if (ret == -EPROBE_DEFER) {
1057 			pinctrl_free(p, false);
1058 			mutex_unlock(&pinctrl_maps_mutex);
1059 			return ERR_PTR(ret);
1060 		}
1061 	}
1062 	mutex_unlock(&pinctrl_maps_mutex);
1063 
1064 	if (ret < 0) {
1065 		/* If some other error than deferral occured, return here */
1066 		pinctrl_free(p, false);
1067 		return ERR_PTR(ret);
1068 	}
1069 
1070 	kref_init(&p->users);
1071 
1072 	/* Add the pinctrl handle to the global list */
1073 	mutex_lock(&pinctrl_list_mutex);
1074 	list_add_tail(&p->node, &pinctrl_list);
1075 	mutex_unlock(&pinctrl_list_mutex);
1076 
1077 	return p;
1078 }
1079 
1080 /**
1081  * pinctrl_get() - retrieves the pinctrl handle for a device
1082  * @dev: the device to obtain the handle for
1083  */
1084 struct pinctrl *pinctrl_get(struct device *dev)
1085 {
1086 	struct pinctrl *p;
1087 
1088 	if (WARN_ON(!dev))
1089 		return ERR_PTR(-EINVAL);
1090 
1091 	/*
1092 	 * See if somebody else (such as the device core) has already
1093 	 * obtained a handle to the pinctrl for this device. In that case,
1094 	 * return another pointer to it.
1095 	 */
1096 	p = find_pinctrl(dev);
1097 	if (p != NULL) {
1098 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1099 		kref_get(&p->users);
1100 		return p;
1101 	}
1102 
1103 	return create_pinctrl(dev, NULL);
1104 }
1105 EXPORT_SYMBOL_GPL(pinctrl_get);
1106 
1107 static void pinctrl_free_setting(bool disable_setting,
1108 				 struct pinctrl_setting *setting)
1109 {
1110 	switch (setting->type) {
1111 	case PIN_MAP_TYPE_MUX_GROUP:
1112 		if (disable_setting)
1113 			pinmux_disable_setting(setting);
1114 		pinmux_free_setting(setting);
1115 		break;
1116 	case PIN_MAP_TYPE_CONFIGS_PIN:
1117 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1118 		pinconf_free_setting(setting);
1119 		break;
1120 	default:
1121 		break;
1122 	}
1123 }
1124 
1125 static void pinctrl_free(struct pinctrl *p, bool inlist)
1126 {
1127 	struct pinctrl_state *state, *n1;
1128 	struct pinctrl_setting *setting, *n2;
1129 
1130 	mutex_lock(&pinctrl_list_mutex);
1131 	list_for_each_entry_safe(state, n1, &p->states, node) {
1132 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1133 			pinctrl_free_setting(state == p->state, setting);
1134 			list_del(&setting->node);
1135 			kfree(setting);
1136 		}
1137 		list_del(&state->node);
1138 		kfree(state);
1139 	}
1140 
1141 	pinctrl_dt_free_maps(p);
1142 
1143 	if (inlist)
1144 		list_del(&p->node);
1145 	kfree(p);
1146 	mutex_unlock(&pinctrl_list_mutex);
1147 }
1148 
1149 /**
1150  * pinctrl_release() - release the pinctrl handle
1151  * @kref: the kref in the pinctrl being released
1152  */
1153 static void pinctrl_release(struct kref *kref)
1154 {
1155 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1156 
1157 	pinctrl_free(p, true);
1158 }
1159 
1160 /**
1161  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1162  * @p: the pinctrl handle to release
1163  */
1164 void pinctrl_put(struct pinctrl *p)
1165 {
1166 	kref_put(&p->users, pinctrl_release);
1167 }
1168 EXPORT_SYMBOL_GPL(pinctrl_put);
1169 
1170 /**
1171  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1172  * @p: the pinctrl handle to retrieve the state from
1173  * @name: the state name to retrieve
1174  */
1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1176 						 const char *name)
1177 {
1178 	struct pinctrl_state *state;
1179 
1180 	state = find_state(p, name);
1181 	if (!state) {
1182 		if (pinctrl_dummy_state) {
1183 			/* create dummy state */
1184 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1185 				name);
1186 			state = create_state(p, name);
1187 		} else
1188 			state = ERR_PTR(-ENODEV);
1189 	}
1190 
1191 	return state;
1192 }
1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1194 
1195 /**
1196  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1197  * @p: the pinctrl handle for the device that requests configuration
1198  * @state: the state handle to select/activate/program
1199  */
1200 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1201 {
1202 	struct pinctrl_setting *setting, *setting2;
1203 	struct pinctrl_state *old_state = p->state;
1204 	int ret;
1205 
1206 	if (p->state == state)
1207 		return 0;
1208 
1209 	if (p->state) {
1210 		/*
1211 		 * For each pinmux setting in the old state, forget SW's record
1212 		 * of mux owner for that pingroup. Any pingroups which are
1213 		 * still owned by the new state will be re-acquired by the call
1214 		 * to pinmux_enable_setting() in the loop below.
1215 		 */
1216 		list_for_each_entry(setting, &p->state->settings, node) {
1217 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1218 				continue;
1219 			pinmux_disable_setting(setting);
1220 		}
1221 	}
1222 
1223 	p->state = NULL;
1224 
1225 	/* Apply all the settings for the new state */
1226 	list_for_each_entry(setting, &state->settings, node) {
1227 		switch (setting->type) {
1228 		case PIN_MAP_TYPE_MUX_GROUP:
1229 			ret = pinmux_enable_setting(setting);
1230 			break;
1231 		case PIN_MAP_TYPE_CONFIGS_PIN:
1232 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1233 			ret = pinconf_apply_setting(setting);
1234 			break;
1235 		default:
1236 			ret = -EINVAL;
1237 			break;
1238 		}
1239 
1240 		if (ret < 0) {
1241 			goto unapply_new_state;
1242 		}
1243 	}
1244 
1245 	p->state = state;
1246 
1247 	return 0;
1248 
1249 unapply_new_state:
1250 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1251 
1252 	list_for_each_entry(setting2, &state->settings, node) {
1253 		if (&setting2->node == &setting->node)
1254 			break;
1255 		/*
1256 		 * All we can do here is pinmux_disable_setting.
1257 		 * That means that some pins are muxed differently now
1258 		 * than they were before applying the setting (We can't
1259 		 * "unmux a pin"!), but it's not a big deal since the pins
1260 		 * are free to be muxed by another apply_setting.
1261 		 */
1262 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1263 			pinmux_disable_setting(setting2);
1264 	}
1265 
1266 	/* There's no infinite recursive loop here because p->state is NULL */
1267 	if (old_state)
1268 		pinctrl_select_state(p, old_state);
1269 
1270 	return ret;
1271 }
1272 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1273 
1274 static void devm_pinctrl_release(struct device *dev, void *res)
1275 {
1276 	pinctrl_put(*(struct pinctrl **)res);
1277 }
1278 
1279 /**
1280  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1281  * @dev: the device to obtain the handle for
1282  *
1283  * If there is a need to explicitly destroy the returned struct pinctrl,
1284  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1285  */
1286 struct pinctrl *devm_pinctrl_get(struct device *dev)
1287 {
1288 	struct pinctrl **ptr, *p;
1289 
1290 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1291 	if (!ptr)
1292 		return ERR_PTR(-ENOMEM);
1293 
1294 	p = pinctrl_get(dev);
1295 	if (!IS_ERR(p)) {
1296 		*ptr = p;
1297 		devres_add(dev, ptr);
1298 	} else {
1299 		devres_free(ptr);
1300 	}
1301 
1302 	return p;
1303 }
1304 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1305 
1306 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1307 {
1308 	struct pinctrl **p = res;
1309 
1310 	return *p == data;
1311 }
1312 
1313 /**
1314  * devm_pinctrl_put() - Resource managed pinctrl_put()
1315  * @p: the pinctrl handle to release
1316  *
1317  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1318  * this function will not need to be called and the resource management
1319  * code will ensure that the resource is freed.
1320  */
1321 void devm_pinctrl_put(struct pinctrl *p)
1322 {
1323 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1324 			       devm_pinctrl_match, p));
1325 }
1326 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1327 
1328 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1329 			 bool dup)
1330 {
1331 	int i, ret;
1332 	struct pinctrl_maps *maps_node;
1333 
1334 	pr_debug("add %u pinctrl maps\n", num_maps);
1335 
1336 	/* First sanity check the new mapping */
1337 	for (i = 0; i < num_maps; i++) {
1338 		if (!maps[i].dev_name) {
1339 			pr_err("failed to register map %s (%d): no device given\n",
1340 			       maps[i].name, i);
1341 			return -EINVAL;
1342 		}
1343 
1344 		if (!maps[i].name) {
1345 			pr_err("failed to register map %d: no map name given\n",
1346 			       i);
1347 			return -EINVAL;
1348 		}
1349 
1350 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1351 				!maps[i].ctrl_dev_name) {
1352 			pr_err("failed to register map %s (%d): no pin control device given\n",
1353 			       maps[i].name, i);
1354 			return -EINVAL;
1355 		}
1356 
1357 		switch (maps[i].type) {
1358 		case PIN_MAP_TYPE_DUMMY_STATE:
1359 			break;
1360 		case PIN_MAP_TYPE_MUX_GROUP:
1361 			ret = pinmux_validate_map(&maps[i], i);
1362 			if (ret < 0)
1363 				return ret;
1364 			break;
1365 		case PIN_MAP_TYPE_CONFIGS_PIN:
1366 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1367 			ret = pinconf_validate_map(&maps[i], i);
1368 			if (ret < 0)
1369 				return ret;
1370 			break;
1371 		default:
1372 			pr_err("failed to register map %s (%d): invalid type given\n",
1373 			       maps[i].name, i);
1374 			return -EINVAL;
1375 		}
1376 	}
1377 
1378 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1379 	if (!maps_node)
1380 		return -ENOMEM;
1381 
1382 	maps_node->num_maps = num_maps;
1383 	if (dup) {
1384 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1385 					  GFP_KERNEL);
1386 		if (!maps_node->maps) {
1387 			pr_err("failed to duplicate mapping table\n");
1388 			kfree(maps_node);
1389 			return -ENOMEM;
1390 		}
1391 	} else {
1392 		maps_node->maps = maps;
1393 	}
1394 
1395 	mutex_lock(&pinctrl_maps_mutex);
1396 	list_add_tail(&maps_node->node, &pinctrl_maps);
1397 	mutex_unlock(&pinctrl_maps_mutex);
1398 
1399 	return 0;
1400 }
1401 
1402 /**
1403  * pinctrl_register_mappings() - register a set of pin controller mappings
1404  * @maps: the pincontrol mappings table to register. This should probably be
1405  *	marked with __initdata so it can be discarded after boot. This
1406  *	function will perform a shallow copy for the mapping entries.
1407  * @num_maps: the number of maps in the mapping table
1408  */
1409 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1410 			      unsigned num_maps)
1411 {
1412 	return pinctrl_register_map(maps, num_maps, true);
1413 }
1414 
1415 void pinctrl_unregister_map(struct pinctrl_map const *map)
1416 {
1417 	struct pinctrl_maps *maps_node;
1418 
1419 	mutex_lock(&pinctrl_maps_mutex);
1420 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1421 		if (maps_node->maps == map) {
1422 			list_del(&maps_node->node);
1423 			kfree(maps_node);
1424 			mutex_unlock(&pinctrl_maps_mutex);
1425 			return;
1426 		}
1427 	}
1428 	mutex_unlock(&pinctrl_maps_mutex);
1429 }
1430 
1431 /**
1432  * pinctrl_force_sleep() - turn a given controller device into sleep state
1433  * @pctldev: pin controller device
1434  */
1435 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1436 {
1437 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1438 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1442 
1443 /**
1444  * pinctrl_force_default() - turn a given controller device into default state
1445  * @pctldev: pin controller device
1446  */
1447 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1448 {
1449 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1450 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1454 
1455 /**
1456  * pinctrl_init_done() - tell pinctrl probe is done
1457  *
1458  * We'll use this time to switch the pins from "init" to "default" unless the
1459  * driver selected some other state.
1460  *
1461  * @dev: device to that's done probing
1462  */
1463 int pinctrl_init_done(struct device *dev)
1464 {
1465 	struct dev_pin_info *pins = dev->pins;
1466 	int ret;
1467 
1468 	if (!pins)
1469 		return 0;
1470 
1471 	if (IS_ERR(pins->init_state))
1472 		return 0; /* No such state */
1473 
1474 	if (pins->p->state != pins->init_state)
1475 		return 0; /* Not at init anyway */
1476 
1477 	if (IS_ERR(pins->default_state))
1478 		return 0; /* No default state */
1479 
1480 	ret = pinctrl_select_state(pins->p, pins->default_state);
1481 	if (ret)
1482 		dev_err(dev, "failed to activate default pinctrl state\n");
1483 
1484 	return ret;
1485 }
1486 
1487 #ifdef CONFIG_PM
1488 
1489 /**
1490  * pinctrl_pm_select_state() - select pinctrl state for PM
1491  * @dev: device to select default state for
1492  * @state: state to set
1493  */
1494 static int pinctrl_pm_select_state(struct device *dev,
1495 				   struct pinctrl_state *state)
1496 {
1497 	struct dev_pin_info *pins = dev->pins;
1498 	int ret;
1499 
1500 	if (IS_ERR(state))
1501 		return 0; /* No such state */
1502 	ret = pinctrl_select_state(pins->p, state);
1503 	if (ret)
1504 		dev_err(dev, "failed to activate pinctrl state %s\n",
1505 			state->name);
1506 	return ret;
1507 }
1508 
1509 /**
1510  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1511  * @dev: device to select default state for
1512  */
1513 int pinctrl_pm_select_default_state(struct device *dev)
1514 {
1515 	if (!dev->pins)
1516 		return 0;
1517 
1518 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1519 }
1520 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1521 
1522 /**
1523  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1524  * @dev: device to select sleep state for
1525  */
1526 int pinctrl_pm_select_sleep_state(struct device *dev)
1527 {
1528 	if (!dev->pins)
1529 		return 0;
1530 
1531 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1532 }
1533 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1534 
1535 /**
1536  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1537  * @dev: device to select idle state for
1538  */
1539 int pinctrl_pm_select_idle_state(struct device *dev)
1540 {
1541 	if (!dev->pins)
1542 		return 0;
1543 
1544 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1545 }
1546 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1547 #endif
1548 
1549 #ifdef CONFIG_DEBUG_FS
1550 
1551 static int pinctrl_pins_show(struct seq_file *s, void *what)
1552 {
1553 	struct pinctrl_dev *pctldev = s->private;
1554 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1555 	unsigned i, pin;
1556 
1557 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1558 
1559 	mutex_lock(&pctldev->mutex);
1560 
1561 	/* The pin number can be retrived from the pin controller descriptor */
1562 	for (i = 0; i < pctldev->desc->npins; i++) {
1563 		struct pin_desc *desc;
1564 
1565 		pin = pctldev->desc->pins[i].number;
1566 		desc = pin_desc_get(pctldev, pin);
1567 		/* Pin space may be sparse */
1568 		if (desc == NULL)
1569 			continue;
1570 
1571 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1572 
1573 		/* Driver-specific info per pin */
1574 		if (ops->pin_dbg_show)
1575 			ops->pin_dbg_show(pctldev, s, pin);
1576 
1577 		seq_puts(s, "\n");
1578 	}
1579 
1580 	mutex_unlock(&pctldev->mutex);
1581 
1582 	return 0;
1583 }
1584 
1585 static int pinctrl_groups_show(struct seq_file *s, void *what)
1586 {
1587 	struct pinctrl_dev *pctldev = s->private;
1588 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1589 	unsigned ngroups, selector = 0;
1590 
1591 	mutex_lock(&pctldev->mutex);
1592 
1593 	ngroups = ops->get_groups_count(pctldev);
1594 
1595 	seq_puts(s, "registered pin groups:\n");
1596 	while (selector < ngroups) {
1597 		const unsigned *pins = NULL;
1598 		unsigned num_pins = 0;
1599 		const char *gname = ops->get_group_name(pctldev, selector);
1600 		const char *pname;
1601 		int ret = 0;
1602 		int i;
1603 
1604 		if (ops->get_group_pins)
1605 			ret = ops->get_group_pins(pctldev, selector,
1606 						  &pins, &num_pins);
1607 		if (ret)
1608 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1609 				   gname);
1610 		else {
1611 			seq_printf(s, "group: %s\n", gname);
1612 			for (i = 0; i < num_pins; i++) {
1613 				pname = pin_get_name(pctldev, pins[i]);
1614 				if (WARN_ON(!pname)) {
1615 					mutex_unlock(&pctldev->mutex);
1616 					return -EINVAL;
1617 				}
1618 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1619 			}
1620 			seq_puts(s, "\n");
1621 		}
1622 		selector++;
1623 	}
1624 
1625 	mutex_unlock(&pctldev->mutex);
1626 
1627 	return 0;
1628 }
1629 
1630 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1631 {
1632 	struct pinctrl_dev *pctldev = s->private;
1633 	struct pinctrl_gpio_range *range = NULL;
1634 
1635 	seq_puts(s, "GPIO ranges handled:\n");
1636 
1637 	mutex_lock(&pctldev->mutex);
1638 
1639 	/* Loop over the ranges */
1640 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1641 		if (range->pins) {
1642 			int a;
1643 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1644 				range->id, range->name,
1645 				range->base, (range->base + range->npins - 1));
1646 			for (a = 0; a < range->npins - 1; a++)
1647 				seq_printf(s, "%u, ", range->pins[a]);
1648 			seq_printf(s, "%u}\n", range->pins[a]);
1649 		}
1650 		else
1651 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1652 				range->id, range->name,
1653 				range->base, (range->base + range->npins - 1),
1654 				range->pin_base,
1655 				(range->pin_base + range->npins - 1));
1656 	}
1657 
1658 	mutex_unlock(&pctldev->mutex);
1659 
1660 	return 0;
1661 }
1662 
1663 static int pinctrl_devices_show(struct seq_file *s, void *what)
1664 {
1665 	struct pinctrl_dev *pctldev;
1666 
1667 	seq_puts(s, "name [pinmux] [pinconf]\n");
1668 
1669 	mutex_lock(&pinctrldev_list_mutex);
1670 
1671 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1672 		seq_printf(s, "%s ", pctldev->desc->name);
1673 		if (pctldev->desc->pmxops)
1674 			seq_puts(s, "yes ");
1675 		else
1676 			seq_puts(s, "no ");
1677 		if (pctldev->desc->confops)
1678 			seq_puts(s, "yes");
1679 		else
1680 			seq_puts(s, "no");
1681 		seq_puts(s, "\n");
1682 	}
1683 
1684 	mutex_unlock(&pinctrldev_list_mutex);
1685 
1686 	return 0;
1687 }
1688 
1689 static inline const char *map_type(enum pinctrl_map_type type)
1690 {
1691 	static const char * const names[] = {
1692 		"INVALID",
1693 		"DUMMY_STATE",
1694 		"MUX_GROUP",
1695 		"CONFIGS_PIN",
1696 		"CONFIGS_GROUP",
1697 	};
1698 
1699 	if (type >= ARRAY_SIZE(names))
1700 		return "UNKNOWN";
1701 
1702 	return names[type];
1703 }
1704 
1705 static int pinctrl_maps_show(struct seq_file *s, void *what)
1706 {
1707 	struct pinctrl_maps *maps_node;
1708 	int i;
1709 	struct pinctrl_map const *map;
1710 
1711 	seq_puts(s, "Pinctrl maps:\n");
1712 
1713 	mutex_lock(&pinctrl_maps_mutex);
1714 	for_each_maps(maps_node, i, map) {
1715 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1716 			   map->dev_name, map->name, map_type(map->type),
1717 			   map->type);
1718 
1719 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1720 			seq_printf(s, "controlling device %s\n",
1721 				   map->ctrl_dev_name);
1722 
1723 		switch (map->type) {
1724 		case PIN_MAP_TYPE_MUX_GROUP:
1725 			pinmux_show_map(s, map);
1726 			break;
1727 		case PIN_MAP_TYPE_CONFIGS_PIN:
1728 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1729 			pinconf_show_map(s, map);
1730 			break;
1731 		default:
1732 			break;
1733 		}
1734 
1735 		seq_printf(s, "\n");
1736 	}
1737 	mutex_unlock(&pinctrl_maps_mutex);
1738 
1739 	return 0;
1740 }
1741 
1742 static int pinctrl_show(struct seq_file *s, void *what)
1743 {
1744 	struct pinctrl *p;
1745 	struct pinctrl_state *state;
1746 	struct pinctrl_setting *setting;
1747 
1748 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1749 
1750 	mutex_lock(&pinctrl_list_mutex);
1751 
1752 	list_for_each_entry(p, &pinctrl_list, node) {
1753 		seq_printf(s, "device: %s current state: %s\n",
1754 			   dev_name(p->dev),
1755 			   p->state ? p->state->name : "none");
1756 
1757 		list_for_each_entry(state, &p->states, node) {
1758 			seq_printf(s, "  state: %s\n", state->name);
1759 
1760 			list_for_each_entry(setting, &state->settings, node) {
1761 				struct pinctrl_dev *pctldev = setting->pctldev;
1762 
1763 				seq_printf(s, "    type: %s controller %s ",
1764 					   map_type(setting->type),
1765 					   pinctrl_dev_get_name(pctldev));
1766 
1767 				switch (setting->type) {
1768 				case PIN_MAP_TYPE_MUX_GROUP:
1769 					pinmux_show_setting(s, setting);
1770 					break;
1771 				case PIN_MAP_TYPE_CONFIGS_PIN:
1772 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1773 					pinconf_show_setting(s, setting);
1774 					break;
1775 				default:
1776 					break;
1777 				}
1778 			}
1779 		}
1780 	}
1781 
1782 	mutex_unlock(&pinctrl_list_mutex);
1783 
1784 	return 0;
1785 }
1786 
1787 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1788 {
1789 	return single_open(file, pinctrl_pins_show, inode->i_private);
1790 }
1791 
1792 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1793 {
1794 	return single_open(file, pinctrl_groups_show, inode->i_private);
1795 }
1796 
1797 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1798 {
1799 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1800 }
1801 
1802 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1803 {
1804 	return single_open(file, pinctrl_devices_show, NULL);
1805 }
1806 
1807 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1808 {
1809 	return single_open(file, pinctrl_maps_show, NULL);
1810 }
1811 
1812 static int pinctrl_open(struct inode *inode, struct file *file)
1813 {
1814 	return single_open(file, pinctrl_show, NULL);
1815 }
1816 
1817 static const struct file_operations pinctrl_pins_ops = {
1818 	.open		= pinctrl_pins_open,
1819 	.read		= seq_read,
1820 	.llseek		= seq_lseek,
1821 	.release	= single_release,
1822 };
1823 
1824 static const struct file_operations pinctrl_groups_ops = {
1825 	.open		= pinctrl_groups_open,
1826 	.read		= seq_read,
1827 	.llseek		= seq_lseek,
1828 	.release	= single_release,
1829 };
1830 
1831 static const struct file_operations pinctrl_gpioranges_ops = {
1832 	.open		= pinctrl_gpioranges_open,
1833 	.read		= seq_read,
1834 	.llseek		= seq_lseek,
1835 	.release	= single_release,
1836 };
1837 
1838 static const struct file_operations pinctrl_devices_ops = {
1839 	.open		= pinctrl_devices_open,
1840 	.read		= seq_read,
1841 	.llseek		= seq_lseek,
1842 	.release	= single_release,
1843 };
1844 
1845 static const struct file_operations pinctrl_maps_ops = {
1846 	.open		= pinctrl_maps_open,
1847 	.read		= seq_read,
1848 	.llseek		= seq_lseek,
1849 	.release	= single_release,
1850 };
1851 
1852 static const struct file_operations pinctrl_ops = {
1853 	.open		= pinctrl_open,
1854 	.read		= seq_read,
1855 	.llseek		= seq_lseek,
1856 	.release	= single_release,
1857 };
1858 
1859 static struct dentry *debugfs_root;
1860 
1861 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1862 {
1863 	struct dentry *device_root;
1864 
1865 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1866 					 debugfs_root);
1867 	pctldev->device_root = device_root;
1868 
1869 	if (IS_ERR(device_root) || !device_root) {
1870 		pr_warn("failed to create debugfs directory for %s\n",
1871 			dev_name(pctldev->dev));
1872 		return;
1873 	}
1874 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1875 			    device_root, pctldev, &pinctrl_pins_ops);
1876 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1877 			    device_root, pctldev, &pinctrl_groups_ops);
1878 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1879 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1880 	if (pctldev->desc->pmxops)
1881 		pinmux_init_device_debugfs(device_root, pctldev);
1882 	if (pctldev->desc->confops)
1883 		pinconf_init_device_debugfs(device_root, pctldev);
1884 }
1885 
1886 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1887 {
1888 	debugfs_remove_recursive(pctldev->device_root);
1889 }
1890 
1891 static void pinctrl_init_debugfs(void)
1892 {
1893 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1894 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1895 		pr_warn("failed to create debugfs directory\n");
1896 		debugfs_root = NULL;
1897 		return;
1898 	}
1899 
1900 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1901 			    debugfs_root, NULL, &pinctrl_devices_ops);
1902 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1903 			    debugfs_root, NULL, &pinctrl_maps_ops);
1904 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1905 			    debugfs_root, NULL, &pinctrl_ops);
1906 }
1907 
1908 #else /* CONFIG_DEBUG_FS */
1909 
1910 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1911 {
1912 }
1913 
1914 static void pinctrl_init_debugfs(void)
1915 {
1916 }
1917 
1918 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1919 {
1920 }
1921 
1922 #endif
1923 
1924 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1925 {
1926 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1927 
1928 	if (!ops ||
1929 	    !ops->get_groups_count ||
1930 	    !ops->get_group_name)
1931 		return -EINVAL;
1932 
1933 	return 0;
1934 }
1935 
1936 /**
1937  * pinctrl_init_controller() - init a pin controller device
1938  * @pctldesc: descriptor for this pin controller
1939  * @dev: parent device for this pin controller
1940  * @driver_data: private pin controller data for this pin controller
1941  */
1942 struct pinctrl_dev *pinctrl_init_controller(struct pinctrl_desc *pctldesc,
1943 					    struct device *dev,
1944 					    void *driver_data)
1945 {
1946 	struct pinctrl_dev *pctldev;
1947 	int ret;
1948 
1949 	if (!pctldesc)
1950 		return ERR_PTR(-EINVAL);
1951 	if (!pctldesc->name)
1952 		return ERR_PTR(-EINVAL);
1953 
1954 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1955 	if (!pctldev)
1956 		return ERR_PTR(-ENOMEM);
1957 
1958 	/* Initialize pin control device struct */
1959 	pctldev->owner = pctldesc->owner;
1960 	pctldev->desc = pctldesc;
1961 	pctldev->driver_data = driver_data;
1962 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1963 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1964 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1965 #endif
1966 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1967 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1968 #endif
1969 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1970 	INIT_LIST_HEAD(&pctldev->node);
1971 	pctldev->dev = dev;
1972 	mutex_init(&pctldev->mutex);
1973 
1974 	/* check core ops for sanity */
1975 	ret = pinctrl_check_ops(pctldev);
1976 	if (ret) {
1977 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1978 		goto out_err;
1979 	}
1980 
1981 	/* If we're implementing pinmuxing, check the ops for sanity */
1982 	if (pctldesc->pmxops) {
1983 		ret = pinmux_check_ops(pctldev);
1984 		if (ret)
1985 			goto out_err;
1986 	}
1987 
1988 	/* If we're implementing pinconfig, check the ops for sanity */
1989 	if (pctldesc->confops) {
1990 		ret = pinconf_check_ops(pctldev);
1991 		if (ret)
1992 			goto out_err;
1993 	}
1994 
1995 	/* Register all the pins */
1996 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1997 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1998 	if (ret) {
1999 		dev_err(dev, "error during pin registration\n");
2000 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
2001 				      pctldesc->npins);
2002 		goto out_err;
2003 	}
2004 
2005 	return pctldev;
2006 
2007 out_err:
2008 	mutex_destroy(&pctldev->mutex);
2009 	kfree(pctldev);
2010 	return ERR_PTR(ret);
2011 }
2012 
2013 static int pinctrl_create_and_start(struct pinctrl_dev *pctldev)
2014 {
2015 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2016 	if (!IS_ERR(pctldev->p)) {
2017 		kref_get(&pctldev->p->users);
2018 		pctldev->hog_default =
2019 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2020 		if (IS_ERR(pctldev->hog_default)) {
2021 			dev_dbg(pctldev->dev,
2022 				"failed to lookup the default state\n");
2023 		} else {
2024 			if (pinctrl_select_state(pctldev->p,
2025 						pctldev->hog_default))
2026 				dev_err(pctldev->dev,
2027 					"failed to select default state\n");
2028 		}
2029 
2030 		pctldev->hog_sleep =
2031 			pinctrl_lookup_state(pctldev->p,
2032 						    PINCTRL_STATE_SLEEP);
2033 		if (IS_ERR(pctldev->hog_sleep))
2034 			dev_dbg(pctldev->dev,
2035 				"failed to lookup the sleep state\n");
2036 	}
2037 
2038 	mutex_lock(&pinctrldev_list_mutex);
2039 	list_add_tail(&pctldev->node, &pinctrldev_list);
2040 	mutex_unlock(&pinctrldev_list_mutex);
2041 
2042 	pinctrl_init_device_debugfs(pctldev);
2043 
2044 	return 0;
2045 }
2046 
2047 /**
2048  * pinctrl_register() - register a pin controller device
2049  * @pctldesc: descriptor for this pin controller
2050  * @dev: parent device for this pin controller
2051  * @driver_data: private pin controller data for this pin controller
2052  *
2053  * Note that pinctrl_register() is known to have problems as the pin
2054  * controller driver functions are called before the driver has a
2055  * struct pinctrl_dev handle. To avoid issues later on, please use the
2056  * new pinctrl_register_and_init() below instead.
2057  */
2058 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2059 				    struct device *dev, void *driver_data)
2060 {
2061 	struct pinctrl_dev *pctldev;
2062 	int error;
2063 
2064 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2065 	if (IS_ERR(pctldev))
2066 		return pctldev;
2067 
2068 	error = pinctrl_create_and_start(pctldev);
2069 	if (error) {
2070 		mutex_destroy(&pctldev->mutex);
2071 		kfree(pctldev);
2072 
2073 		return ERR_PTR(error);
2074 	}
2075 
2076 	return pctldev;
2077 
2078 }
2079 EXPORT_SYMBOL_GPL(pinctrl_register);
2080 
2081 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2082 			      struct device *dev, void *driver_data,
2083 			      struct pinctrl_dev **pctldev)
2084 {
2085 	struct pinctrl_dev *p;
2086 	int error;
2087 
2088 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2089 	if (IS_ERR(p))
2090 		return PTR_ERR(p);
2091 
2092 	/*
2093 	 * We have pinctrl_start() call functions in the pin controller
2094 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2095 	 * let's make sure pctldev is properly initialized for the
2096 	 * pin controller driver before we do anything.
2097 	 */
2098 	*pctldev = p;
2099 
2100 	error = pinctrl_create_and_start(p);
2101 	if (error) {
2102 		mutex_destroy(&p->mutex);
2103 		kfree(p);
2104 		*pctldev = NULL;
2105 
2106 		return error;
2107 	}
2108 
2109 	return 0;
2110 }
2111 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2112 
2113 /**
2114  * pinctrl_unregister() - unregister pinmux
2115  * @pctldev: pin controller to unregister
2116  *
2117  * Called by pinmux drivers to unregister a pinmux.
2118  */
2119 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2120 {
2121 	struct pinctrl_gpio_range *range, *n;
2122 
2123 	if (pctldev == NULL)
2124 		return;
2125 
2126 	mutex_lock(&pctldev->mutex);
2127 	pinctrl_remove_device_debugfs(pctldev);
2128 	mutex_unlock(&pctldev->mutex);
2129 
2130 	if (!IS_ERR_OR_NULL(pctldev->p))
2131 		pinctrl_put(pctldev->p);
2132 
2133 	mutex_lock(&pinctrldev_list_mutex);
2134 	mutex_lock(&pctldev->mutex);
2135 	/* TODO: check that no pinmuxes are still active? */
2136 	list_del(&pctldev->node);
2137 	pinmux_generic_free_functions(pctldev);
2138 	pinctrl_generic_free_groups(pctldev);
2139 	/* Destroy descriptor tree */
2140 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2141 			      pctldev->desc->npins);
2142 	/* remove gpio ranges map */
2143 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2144 		list_del(&range->node);
2145 
2146 	mutex_unlock(&pctldev->mutex);
2147 	mutex_destroy(&pctldev->mutex);
2148 	kfree(pctldev);
2149 	mutex_unlock(&pinctrldev_list_mutex);
2150 }
2151 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2152 
2153 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2154 {
2155 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2156 
2157 	pinctrl_unregister(pctldev);
2158 }
2159 
2160 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2161 {
2162 	struct pctldev **r = res;
2163 
2164 	if (WARN_ON(!r || !*r))
2165 		return 0;
2166 
2167 	return *r == data;
2168 }
2169 
2170 /**
2171  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2172  * @dev: parent device for this pin controller
2173  * @pctldesc: descriptor for this pin controller
2174  * @driver_data: private pin controller data for this pin controller
2175  *
2176  * Returns an error pointer if pincontrol register failed. Otherwise
2177  * it returns valid pinctrl handle.
2178  *
2179  * The pinctrl device will be automatically released when the device is unbound.
2180  */
2181 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2182 					  struct pinctrl_desc *pctldesc,
2183 					  void *driver_data)
2184 {
2185 	struct pinctrl_dev **ptr, *pctldev;
2186 
2187 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2188 	if (!ptr)
2189 		return ERR_PTR(-ENOMEM);
2190 
2191 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2192 	if (IS_ERR(pctldev)) {
2193 		devres_free(ptr);
2194 		return pctldev;
2195 	}
2196 
2197 	*ptr = pctldev;
2198 	devres_add(dev, ptr);
2199 
2200 	return pctldev;
2201 }
2202 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2203 
2204 /**
2205  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2206  * @dev: parent device for this pin controller
2207  * @pctldesc: descriptor for this pin controller
2208  * @driver_data: private pin controller data for this pin controller
2209  *
2210  * Returns an error pointer if pincontrol register failed. Otherwise
2211  * it returns valid pinctrl handle.
2212  *
2213  * The pinctrl device will be automatically released when the device is unbound.
2214  */
2215 int devm_pinctrl_register_and_init(struct device *dev,
2216 				   struct pinctrl_desc *pctldesc,
2217 				   void *driver_data,
2218 				   struct pinctrl_dev **pctldev)
2219 {
2220 	struct pinctrl_dev **ptr;
2221 	int error;
2222 
2223 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2224 	if (!ptr)
2225 		return -ENOMEM;
2226 
2227 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2228 	if (error) {
2229 		devres_free(ptr);
2230 		return error;
2231 	}
2232 
2233 	*ptr = *pctldev;
2234 	devres_add(dev, ptr);
2235 
2236 	return 0;
2237 }
2238 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2239 
2240 /**
2241  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2242  * @dev: device for which which resource was allocated
2243  * @pctldev: the pinctrl device to unregister.
2244  */
2245 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2246 {
2247 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2248 			       devm_pinctrl_dev_match, pctldev));
2249 }
2250 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2251 
2252 static int __init pinctrl_init(void)
2253 {
2254 	pr_info("initialized pinctrl subsystem\n");
2255 	pinctrl_init_debugfs();
2256 	return 0;
2257 }
2258 
2259 /* init early since many drivers really need to initialized pinmux early */
2260 core_initcall(pinctrl_init);
2261