1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (!desc) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 const struct pinctrl_pin_desc *pin) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, pin->number); 233 if (pindesc) { 234 dev_err(pctldev->dev, "pin %d already registered\n", 235 pin->number); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (!pindesc) 241 return -ENOMEM; 242 243 /* Set owner */ 244 pindesc->pctldev = pctldev; 245 246 /* Copy basic pin info */ 247 if (pin->name) { 248 pindesc->name = pin->name; 249 } else { 250 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 251 if (!pindesc->name) { 252 kfree(pindesc); 253 return -ENOMEM; 254 } 255 pindesc->dynamic_name = true; 256 } 257 258 pindesc->drv_data = pin->drv_data; 259 260 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 pin->number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 const struct pinctrl_pin_desc *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 542 543 /** 544 * pinctrl_generic_get_group_count() - returns the number of pin groups 545 * @pctldev: pin controller device 546 */ 547 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 548 { 549 return pctldev->num_groups; 550 } 551 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 552 553 /** 554 * pinctrl_generic_get_group_name() - returns the name of a pin group 555 * @pctldev: pin controller device 556 * @selector: group number 557 */ 558 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 559 unsigned int selector) 560 { 561 struct group_desc *group; 562 563 group = radix_tree_lookup(&pctldev->pin_group_tree, 564 selector); 565 if (!group) 566 return NULL; 567 568 return group->name; 569 } 570 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 571 572 /** 573 * pinctrl_generic_get_group_pins() - gets the pin group pins 574 * @pctldev: pin controller device 575 * @selector: group number 576 * @pins: pins in the group 577 * @num_pins: number of pins in the group 578 */ 579 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 580 unsigned int selector, 581 const unsigned int **pins, 582 unsigned int *num_pins) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) { 589 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 590 __func__, selector); 591 return -EINVAL; 592 } 593 594 *pins = group->pins; 595 *num_pins = group->num_pins; 596 597 return 0; 598 } 599 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 600 601 /** 602 * pinctrl_generic_get_group() - returns a pin group based on the number 603 * @pctldev: pin controller device 604 * @gselector: group number 605 */ 606 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 607 unsigned int selector) 608 { 609 struct group_desc *group; 610 611 group = radix_tree_lookup(&pctldev->pin_group_tree, 612 selector); 613 if (!group) 614 return NULL; 615 616 return group; 617 } 618 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 619 620 /** 621 * pinctrl_generic_add_group() - adds a new pin group 622 * @pctldev: pin controller device 623 * @name: name of the pin group 624 * @pins: pins in the pin group 625 * @num_pins: number of pins in the pin group 626 * @data: pin controller driver specific data 627 * 628 * Note that the caller must take care of locking. 629 */ 630 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 631 int *pins, int num_pins, void *data) 632 { 633 struct group_desc *group; 634 635 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 636 if (!group) 637 return -ENOMEM; 638 639 group->name = name; 640 group->pins = pins; 641 group->num_pins = num_pins; 642 group->data = data; 643 644 radix_tree_insert(&pctldev->pin_group_tree, pctldev->num_groups, 645 group); 646 647 pctldev->num_groups++; 648 649 return 0; 650 } 651 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 652 653 /** 654 * pinctrl_generic_remove_group() - removes a numbered pin group 655 * @pctldev: pin controller device 656 * @selector: group number 657 * 658 * Note that the caller must take care of locking. 659 */ 660 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 661 unsigned int selector) 662 { 663 struct group_desc *group; 664 665 group = radix_tree_lookup(&pctldev->pin_group_tree, 666 selector); 667 if (!group) 668 return -ENOENT; 669 670 radix_tree_delete(&pctldev->pin_group_tree, selector); 671 devm_kfree(pctldev->dev, group); 672 673 pctldev->num_groups--; 674 675 return 0; 676 } 677 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 678 679 /** 680 * pinctrl_generic_free_groups() - removes all pin groups 681 * @pctldev: pin controller device 682 * 683 * Note that the caller must take care of locking. The pinctrl groups 684 * are allocated with devm_kzalloc() so no need to free them here. 685 */ 686 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 687 { 688 struct radix_tree_iter iter; 689 void __rcu **slot; 690 691 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 692 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 693 694 pctldev->num_groups = 0; 695 } 696 697 #else 698 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 699 { 700 } 701 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 702 703 /** 704 * pinctrl_get_group_selector() - returns the group selector for a group 705 * @pctldev: the pin controller handling the group 706 * @pin_group: the pin group to look up 707 */ 708 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 709 const char *pin_group) 710 { 711 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 712 unsigned ngroups = pctlops->get_groups_count(pctldev); 713 unsigned group_selector = 0; 714 715 while (group_selector < ngroups) { 716 const char *gname = pctlops->get_group_name(pctldev, 717 group_selector); 718 if (!strcmp(gname, pin_group)) { 719 dev_dbg(pctldev->dev, 720 "found group selector %u for %s\n", 721 group_selector, 722 pin_group); 723 return group_selector; 724 } 725 726 group_selector++; 727 } 728 729 dev_err(pctldev->dev, "does not have pin group %s\n", 730 pin_group); 731 732 return -EINVAL; 733 } 734 735 /** 736 * pinctrl_gpio_request() - request a single pin to be used as GPIO 737 * @gpio: the GPIO pin number from the GPIO subsystem number space 738 * 739 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 740 * as part of their gpio_request() semantics, platforms and individual drivers 741 * shall *NOT* request GPIO pins to be muxed in. 742 */ 743 int pinctrl_gpio_request(unsigned gpio) 744 { 745 struct pinctrl_dev *pctldev; 746 struct pinctrl_gpio_range *range; 747 int ret; 748 int pin; 749 750 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 751 if (ret) { 752 if (pinctrl_ready_for_gpio_range(gpio)) 753 ret = 0; 754 return ret; 755 } 756 757 mutex_lock(&pctldev->mutex); 758 759 /* Convert to the pin controllers number space */ 760 pin = gpio_to_pin(range, gpio); 761 762 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 763 764 mutex_unlock(&pctldev->mutex); 765 766 return ret; 767 } 768 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 769 770 /** 771 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 772 * @gpio: the GPIO pin number from the GPIO subsystem number space 773 * 774 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 775 * as part of their gpio_free() semantics, platforms and individual drivers 776 * shall *NOT* request GPIO pins to be muxed out. 777 */ 778 void pinctrl_gpio_free(unsigned gpio) 779 { 780 struct pinctrl_dev *pctldev; 781 struct pinctrl_gpio_range *range; 782 int ret; 783 int pin; 784 785 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 786 if (ret) { 787 return; 788 } 789 mutex_lock(&pctldev->mutex); 790 791 /* Convert to the pin controllers number space */ 792 pin = gpio_to_pin(range, gpio); 793 794 pinmux_free_gpio(pctldev, pin, range); 795 796 mutex_unlock(&pctldev->mutex); 797 } 798 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 799 800 static int pinctrl_gpio_direction(unsigned gpio, bool input) 801 { 802 struct pinctrl_dev *pctldev; 803 struct pinctrl_gpio_range *range; 804 int ret; 805 int pin; 806 807 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 808 if (ret) { 809 return ret; 810 } 811 812 mutex_lock(&pctldev->mutex); 813 814 /* Convert to the pin controllers number space */ 815 pin = gpio_to_pin(range, gpio); 816 ret = pinmux_gpio_direction(pctldev, range, pin, input); 817 818 mutex_unlock(&pctldev->mutex); 819 820 return ret; 821 } 822 823 /** 824 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 825 * @gpio: the GPIO pin number from the GPIO subsystem number space 826 * 827 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 828 * as part of their gpio_direction_input() semantics, platforms and individual 829 * drivers shall *NOT* touch pin control GPIO calls. 830 */ 831 int pinctrl_gpio_direction_input(unsigned gpio) 832 { 833 return pinctrl_gpio_direction(gpio, true); 834 } 835 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 836 837 /** 838 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 839 * @gpio: the GPIO pin number from the GPIO subsystem number space 840 * 841 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 842 * as part of their gpio_direction_output() semantics, platforms and individual 843 * drivers shall *NOT* touch pin control GPIO calls. 844 */ 845 int pinctrl_gpio_direction_output(unsigned gpio) 846 { 847 return pinctrl_gpio_direction(gpio, false); 848 } 849 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 850 851 /** 852 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 853 * @gpio: the GPIO pin number from the GPIO subsystem number space 854 * @config: the configuration to apply to the GPIO 855 * 856 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 857 * they need to call the underlying pin controller to change GPIO config 858 * (for example set debounce time). 859 */ 860 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 861 { 862 unsigned long configs[] = { config }; 863 struct pinctrl_gpio_range *range; 864 struct pinctrl_dev *pctldev; 865 int ret, pin; 866 867 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 868 if (ret) 869 return ret; 870 871 mutex_lock(&pctldev->mutex); 872 pin = gpio_to_pin(range, gpio); 873 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 874 mutex_unlock(&pctldev->mutex); 875 876 return ret; 877 } 878 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 879 880 static struct pinctrl_state *find_state(struct pinctrl *p, 881 const char *name) 882 { 883 struct pinctrl_state *state; 884 885 list_for_each_entry(state, &p->states, node) 886 if (!strcmp(state->name, name)) 887 return state; 888 889 return NULL; 890 } 891 892 static struct pinctrl_state *create_state(struct pinctrl *p, 893 const char *name) 894 { 895 struct pinctrl_state *state; 896 897 state = kzalloc(sizeof(*state), GFP_KERNEL); 898 if (!state) 899 return ERR_PTR(-ENOMEM); 900 901 state->name = name; 902 INIT_LIST_HEAD(&state->settings); 903 904 list_add_tail(&state->node, &p->states); 905 906 return state; 907 } 908 909 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 910 const struct pinctrl_map *map) 911 { 912 struct pinctrl_state *state; 913 struct pinctrl_setting *setting; 914 int ret; 915 916 state = find_state(p, map->name); 917 if (!state) 918 state = create_state(p, map->name); 919 if (IS_ERR(state)) 920 return PTR_ERR(state); 921 922 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 923 return 0; 924 925 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 926 if (!setting) 927 return -ENOMEM; 928 929 setting->type = map->type; 930 931 if (pctldev) 932 setting->pctldev = pctldev; 933 else 934 setting->pctldev = 935 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 936 if (!setting->pctldev) { 937 kfree(setting); 938 /* Do not defer probing of hogs (circular loop) */ 939 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 940 return -ENODEV; 941 /* 942 * OK let us guess that the driver is not there yet, and 943 * let's defer obtaining this pinctrl handle to later... 944 */ 945 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 946 map->ctrl_dev_name); 947 return -EPROBE_DEFER; 948 } 949 950 setting->dev_name = map->dev_name; 951 952 switch (map->type) { 953 case PIN_MAP_TYPE_MUX_GROUP: 954 ret = pinmux_map_to_setting(map, setting); 955 break; 956 case PIN_MAP_TYPE_CONFIGS_PIN: 957 case PIN_MAP_TYPE_CONFIGS_GROUP: 958 ret = pinconf_map_to_setting(map, setting); 959 break; 960 default: 961 ret = -EINVAL; 962 break; 963 } 964 if (ret < 0) { 965 kfree(setting); 966 return ret; 967 } 968 969 list_add_tail(&setting->node, &state->settings); 970 971 return 0; 972 } 973 974 static struct pinctrl *find_pinctrl(struct device *dev) 975 { 976 struct pinctrl *p; 977 978 mutex_lock(&pinctrl_list_mutex); 979 list_for_each_entry(p, &pinctrl_list, node) 980 if (p->dev == dev) { 981 mutex_unlock(&pinctrl_list_mutex); 982 return p; 983 } 984 985 mutex_unlock(&pinctrl_list_mutex); 986 return NULL; 987 } 988 989 static void pinctrl_free(struct pinctrl *p, bool inlist); 990 991 static struct pinctrl *create_pinctrl(struct device *dev, 992 struct pinctrl_dev *pctldev) 993 { 994 struct pinctrl *p; 995 const char *devname; 996 struct pinctrl_maps *maps_node; 997 int i; 998 const struct pinctrl_map *map; 999 int ret; 1000 1001 /* 1002 * create the state cookie holder struct pinctrl for each 1003 * mapping, this is what consumers will get when requesting 1004 * a pin control handle with pinctrl_get() 1005 */ 1006 p = kzalloc(sizeof(*p), GFP_KERNEL); 1007 if (!p) 1008 return ERR_PTR(-ENOMEM); 1009 p->dev = dev; 1010 INIT_LIST_HEAD(&p->states); 1011 INIT_LIST_HEAD(&p->dt_maps); 1012 1013 ret = pinctrl_dt_to_map(p, pctldev); 1014 if (ret < 0) { 1015 kfree(p); 1016 return ERR_PTR(ret); 1017 } 1018 1019 devname = dev_name(dev); 1020 1021 mutex_lock(&pinctrl_maps_mutex); 1022 /* Iterate over the pin control maps to locate the right ones */ 1023 for_each_maps(maps_node, i, map) { 1024 /* Map must be for this device */ 1025 if (strcmp(map->dev_name, devname)) 1026 continue; 1027 /* 1028 * If pctldev is not null, we are claiming hog for it, 1029 * that means, setting that is served by pctldev by itself. 1030 * 1031 * Thus we must skip map that is for this device but is served 1032 * by other device. 1033 */ 1034 if (pctldev && 1035 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1036 continue; 1037 1038 ret = add_setting(p, pctldev, map); 1039 /* 1040 * At this point the adding of a setting may: 1041 * 1042 * - Defer, if the pinctrl device is not yet available 1043 * - Fail, if the pinctrl device is not yet available, 1044 * AND the setting is a hog. We cannot defer that, since 1045 * the hog will kick in immediately after the device 1046 * is registered. 1047 * 1048 * If the error returned was not -EPROBE_DEFER then we 1049 * accumulate the errors to see if we end up with 1050 * an -EPROBE_DEFER later, as that is the worst case. 1051 */ 1052 if (ret == -EPROBE_DEFER) { 1053 pinctrl_free(p, false); 1054 mutex_unlock(&pinctrl_maps_mutex); 1055 return ERR_PTR(ret); 1056 } 1057 } 1058 mutex_unlock(&pinctrl_maps_mutex); 1059 1060 if (ret < 0) { 1061 /* If some other error than deferral occurred, return here */ 1062 pinctrl_free(p, false); 1063 return ERR_PTR(ret); 1064 } 1065 1066 kref_init(&p->users); 1067 1068 /* Add the pinctrl handle to the global list */ 1069 mutex_lock(&pinctrl_list_mutex); 1070 list_add_tail(&p->node, &pinctrl_list); 1071 mutex_unlock(&pinctrl_list_mutex); 1072 1073 return p; 1074 } 1075 1076 /** 1077 * pinctrl_get() - retrieves the pinctrl handle for a device 1078 * @dev: the device to obtain the handle for 1079 */ 1080 struct pinctrl *pinctrl_get(struct device *dev) 1081 { 1082 struct pinctrl *p; 1083 1084 if (WARN_ON(!dev)) 1085 return ERR_PTR(-EINVAL); 1086 1087 /* 1088 * See if somebody else (such as the device core) has already 1089 * obtained a handle to the pinctrl for this device. In that case, 1090 * return another pointer to it. 1091 */ 1092 p = find_pinctrl(dev); 1093 if (p) { 1094 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1095 kref_get(&p->users); 1096 return p; 1097 } 1098 1099 return create_pinctrl(dev, NULL); 1100 } 1101 EXPORT_SYMBOL_GPL(pinctrl_get); 1102 1103 static void pinctrl_free_setting(bool disable_setting, 1104 struct pinctrl_setting *setting) 1105 { 1106 switch (setting->type) { 1107 case PIN_MAP_TYPE_MUX_GROUP: 1108 if (disable_setting) 1109 pinmux_disable_setting(setting); 1110 pinmux_free_setting(setting); 1111 break; 1112 case PIN_MAP_TYPE_CONFIGS_PIN: 1113 case PIN_MAP_TYPE_CONFIGS_GROUP: 1114 pinconf_free_setting(setting); 1115 break; 1116 default: 1117 break; 1118 } 1119 } 1120 1121 static void pinctrl_free(struct pinctrl *p, bool inlist) 1122 { 1123 struct pinctrl_state *state, *n1; 1124 struct pinctrl_setting *setting, *n2; 1125 1126 mutex_lock(&pinctrl_list_mutex); 1127 list_for_each_entry_safe(state, n1, &p->states, node) { 1128 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1129 pinctrl_free_setting(state == p->state, setting); 1130 list_del(&setting->node); 1131 kfree(setting); 1132 } 1133 list_del(&state->node); 1134 kfree(state); 1135 } 1136 1137 pinctrl_dt_free_maps(p); 1138 1139 if (inlist) 1140 list_del(&p->node); 1141 kfree(p); 1142 mutex_unlock(&pinctrl_list_mutex); 1143 } 1144 1145 /** 1146 * pinctrl_release() - release the pinctrl handle 1147 * @kref: the kref in the pinctrl being released 1148 */ 1149 static void pinctrl_release(struct kref *kref) 1150 { 1151 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1152 1153 pinctrl_free(p, true); 1154 } 1155 1156 /** 1157 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1158 * @p: the pinctrl handle to release 1159 */ 1160 void pinctrl_put(struct pinctrl *p) 1161 { 1162 kref_put(&p->users, pinctrl_release); 1163 } 1164 EXPORT_SYMBOL_GPL(pinctrl_put); 1165 1166 /** 1167 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1168 * @p: the pinctrl handle to retrieve the state from 1169 * @name: the state name to retrieve 1170 */ 1171 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1172 const char *name) 1173 { 1174 struct pinctrl_state *state; 1175 1176 state = find_state(p, name); 1177 if (!state) { 1178 if (pinctrl_dummy_state) { 1179 /* create dummy state */ 1180 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1181 name); 1182 state = create_state(p, name); 1183 } else 1184 state = ERR_PTR(-ENODEV); 1185 } 1186 1187 return state; 1188 } 1189 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1190 1191 /** 1192 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1193 * @p: the pinctrl handle for the device that requests configuration 1194 * @state: the state handle to select/activate/program 1195 */ 1196 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1197 { 1198 struct pinctrl_setting *setting, *setting2; 1199 struct pinctrl_state *old_state = p->state; 1200 int ret; 1201 1202 if (p->state) { 1203 /* 1204 * For each pinmux setting in the old state, forget SW's record 1205 * of mux owner for that pingroup. Any pingroups which are 1206 * still owned by the new state will be re-acquired by the call 1207 * to pinmux_enable_setting() in the loop below. 1208 */ 1209 list_for_each_entry(setting, &p->state->settings, node) { 1210 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1211 continue; 1212 pinmux_disable_setting(setting); 1213 } 1214 } 1215 1216 p->state = NULL; 1217 1218 /* Apply all the settings for the new state */ 1219 list_for_each_entry(setting, &state->settings, node) { 1220 switch (setting->type) { 1221 case PIN_MAP_TYPE_MUX_GROUP: 1222 ret = pinmux_enable_setting(setting); 1223 break; 1224 case PIN_MAP_TYPE_CONFIGS_PIN: 1225 case PIN_MAP_TYPE_CONFIGS_GROUP: 1226 ret = pinconf_apply_setting(setting); 1227 break; 1228 default: 1229 ret = -EINVAL; 1230 break; 1231 } 1232 1233 if (ret < 0) { 1234 goto unapply_new_state; 1235 } 1236 } 1237 1238 p->state = state; 1239 1240 return 0; 1241 1242 unapply_new_state: 1243 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1244 1245 list_for_each_entry(setting2, &state->settings, node) { 1246 if (&setting2->node == &setting->node) 1247 break; 1248 /* 1249 * All we can do here is pinmux_disable_setting. 1250 * That means that some pins are muxed differently now 1251 * than they were before applying the setting (We can't 1252 * "unmux a pin"!), but it's not a big deal since the pins 1253 * are free to be muxed by another apply_setting. 1254 */ 1255 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1256 pinmux_disable_setting(setting2); 1257 } 1258 1259 /* There's no infinite recursive loop here because p->state is NULL */ 1260 if (old_state) 1261 pinctrl_select_state(p, old_state); 1262 1263 return ret; 1264 } 1265 1266 /** 1267 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1268 * @p: the pinctrl handle for the device that requests configuration 1269 * @state: the state handle to select/activate/program 1270 */ 1271 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1272 { 1273 if (p->state == state) 1274 return 0; 1275 1276 return pinctrl_commit_state(p, state); 1277 } 1278 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1279 1280 static void devm_pinctrl_release(struct device *dev, void *res) 1281 { 1282 pinctrl_put(*(struct pinctrl **)res); 1283 } 1284 1285 /** 1286 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1287 * @dev: the device to obtain the handle for 1288 * 1289 * If there is a need to explicitly destroy the returned struct pinctrl, 1290 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1291 */ 1292 struct pinctrl *devm_pinctrl_get(struct device *dev) 1293 { 1294 struct pinctrl **ptr, *p; 1295 1296 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1297 if (!ptr) 1298 return ERR_PTR(-ENOMEM); 1299 1300 p = pinctrl_get(dev); 1301 if (!IS_ERR(p)) { 1302 *ptr = p; 1303 devres_add(dev, ptr); 1304 } else { 1305 devres_free(ptr); 1306 } 1307 1308 return p; 1309 } 1310 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1311 1312 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1313 { 1314 struct pinctrl **p = res; 1315 1316 return *p == data; 1317 } 1318 1319 /** 1320 * devm_pinctrl_put() - Resource managed pinctrl_put() 1321 * @p: the pinctrl handle to release 1322 * 1323 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1324 * this function will not need to be called and the resource management 1325 * code will ensure that the resource is freed. 1326 */ 1327 void devm_pinctrl_put(struct pinctrl *p) 1328 { 1329 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1330 devm_pinctrl_match, p)); 1331 } 1332 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1333 1334 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps, 1335 bool dup) 1336 { 1337 int i, ret; 1338 struct pinctrl_maps *maps_node; 1339 1340 pr_debug("add %u pinctrl maps\n", num_maps); 1341 1342 /* First sanity check the new mapping */ 1343 for (i = 0; i < num_maps; i++) { 1344 if (!maps[i].dev_name) { 1345 pr_err("failed to register map %s (%d): no device given\n", 1346 maps[i].name, i); 1347 return -EINVAL; 1348 } 1349 1350 if (!maps[i].name) { 1351 pr_err("failed to register map %d: no map name given\n", 1352 i); 1353 return -EINVAL; 1354 } 1355 1356 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1357 !maps[i].ctrl_dev_name) { 1358 pr_err("failed to register map %s (%d): no pin control device given\n", 1359 maps[i].name, i); 1360 return -EINVAL; 1361 } 1362 1363 switch (maps[i].type) { 1364 case PIN_MAP_TYPE_DUMMY_STATE: 1365 break; 1366 case PIN_MAP_TYPE_MUX_GROUP: 1367 ret = pinmux_validate_map(&maps[i], i); 1368 if (ret < 0) 1369 return ret; 1370 break; 1371 case PIN_MAP_TYPE_CONFIGS_PIN: 1372 case PIN_MAP_TYPE_CONFIGS_GROUP: 1373 ret = pinconf_validate_map(&maps[i], i); 1374 if (ret < 0) 1375 return ret; 1376 break; 1377 default: 1378 pr_err("failed to register map %s (%d): invalid type given\n", 1379 maps[i].name, i); 1380 return -EINVAL; 1381 } 1382 } 1383 1384 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1385 if (!maps_node) 1386 return -ENOMEM; 1387 1388 maps_node->num_maps = num_maps; 1389 if (dup) { 1390 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1391 GFP_KERNEL); 1392 if (!maps_node->maps) { 1393 kfree(maps_node); 1394 return -ENOMEM; 1395 } 1396 } else { 1397 maps_node->maps = maps; 1398 } 1399 1400 mutex_lock(&pinctrl_maps_mutex); 1401 list_add_tail(&maps_node->node, &pinctrl_maps); 1402 mutex_unlock(&pinctrl_maps_mutex); 1403 1404 return 0; 1405 } 1406 1407 /** 1408 * pinctrl_register_mappings() - register a set of pin controller mappings 1409 * @maps: the pincontrol mappings table to register. This should probably be 1410 * marked with __initdata so it can be discarded after boot. This 1411 * function will perform a shallow copy for the mapping entries. 1412 * @num_maps: the number of maps in the mapping table 1413 */ 1414 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1415 unsigned num_maps) 1416 { 1417 return pinctrl_register_map(maps, num_maps, true); 1418 } 1419 1420 void pinctrl_unregister_map(const struct pinctrl_map *map) 1421 { 1422 struct pinctrl_maps *maps_node; 1423 1424 mutex_lock(&pinctrl_maps_mutex); 1425 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1426 if (maps_node->maps == map) { 1427 list_del(&maps_node->node); 1428 kfree(maps_node); 1429 mutex_unlock(&pinctrl_maps_mutex); 1430 return; 1431 } 1432 } 1433 mutex_unlock(&pinctrl_maps_mutex); 1434 } 1435 1436 /** 1437 * pinctrl_force_sleep() - turn a given controller device into sleep state 1438 * @pctldev: pin controller device 1439 */ 1440 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1441 { 1442 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1443 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1447 1448 /** 1449 * pinctrl_force_default() - turn a given controller device into default state 1450 * @pctldev: pin controller device 1451 */ 1452 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1453 { 1454 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1455 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1456 return 0; 1457 } 1458 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1459 1460 /** 1461 * pinctrl_init_done() - tell pinctrl probe is done 1462 * 1463 * We'll use this time to switch the pins from "init" to "default" unless the 1464 * driver selected some other state. 1465 * 1466 * @dev: device to that's done probing 1467 */ 1468 int pinctrl_init_done(struct device *dev) 1469 { 1470 struct dev_pin_info *pins = dev->pins; 1471 int ret; 1472 1473 if (!pins) 1474 return 0; 1475 1476 if (IS_ERR(pins->init_state)) 1477 return 0; /* No such state */ 1478 1479 if (pins->p->state != pins->init_state) 1480 return 0; /* Not at init anyway */ 1481 1482 if (IS_ERR(pins->default_state)) 1483 return 0; /* No default state */ 1484 1485 ret = pinctrl_select_state(pins->p, pins->default_state); 1486 if (ret) 1487 dev_err(dev, "failed to activate default pinctrl state\n"); 1488 1489 return ret; 1490 } 1491 1492 #ifdef CONFIG_PM 1493 1494 /** 1495 * pinctrl_pm_select_state() - select pinctrl state for PM 1496 * @dev: device to select default state for 1497 * @state: state to set 1498 */ 1499 static int pinctrl_pm_select_state(struct device *dev, 1500 struct pinctrl_state *state) 1501 { 1502 struct dev_pin_info *pins = dev->pins; 1503 int ret; 1504 1505 if (IS_ERR(state)) 1506 return 0; /* No such state */ 1507 ret = pinctrl_select_state(pins->p, state); 1508 if (ret) 1509 dev_err(dev, "failed to activate pinctrl state %s\n", 1510 state->name); 1511 return ret; 1512 } 1513 1514 /** 1515 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1516 * @dev: device to select default state for 1517 */ 1518 int pinctrl_pm_select_default_state(struct device *dev) 1519 { 1520 if (!dev->pins) 1521 return 0; 1522 1523 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1524 } 1525 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1526 1527 /** 1528 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1529 * @dev: device to select sleep state for 1530 */ 1531 int pinctrl_pm_select_sleep_state(struct device *dev) 1532 { 1533 if (!dev->pins) 1534 return 0; 1535 1536 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1537 } 1538 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1539 1540 /** 1541 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1542 * @dev: device to select idle state for 1543 */ 1544 int pinctrl_pm_select_idle_state(struct device *dev) 1545 { 1546 if (!dev->pins) 1547 return 0; 1548 1549 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1550 } 1551 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1552 #endif 1553 1554 #ifdef CONFIG_DEBUG_FS 1555 1556 static int pinctrl_pins_show(struct seq_file *s, void *what) 1557 { 1558 struct pinctrl_dev *pctldev = s->private; 1559 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1560 unsigned i, pin; 1561 1562 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1563 1564 mutex_lock(&pctldev->mutex); 1565 1566 /* The pin number can be retrived from the pin controller descriptor */ 1567 for (i = 0; i < pctldev->desc->npins; i++) { 1568 struct pin_desc *desc; 1569 1570 pin = pctldev->desc->pins[i].number; 1571 desc = pin_desc_get(pctldev, pin); 1572 /* Pin space may be sparse */ 1573 if (!desc) 1574 continue; 1575 1576 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1577 1578 /* Driver-specific info per pin */ 1579 if (ops->pin_dbg_show) 1580 ops->pin_dbg_show(pctldev, s, pin); 1581 1582 seq_puts(s, "\n"); 1583 } 1584 1585 mutex_unlock(&pctldev->mutex); 1586 1587 return 0; 1588 } 1589 1590 static int pinctrl_groups_show(struct seq_file *s, void *what) 1591 { 1592 struct pinctrl_dev *pctldev = s->private; 1593 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1594 unsigned ngroups, selector = 0; 1595 1596 mutex_lock(&pctldev->mutex); 1597 1598 ngroups = ops->get_groups_count(pctldev); 1599 1600 seq_puts(s, "registered pin groups:\n"); 1601 while (selector < ngroups) { 1602 const unsigned *pins = NULL; 1603 unsigned num_pins = 0; 1604 const char *gname = ops->get_group_name(pctldev, selector); 1605 const char *pname; 1606 int ret = 0; 1607 int i; 1608 1609 if (ops->get_group_pins) 1610 ret = ops->get_group_pins(pctldev, selector, 1611 &pins, &num_pins); 1612 if (ret) 1613 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1614 gname); 1615 else { 1616 seq_printf(s, "group: %s\n", gname); 1617 for (i = 0; i < num_pins; i++) { 1618 pname = pin_get_name(pctldev, pins[i]); 1619 if (WARN_ON(!pname)) { 1620 mutex_unlock(&pctldev->mutex); 1621 return -EINVAL; 1622 } 1623 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1624 } 1625 seq_puts(s, "\n"); 1626 } 1627 selector++; 1628 } 1629 1630 mutex_unlock(&pctldev->mutex); 1631 1632 return 0; 1633 } 1634 1635 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1636 { 1637 struct pinctrl_dev *pctldev = s->private; 1638 struct pinctrl_gpio_range *range = NULL; 1639 1640 seq_puts(s, "GPIO ranges handled:\n"); 1641 1642 mutex_lock(&pctldev->mutex); 1643 1644 /* Loop over the ranges */ 1645 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1646 if (range->pins) { 1647 int a; 1648 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1649 range->id, range->name, 1650 range->base, (range->base + range->npins - 1)); 1651 for (a = 0; a < range->npins - 1; a++) 1652 seq_printf(s, "%u, ", range->pins[a]); 1653 seq_printf(s, "%u}\n", range->pins[a]); 1654 } 1655 else 1656 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1657 range->id, range->name, 1658 range->base, (range->base + range->npins - 1), 1659 range->pin_base, 1660 (range->pin_base + range->npins - 1)); 1661 } 1662 1663 mutex_unlock(&pctldev->mutex); 1664 1665 return 0; 1666 } 1667 1668 static int pinctrl_devices_show(struct seq_file *s, void *what) 1669 { 1670 struct pinctrl_dev *pctldev; 1671 1672 seq_puts(s, "name [pinmux] [pinconf]\n"); 1673 1674 mutex_lock(&pinctrldev_list_mutex); 1675 1676 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1677 seq_printf(s, "%s ", pctldev->desc->name); 1678 if (pctldev->desc->pmxops) 1679 seq_puts(s, "yes "); 1680 else 1681 seq_puts(s, "no "); 1682 if (pctldev->desc->confops) 1683 seq_puts(s, "yes"); 1684 else 1685 seq_puts(s, "no"); 1686 seq_puts(s, "\n"); 1687 } 1688 1689 mutex_unlock(&pinctrldev_list_mutex); 1690 1691 return 0; 1692 } 1693 1694 static inline const char *map_type(enum pinctrl_map_type type) 1695 { 1696 static const char * const names[] = { 1697 "INVALID", 1698 "DUMMY_STATE", 1699 "MUX_GROUP", 1700 "CONFIGS_PIN", 1701 "CONFIGS_GROUP", 1702 }; 1703 1704 if (type >= ARRAY_SIZE(names)) 1705 return "UNKNOWN"; 1706 1707 return names[type]; 1708 } 1709 1710 static int pinctrl_maps_show(struct seq_file *s, void *what) 1711 { 1712 struct pinctrl_maps *maps_node; 1713 int i; 1714 const struct pinctrl_map *map; 1715 1716 seq_puts(s, "Pinctrl maps:\n"); 1717 1718 mutex_lock(&pinctrl_maps_mutex); 1719 for_each_maps(maps_node, i, map) { 1720 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1721 map->dev_name, map->name, map_type(map->type), 1722 map->type); 1723 1724 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1725 seq_printf(s, "controlling device %s\n", 1726 map->ctrl_dev_name); 1727 1728 switch (map->type) { 1729 case PIN_MAP_TYPE_MUX_GROUP: 1730 pinmux_show_map(s, map); 1731 break; 1732 case PIN_MAP_TYPE_CONFIGS_PIN: 1733 case PIN_MAP_TYPE_CONFIGS_GROUP: 1734 pinconf_show_map(s, map); 1735 break; 1736 default: 1737 break; 1738 } 1739 1740 seq_putc(s, '\n'); 1741 } 1742 mutex_unlock(&pinctrl_maps_mutex); 1743 1744 return 0; 1745 } 1746 1747 static int pinctrl_show(struct seq_file *s, void *what) 1748 { 1749 struct pinctrl *p; 1750 struct pinctrl_state *state; 1751 struct pinctrl_setting *setting; 1752 1753 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1754 1755 mutex_lock(&pinctrl_list_mutex); 1756 1757 list_for_each_entry(p, &pinctrl_list, node) { 1758 seq_printf(s, "device: %s current state: %s\n", 1759 dev_name(p->dev), 1760 p->state ? p->state->name : "none"); 1761 1762 list_for_each_entry(state, &p->states, node) { 1763 seq_printf(s, " state: %s\n", state->name); 1764 1765 list_for_each_entry(setting, &state->settings, node) { 1766 struct pinctrl_dev *pctldev = setting->pctldev; 1767 1768 seq_printf(s, " type: %s controller %s ", 1769 map_type(setting->type), 1770 pinctrl_dev_get_name(pctldev)); 1771 1772 switch (setting->type) { 1773 case PIN_MAP_TYPE_MUX_GROUP: 1774 pinmux_show_setting(s, setting); 1775 break; 1776 case PIN_MAP_TYPE_CONFIGS_PIN: 1777 case PIN_MAP_TYPE_CONFIGS_GROUP: 1778 pinconf_show_setting(s, setting); 1779 break; 1780 default: 1781 break; 1782 } 1783 } 1784 } 1785 } 1786 1787 mutex_unlock(&pinctrl_list_mutex); 1788 1789 return 0; 1790 } 1791 1792 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1793 { 1794 return single_open(file, pinctrl_pins_show, inode->i_private); 1795 } 1796 1797 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1798 { 1799 return single_open(file, pinctrl_groups_show, inode->i_private); 1800 } 1801 1802 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1803 { 1804 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1805 } 1806 1807 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1808 { 1809 return single_open(file, pinctrl_devices_show, NULL); 1810 } 1811 1812 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1813 { 1814 return single_open(file, pinctrl_maps_show, NULL); 1815 } 1816 1817 static int pinctrl_open(struct inode *inode, struct file *file) 1818 { 1819 return single_open(file, pinctrl_show, NULL); 1820 } 1821 1822 static const struct file_operations pinctrl_pins_ops = { 1823 .open = pinctrl_pins_open, 1824 .read = seq_read, 1825 .llseek = seq_lseek, 1826 .release = single_release, 1827 }; 1828 1829 static const struct file_operations pinctrl_groups_ops = { 1830 .open = pinctrl_groups_open, 1831 .read = seq_read, 1832 .llseek = seq_lseek, 1833 .release = single_release, 1834 }; 1835 1836 static const struct file_operations pinctrl_gpioranges_ops = { 1837 .open = pinctrl_gpioranges_open, 1838 .read = seq_read, 1839 .llseek = seq_lseek, 1840 .release = single_release, 1841 }; 1842 1843 static const struct file_operations pinctrl_devices_ops = { 1844 .open = pinctrl_devices_open, 1845 .read = seq_read, 1846 .llseek = seq_lseek, 1847 .release = single_release, 1848 }; 1849 1850 static const struct file_operations pinctrl_maps_ops = { 1851 .open = pinctrl_maps_open, 1852 .read = seq_read, 1853 .llseek = seq_lseek, 1854 .release = single_release, 1855 }; 1856 1857 static const struct file_operations pinctrl_ops = { 1858 .open = pinctrl_open, 1859 .read = seq_read, 1860 .llseek = seq_lseek, 1861 .release = single_release, 1862 }; 1863 1864 static struct dentry *debugfs_root; 1865 1866 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1867 { 1868 struct dentry *device_root; 1869 1870 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1871 debugfs_root); 1872 pctldev->device_root = device_root; 1873 1874 if (IS_ERR(device_root) || !device_root) { 1875 pr_warn("failed to create debugfs directory for %s\n", 1876 dev_name(pctldev->dev)); 1877 return; 1878 } 1879 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1880 device_root, pctldev, &pinctrl_pins_ops); 1881 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1882 device_root, pctldev, &pinctrl_groups_ops); 1883 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1884 device_root, pctldev, &pinctrl_gpioranges_ops); 1885 if (pctldev->desc->pmxops) 1886 pinmux_init_device_debugfs(device_root, pctldev); 1887 if (pctldev->desc->confops) 1888 pinconf_init_device_debugfs(device_root, pctldev); 1889 } 1890 1891 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1892 { 1893 debugfs_remove_recursive(pctldev->device_root); 1894 } 1895 1896 static void pinctrl_init_debugfs(void) 1897 { 1898 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1899 if (IS_ERR(debugfs_root) || !debugfs_root) { 1900 pr_warn("failed to create debugfs directory\n"); 1901 debugfs_root = NULL; 1902 return; 1903 } 1904 1905 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1906 debugfs_root, NULL, &pinctrl_devices_ops); 1907 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1908 debugfs_root, NULL, &pinctrl_maps_ops); 1909 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1910 debugfs_root, NULL, &pinctrl_ops); 1911 } 1912 1913 #else /* CONFIG_DEBUG_FS */ 1914 1915 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1916 { 1917 } 1918 1919 static void pinctrl_init_debugfs(void) 1920 { 1921 } 1922 1923 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1924 { 1925 } 1926 1927 #endif 1928 1929 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1930 { 1931 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1932 1933 if (!ops || 1934 !ops->get_groups_count || 1935 !ops->get_group_name) 1936 return -EINVAL; 1937 1938 return 0; 1939 } 1940 1941 /** 1942 * pinctrl_init_controller() - init a pin controller device 1943 * @pctldesc: descriptor for this pin controller 1944 * @dev: parent device for this pin controller 1945 * @driver_data: private pin controller data for this pin controller 1946 */ 1947 static struct pinctrl_dev * 1948 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1949 void *driver_data) 1950 { 1951 struct pinctrl_dev *pctldev; 1952 int ret; 1953 1954 if (!pctldesc) 1955 return ERR_PTR(-EINVAL); 1956 if (!pctldesc->name) 1957 return ERR_PTR(-EINVAL); 1958 1959 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1960 if (!pctldev) 1961 return ERR_PTR(-ENOMEM); 1962 1963 /* Initialize pin control device struct */ 1964 pctldev->owner = pctldesc->owner; 1965 pctldev->desc = pctldesc; 1966 pctldev->driver_data = driver_data; 1967 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1968 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1969 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1970 #endif 1971 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1972 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1973 #endif 1974 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1975 INIT_LIST_HEAD(&pctldev->node); 1976 pctldev->dev = dev; 1977 mutex_init(&pctldev->mutex); 1978 1979 /* check core ops for sanity */ 1980 ret = pinctrl_check_ops(pctldev); 1981 if (ret) { 1982 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1983 goto out_err; 1984 } 1985 1986 /* If we're implementing pinmuxing, check the ops for sanity */ 1987 if (pctldesc->pmxops) { 1988 ret = pinmux_check_ops(pctldev); 1989 if (ret) 1990 goto out_err; 1991 } 1992 1993 /* If we're implementing pinconfig, check the ops for sanity */ 1994 if (pctldesc->confops) { 1995 ret = pinconf_check_ops(pctldev); 1996 if (ret) 1997 goto out_err; 1998 } 1999 2000 /* Register all the pins */ 2001 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2002 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2003 if (ret) { 2004 dev_err(dev, "error during pin registration\n"); 2005 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2006 pctldesc->npins); 2007 goto out_err; 2008 } 2009 2010 return pctldev; 2011 2012 out_err: 2013 mutex_destroy(&pctldev->mutex); 2014 kfree(pctldev); 2015 return ERR_PTR(ret); 2016 } 2017 2018 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2019 { 2020 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2021 if (PTR_ERR(pctldev->p) == -ENODEV) { 2022 dev_dbg(pctldev->dev, "no hogs found\n"); 2023 2024 return 0; 2025 } 2026 2027 if (IS_ERR(pctldev->p)) { 2028 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2029 PTR_ERR(pctldev->p)); 2030 2031 return PTR_ERR(pctldev->p); 2032 } 2033 2034 kref_get(&pctldev->p->users); 2035 pctldev->hog_default = 2036 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2037 if (IS_ERR(pctldev->hog_default)) { 2038 dev_dbg(pctldev->dev, 2039 "failed to lookup the default state\n"); 2040 } else { 2041 if (pinctrl_select_state(pctldev->p, 2042 pctldev->hog_default)) 2043 dev_err(pctldev->dev, 2044 "failed to select default state\n"); 2045 } 2046 2047 pctldev->hog_sleep = 2048 pinctrl_lookup_state(pctldev->p, 2049 PINCTRL_STATE_SLEEP); 2050 if (IS_ERR(pctldev->hog_sleep)) 2051 dev_dbg(pctldev->dev, 2052 "failed to lookup the sleep state\n"); 2053 2054 return 0; 2055 } 2056 2057 int pinctrl_enable(struct pinctrl_dev *pctldev) 2058 { 2059 int error; 2060 2061 error = pinctrl_claim_hogs(pctldev); 2062 if (error) { 2063 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2064 error); 2065 mutex_destroy(&pctldev->mutex); 2066 kfree(pctldev); 2067 2068 return error; 2069 } 2070 2071 mutex_lock(&pinctrldev_list_mutex); 2072 list_add_tail(&pctldev->node, &pinctrldev_list); 2073 mutex_unlock(&pinctrldev_list_mutex); 2074 2075 pinctrl_init_device_debugfs(pctldev); 2076 2077 return 0; 2078 } 2079 EXPORT_SYMBOL_GPL(pinctrl_enable); 2080 2081 /** 2082 * pinctrl_register() - register a pin controller device 2083 * @pctldesc: descriptor for this pin controller 2084 * @dev: parent device for this pin controller 2085 * @driver_data: private pin controller data for this pin controller 2086 * 2087 * Note that pinctrl_register() is known to have problems as the pin 2088 * controller driver functions are called before the driver has a 2089 * struct pinctrl_dev handle. To avoid issues later on, please use the 2090 * new pinctrl_register_and_init() below instead. 2091 */ 2092 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2093 struct device *dev, void *driver_data) 2094 { 2095 struct pinctrl_dev *pctldev; 2096 int error; 2097 2098 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2099 if (IS_ERR(pctldev)) 2100 return pctldev; 2101 2102 error = pinctrl_enable(pctldev); 2103 if (error) 2104 return ERR_PTR(error); 2105 2106 return pctldev; 2107 2108 } 2109 EXPORT_SYMBOL_GPL(pinctrl_register); 2110 2111 /** 2112 * pinctrl_register_and_init() - register and init pin controller device 2113 * @pctldesc: descriptor for this pin controller 2114 * @dev: parent device for this pin controller 2115 * @driver_data: private pin controller data for this pin controller 2116 * @pctldev: pin controller device 2117 * 2118 * Note that pinctrl_enable() still needs to be manually called after 2119 * this once the driver is ready. 2120 */ 2121 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2122 struct device *dev, void *driver_data, 2123 struct pinctrl_dev **pctldev) 2124 { 2125 struct pinctrl_dev *p; 2126 2127 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2128 if (IS_ERR(p)) 2129 return PTR_ERR(p); 2130 2131 /* 2132 * We have pinctrl_start() call functions in the pin controller 2133 * driver with create_pinctrl() for at least dt_node_to_map(). So 2134 * let's make sure pctldev is properly initialized for the 2135 * pin controller driver before we do anything. 2136 */ 2137 *pctldev = p; 2138 2139 return 0; 2140 } 2141 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2142 2143 /** 2144 * pinctrl_unregister() - unregister pinmux 2145 * @pctldev: pin controller to unregister 2146 * 2147 * Called by pinmux drivers to unregister a pinmux. 2148 */ 2149 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2150 { 2151 struct pinctrl_gpio_range *range, *n; 2152 2153 if (!pctldev) 2154 return; 2155 2156 mutex_lock(&pctldev->mutex); 2157 pinctrl_remove_device_debugfs(pctldev); 2158 mutex_unlock(&pctldev->mutex); 2159 2160 if (!IS_ERR_OR_NULL(pctldev->p)) 2161 pinctrl_put(pctldev->p); 2162 2163 mutex_lock(&pinctrldev_list_mutex); 2164 mutex_lock(&pctldev->mutex); 2165 /* TODO: check that no pinmuxes are still active? */ 2166 list_del(&pctldev->node); 2167 pinmux_generic_free_functions(pctldev); 2168 pinctrl_generic_free_groups(pctldev); 2169 /* Destroy descriptor tree */ 2170 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2171 pctldev->desc->npins); 2172 /* remove gpio ranges map */ 2173 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2174 list_del(&range->node); 2175 2176 mutex_unlock(&pctldev->mutex); 2177 mutex_destroy(&pctldev->mutex); 2178 kfree(pctldev); 2179 mutex_unlock(&pinctrldev_list_mutex); 2180 } 2181 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2182 2183 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2184 { 2185 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2186 2187 pinctrl_unregister(pctldev); 2188 } 2189 2190 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2191 { 2192 struct pctldev **r = res; 2193 2194 if (WARN_ON(!r || !*r)) 2195 return 0; 2196 2197 return *r == data; 2198 } 2199 2200 /** 2201 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2202 * @dev: parent device for this pin controller 2203 * @pctldesc: descriptor for this pin controller 2204 * @driver_data: private pin controller data for this pin controller 2205 * 2206 * Returns an error pointer if pincontrol register failed. Otherwise 2207 * it returns valid pinctrl handle. 2208 * 2209 * The pinctrl device will be automatically released when the device is unbound. 2210 */ 2211 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2212 struct pinctrl_desc *pctldesc, 2213 void *driver_data) 2214 { 2215 struct pinctrl_dev **ptr, *pctldev; 2216 2217 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2218 if (!ptr) 2219 return ERR_PTR(-ENOMEM); 2220 2221 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2222 if (IS_ERR(pctldev)) { 2223 devres_free(ptr); 2224 return pctldev; 2225 } 2226 2227 *ptr = pctldev; 2228 devres_add(dev, ptr); 2229 2230 return pctldev; 2231 } 2232 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2233 2234 /** 2235 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2236 * @dev: parent device for this pin controller 2237 * @pctldesc: descriptor for this pin controller 2238 * @driver_data: private pin controller data for this pin controller 2239 * 2240 * Returns an error pointer if pincontrol register failed. Otherwise 2241 * it returns valid pinctrl handle. 2242 * 2243 * The pinctrl device will be automatically released when the device is unbound. 2244 */ 2245 int devm_pinctrl_register_and_init(struct device *dev, 2246 struct pinctrl_desc *pctldesc, 2247 void *driver_data, 2248 struct pinctrl_dev **pctldev) 2249 { 2250 struct pinctrl_dev **ptr; 2251 int error; 2252 2253 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2254 if (!ptr) 2255 return -ENOMEM; 2256 2257 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2258 if (error) { 2259 devres_free(ptr); 2260 return error; 2261 } 2262 2263 *ptr = *pctldev; 2264 devres_add(dev, ptr); 2265 2266 return 0; 2267 } 2268 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2269 2270 /** 2271 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2272 * @dev: device for which which resource was allocated 2273 * @pctldev: the pinctrl device to unregister. 2274 */ 2275 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2276 { 2277 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2278 devm_pinctrl_dev_match, pctldev)); 2279 } 2280 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2281 2282 static int __init pinctrl_init(void) 2283 { 2284 pr_info("initialized pinctrl subsystem\n"); 2285 pinctrl_init_debugfs(); 2286 return 0; 2287 } 2288 2289 /* init early since many drivers really need to initialized pinmux early */ 2290 core_initcall(pinctrl_init); 2291