1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 #include "core.h" 31 #include "devicetree.h" 32 #include "pinmux.h" 33 #include "pinconf.h" 34 35 36 static bool pinctrl_dummy_state; 37 38 /* Mutex taken by all entry points */ 39 DEFINE_MUTEX(pinctrl_mutex); 40 41 /* Global list of pin control devices (struct pinctrl_dev) */ 42 LIST_HEAD(pinctrldev_list); 43 44 /* List of pin controller handles (struct pinctrl) */ 45 static LIST_HEAD(pinctrl_list); 46 47 /* List of pinctrl maps (struct pinctrl_maps) */ 48 LIST_HEAD(pinctrl_maps); 49 50 51 /** 52 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 53 * 54 * Usually this function is called by platforms without pinctrl driver support 55 * but run with some shared drivers using pinctrl APIs. 56 * After calling this function, the pinctrl core will return successfully 57 * with creating a dummy state for the driver to keep going smoothly. 58 */ 59 void pinctrl_provide_dummies(void) 60 { 61 pinctrl_dummy_state = true; 62 } 63 64 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 65 { 66 /* We're not allowed to register devices without name */ 67 return pctldev->desc->name; 68 } 69 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 70 71 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 72 { 73 return dev_name(pctldev->dev); 74 } 75 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 76 77 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 78 { 79 return pctldev->driver_data; 80 } 81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 82 83 /** 84 * get_pinctrl_dev_from_devname() - look up pin controller device 85 * @devname: the name of a device instance, as returned by dev_name() 86 * 87 * Looks up a pin control device matching a certain device name or pure device 88 * pointer, the pure device pointer will take precedence. 89 */ 90 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 91 { 92 struct pinctrl_dev *pctldev = NULL; 93 bool found = false; 94 95 if (!devname) 96 return NULL; 97 98 list_for_each_entry(pctldev, &pinctrldev_list, node) { 99 if (!strcmp(dev_name(pctldev->dev), devname)) { 100 /* Matched on device name */ 101 found = true; 102 break; 103 } 104 } 105 106 return found ? pctldev : NULL; 107 } 108 109 /** 110 * pin_get_from_name() - look up a pin number from a name 111 * @pctldev: the pin control device to lookup the pin on 112 * @name: the name of the pin to look up 113 */ 114 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 115 { 116 unsigned i, pin; 117 118 /* The pin number can be retrived from the pin controller descriptor */ 119 for (i = 0; i < pctldev->desc->npins; i++) { 120 struct pin_desc *desc; 121 122 pin = pctldev->desc->pins[i].number; 123 desc = pin_desc_get(pctldev, pin); 124 /* Pin space may be sparse */ 125 if (desc == NULL) 126 continue; 127 if (desc->name && !strcmp(name, desc->name)) 128 return pin; 129 } 130 131 return -EINVAL; 132 } 133 134 /** 135 * pin_get_name_from_id() - look up a pin name from a pin id 136 * @pctldev: the pin control device to lookup the pin on 137 * @name: the name of the pin to look up 138 */ 139 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 140 { 141 const struct pin_desc *desc; 142 143 desc = pin_desc_get(pctldev, pin); 144 if (desc == NULL) { 145 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 146 pin); 147 return NULL; 148 } 149 150 return desc->name; 151 } 152 153 /** 154 * pin_is_valid() - check if pin exists on controller 155 * @pctldev: the pin control device to check the pin on 156 * @pin: pin to check, use the local pin controller index number 157 * 158 * This tells us whether a certain pin exist on a certain pin controller or 159 * not. Pin lists may be sparse, so some pins may not exist. 160 */ 161 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 162 { 163 struct pin_desc *pindesc; 164 165 if (pin < 0) 166 return false; 167 168 mutex_lock(&pinctrl_mutex); 169 pindesc = pin_desc_get(pctldev, pin); 170 mutex_unlock(&pinctrl_mutex); 171 172 return pindesc != NULL; 173 } 174 EXPORT_SYMBOL_GPL(pin_is_valid); 175 176 /* Deletes a range of pin descriptors */ 177 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 178 const struct pinctrl_pin_desc *pins, 179 unsigned num_pins) 180 { 181 int i; 182 183 for (i = 0; i < num_pins; i++) { 184 struct pin_desc *pindesc; 185 186 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 187 pins[i].number); 188 if (pindesc != NULL) { 189 radix_tree_delete(&pctldev->pin_desc_tree, 190 pins[i].number); 191 if (pindesc->dynamic_name) 192 kfree(pindesc->name); 193 } 194 kfree(pindesc); 195 } 196 } 197 198 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 199 unsigned number, const char *name) 200 { 201 struct pin_desc *pindesc; 202 203 pindesc = pin_desc_get(pctldev, number); 204 if (pindesc != NULL) { 205 pr_err("pin %d already registered on %s\n", number, 206 pctldev->desc->name); 207 return -EINVAL; 208 } 209 210 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 211 if (pindesc == NULL) { 212 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 213 return -ENOMEM; 214 } 215 216 /* Set owner */ 217 pindesc->pctldev = pctldev; 218 219 /* Copy basic pin info */ 220 if (name) { 221 pindesc->name = name; 222 } else { 223 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 224 if (pindesc->name == NULL) { 225 kfree(pindesc); 226 return -ENOMEM; 227 } 228 pindesc->dynamic_name = true; 229 } 230 231 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 232 pr_debug("registered pin %d (%s) on %s\n", 233 number, pindesc->name, pctldev->desc->name); 234 return 0; 235 } 236 237 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 238 struct pinctrl_pin_desc const *pins, 239 unsigned num_descs) 240 { 241 unsigned i; 242 int ret = 0; 243 244 for (i = 0; i < num_descs; i++) { 245 ret = pinctrl_register_one_pin(pctldev, 246 pins[i].number, pins[i].name); 247 if (ret) 248 return ret; 249 } 250 251 return 0; 252 } 253 254 /** 255 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 256 * @pctldev: pin controller device to check 257 * @gpio: gpio pin to check taken from the global GPIO pin space 258 * 259 * Tries to match a GPIO pin number to the ranges handled by a certain pin 260 * controller, return the range or NULL 261 */ 262 static struct pinctrl_gpio_range * 263 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 264 { 265 struct pinctrl_gpio_range *range = NULL; 266 267 /* Loop over the ranges */ 268 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 269 /* Check if we're in the valid range */ 270 if (gpio >= range->base && 271 gpio < range->base + range->npins) { 272 return range; 273 } 274 } 275 276 return NULL; 277 } 278 279 /** 280 * pinctrl_get_device_gpio_range() - find device for GPIO range 281 * @gpio: the pin to locate the pin controller for 282 * @outdev: the pin control device if found 283 * @outrange: the GPIO range if found 284 * 285 * Find the pin controller handling a certain GPIO pin from the pinspace of 286 * the GPIO subsystem, return the device and the matching GPIO range. Returns 287 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 288 * may still have not been registered. 289 */ 290 static int pinctrl_get_device_gpio_range(unsigned gpio, 291 struct pinctrl_dev **outdev, 292 struct pinctrl_gpio_range **outrange) 293 { 294 struct pinctrl_dev *pctldev = NULL; 295 296 /* Loop over the pin controllers */ 297 list_for_each_entry(pctldev, &pinctrldev_list, node) { 298 struct pinctrl_gpio_range *range; 299 300 range = pinctrl_match_gpio_range(pctldev, gpio); 301 if (range != NULL) { 302 *outdev = pctldev; 303 *outrange = range; 304 return 0; 305 } 306 } 307 308 return -EPROBE_DEFER; 309 } 310 311 /** 312 * pinctrl_add_gpio_range() - register a GPIO range for a controller 313 * @pctldev: pin controller device to add the range to 314 * @range: the GPIO range to add 315 * 316 * This adds a range of GPIOs to be handled by a certain pin controller. Call 317 * this to register handled ranges after registering your pin controller. 318 */ 319 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 320 struct pinctrl_gpio_range *range) 321 { 322 mutex_lock(&pinctrl_mutex); 323 list_add_tail(&range->node, &pctldev->gpio_ranges); 324 mutex_unlock(&pinctrl_mutex); 325 } 326 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 327 328 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 329 struct pinctrl_gpio_range *ranges, 330 unsigned nranges) 331 { 332 int i; 333 334 for (i = 0; i < nranges; i++) 335 pinctrl_add_gpio_range(pctldev, &ranges[i]); 336 } 337 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 338 339 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 340 struct pinctrl_gpio_range *range) 341 { 342 struct pinctrl_dev *pctldev = get_pinctrl_dev_from_devname(devname); 343 344 /* 345 * If we can't find this device, let's assume that is because 346 * it has not probed yet, so the driver trying to register this 347 * range need to defer probing. 348 */ 349 if (!pctldev) 350 return ERR_PTR(-EPROBE_DEFER); 351 352 pinctrl_add_gpio_range(pctldev, range); 353 return pctldev; 354 } 355 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 356 357 /** 358 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 359 * @pctldev: the pin controller device to look in 360 * @pin: a controller-local number to find the range for 361 */ 362 struct pinctrl_gpio_range * 363 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 364 unsigned int pin) 365 { 366 struct pinctrl_gpio_range *range = NULL; 367 368 /* Loop over the ranges */ 369 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 370 /* Check if we're in the valid range */ 371 if (pin >= range->pin_base && 372 pin < range->pin_base + range->npins) { 373 return range; 374 } 375 } 376 377 return NULL; 378 } 379 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 380 381 /** 382 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 383 * @pctldev: pin controller device to remove the range from 384 * @range: the GPIO range to remove 385 */ 386 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 387 struct pinctrl_gpio_range *range) 388 { 389 mutex_lock(&pinctrl_mutex); 390 list_del(&range->node); 391 mutex_unlock(&pinctrl_mutex); 392 } 393 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 394 395 /** 396 * pinctrl_get_group_selector() - returns the group selector for a group 397 * @pctldev: the pin controller handling the group 398 * @pin_group: the pin group to look up 399 */ 400 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 401 const char *pin_group) 402 { 403 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 404 unsigned ngroups = pctlops->get_groups_count(pctldev); 405 unsigned group_selector = 0; 406 407 while (group_selector < ngroups) { 408 const char *gname = pctlops->get_group_name(pctldev, 409 group_selector); 410 if (!strcmp(gname, pin_group)) { 411 dev_dbg(pctldev->dev, 412 "found group selector %u for %s\n", 413 group_selector, 414 pin_group); 415 return group_selector; 416 } 417 418 group_selector++; 419 } 420 421 dev_err(pctldev->dev, "does not have pin group %s\n", 422 pin_group); 423 424 return -EINVAL; 425 } 426 427 /** 428 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 429 * @gpio: the GPIO pin number from the GPIO subsystem number space 430 * 431 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 432 * as part of their gpio_request() semantics, platforms and individual drivers 433 * shall *NOT* request GPIO pins to be muxed in. 434 */ 435 int pinctrl_request_gpio(unsigned gpio) 436 { 437 struct pinctrl_dev *pctldev; 438 struct pinctrl_gpio_range *range; 439 int ret; 440 int pin; 441 442 mutex_lock(&pinctrl_mutex); 443 444 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 445 if (ret) { 446 mutex_unlock(&pinctrl_mutex); 447 return ret; 448 } 449 450 /* Convert to the pin controllers number space */ 451 pin = gpio - range->base + range->pin_base; 452 453 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 454 455 mutex_unlock(&pinctrl_mutex); 456 return ret; 457 } 458 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 459 460 /** 461 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 462 * @gpio: the GPIO pin number from the GPIO subsystem number space 463 * 464 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 465 * as part of their gpio_free() semantics, platforms and individual drivers 466 * shall *NOT* request GPIO pins to be muxed out. 467 */ 468 void pinctrl_free_gpio(unsigned gpio) 469 { 470 struct pinctrl_dev *pctldev; 471 struct pinctrl_gpio_range *range; 472 int ret; 473 int pin; 474 475 mutex_lock(&pinctrl_mutex); 476 477 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 478 if (ret) { 479 mutex_unlock(&pinctrl_mutex); 480 return; 481 } 482 483 /* Convert to the pin controllers number space */ 484 pin = gpio - range->base + range->pin_base; 485 486 pinmux_free_gpio(pctldev, pin, range); 487 488 mutex_unlock(&pinctrl_mutex); 489 } 490 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 491 492 static int pinctrl_gpio_direction(unsigned gpio, bool input) 493 { 494 struct pinctrl_dev *pctldev; 495 struct pinctrl_gpio_range *range; 496 int ret; 497 int pin; 498 499 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 500 if (ret) 501 return ret; 502 503 /* Convert to the pin controllers number space */ 504 pin = gpio - range->base + range->pin_base; 505 506 return pinmux_gpio_direction(pctldev, range, pin, input); 507 } 508 509 /** 510 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 511 * @gpio: the GPIO pin number from the GPIO subsystem number space 512 * 513 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 514 * as part of their gpio_direction_input() semantics, platforms and individual 515 * drivers shall *NOT* touch pin control GPIO calls. 516 */ 517 int pinctrl_gpio_direction_input(unsigned gpio) 518 { 519 int ret; 520 mutex_lock(&pinctrl_mutex); 521 ret = pinctrl_gpio_direction(gpio, true); 522 mutex_unlock(&pinctrl_mutex); 523 return ret; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 526 527 /** 528 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 529 * @gpio: the GPIO pin number from the GPIO subsystem number space 530 * 531 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 532 * as part of their gpio_direction_output() semantics, platforms and individual 533 * drivers shall *NOT* touch pin control GPIO calls. 534 */ 535 int pinctrl_gpio_direction_output(unsigned gpio) 536 { 537 int ret; 538 mutex_lock(&pinctrl_mutex); 539 ret = pinctrl_gpio_direction(gpio, false); 540 mutex_unlock(&pinctrl_mutex); 541 return ret; 542 } 543 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 544 545 static struct pinctrl_state *find_state(struct pinctrl *p, 546 const char *name) 547 { 548 struct pinctrl_state *state; 549 550 list_for_each_entry(state, &p->states, node) 551 if (!strcmp(state->name, name)) 552 return state; 553 554 return NULL; 555 } 556 557 static struct pinctrl_state *create_state(struct pinctrl *p, 558 const char *name) 559 { 560 struct pinctrl_state *state; 561 562 state = kzalloc(sizeof(*state), GFP_KERNEL); 563 if (state == NULL) { 564 dev_err(p->dev, 565 "failed to alloc struct pinctrl_state\n"); 566 return ERR_PTR(-ENOMEM); 567 } 568 569 state->name = name; 570 INIT_LIST_HEAD(&state->settings); 571 572 list_add_tail(&state->node, &p->states); 573 574 return state; 575 } 576 577 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 578 { 579 struct pinctrl_state *state; 580 struct pinctrl_setting *setting; 581 int ret; 582 583 state = find_state(p, map->name); 584 if (!state) 585 state = create_state(p, map->name); 586 if (IS_ERR(state)) 587 return PTR_ERR(state); 588 589 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 590 return 0; 591 592 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 593 if (setting == NULL) { 594 dev_err(p->dev, 595 "failed to alloc struct pinctrl_setting\n"); 596 return -ENOMEM; 597 } 598 599 setting->type = map->type; 600 601 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 602 if (setting->pctldev == NULL) { 603 kfree(setting); 604 /* Do not defer probing of hogs (circular loop) */ 605 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 606 return -ENODEV; 607 /* 608 * OK let us guess that the driver is not there yet, and 609 * let's defer obtaining this pinctrl handle to later... 610 */ 611 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 612 map->ctrl_dev_name); 613 return -EPROBE_DEFER; 614 } 615 616 setting->dev_name = map->dev_name; 617 618 switch (map->type) { 619 case PIN_MAP_TYPE_MUX_GROUP: 620 ret = pinmux_map_to_setting(map, setting); 621 break; 622 case PIN_MAP_TYPE_CONFIGS_PIN: 623 case PIN_MAP_TYPE_CONFIGS_GROUP: 624 ret = pinconf_map_to_setting(map, setting); 625 break; 626 default: 627 ret = -EINVAL; 628 break; 629 } 630 if (ret < 0) { 631 kfree(setting); 632 return ret; 633 } 634 635 list_add_tail(&setting->node, &state->settings); 636 637 return 0; 638 } 639 640 static struct pinctrl *find_pinctrl(struct device *dev) 641 { 642 struct pinctrl *p; 643 644 list_for_each_entry(p, &pinctrl_list, node) 645 if (p->dev == dev) 646 return p; 647 648 return NULL; 649 } 650 651 static void pinctrl_put_locked(struct pinctrl *p, bool inlist); 652 653 static struct pinctrl *create_pinctrl(struct device *dev) 654 { 655 struct pinctrl *p; 656 const char *devname; 657 struct pinctrl_maps *maps_node; 658 int i; 659 struct pinctrl_map const *map; 660 int ret; 661 662 /* 663 * create the state cookie holder struct pinctrl for each 664 * mapping, this is what consumers will get when requesting 665 * a pin control handle with pinctrl_get() 666 */ 667 p = kzalloc(sizeof(*p), GFP_KERNEL); 668 if (p == NULL) { 669 dev_err(dev, "failed to alloc struct pinctrl\n"); 670 return ERR_PTR(-ENOMEM); 671 } 672 p->dev = dev; 673 INIT_LIST_HEAD(&p->states); 674 INIT_LIST_HEAD(&p->dt_maps); 675 676 ret = pinctrl_dt_to_map(p); 677 if (ret < 0) { 678 kfree(p); 679 return ERR_PTR(ret); 680 } 681 682 devname = dev_name(dev); 683 684 /* Iterate over the pin control maps to locate the right ones */ 685 for_each_maps(maps_node, i, map) { 686 /* Map must be for this device */ 687 if (strcmp(map->dev_name, devname)) 688 continue; 689 690 ret = add_setting(p, map); 691 /* 692 * At this point the adding of a setting may: 693 * 694 * - Defer, if the pinctrl device is not yet available 695 * - Fail, if the pinctrl device is not yet available, 696 * AND the setting is a hog. We cannot defer that, since 697 * the hog will kick in immediately after the device 698 * is registered. 699 * 700 * If the error returned was not -EPROBE_DEFER then we 701 * accumulate the errors to see if we end up with 702 * an -EPROBE_DEFER later, as that is the worst case. 703 */ 704 if (ret == -EPROBE_DEFER) { 705 pinctrl_put_locked(p, false); 706 return ERR_PTR(ret); 707 } 708 } 709 if (ret < 0) { 710 /* If some other error than deferral occured, return here */ 711 pinctrl_put_locked(p, false); 712 return ERR_PTR(ret); 713 } 714 715 kref_init(&p->users); 716 717 /* Add the pinctrl handle to the global list */ 718 list_add_tail(&p->node, &pinctrl_list); 719 720 return p; 721 } 722 723 static struct pinctrl *pinctrl_get_locked(struct device *dev) 724 { 725 struct pinctrl *p; 726 727 if (WARN_ON(!dev)) 728 return ERR_PTR(-EINVAL); 729 730 /* 731 * See if somebody else (such as the device core) has already 732 * obtained a handle to the pinctrl for this device. In that case, 733 * return another pointer to it. 734 */ 735 p = find_pinctrl(dev); 736 if (p != NULL) { 737 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 738 kref_get(&p->users); 739 return p; 740 } 741 742 return create_pinctrl(dev); 743 } 744 745 /** 746 * pinctrl_get() - retrieves the pinctrl handle for a device 747 * @dev: the device to obtain the handle for 748 */ 749 struct pinctrl *pinctrl_get(struct device *dev) 750 { 751 struct pinctrl *p; 752 753 mutex_lock(&pinctrl_mutex); 754 p = pinctrl_get_locked(dev); 755 mutex_unlock(&pinctrl_mutex); 756 757 return p; 758 } 759 EXPORT_SYMBOL_GPL(pinctrl_get); 760 761 static void pinctrl_put_locked(struct pinctrl *p, bool inlist) 762 { 763 struct pinctrl_state *state, *n1; 764 struct pinctrl_setting *setting, *n2; 765 766 list_for_each_entry_safe(state, n1, &p->states, node) { 767 list_for_each_entry_safe(setting, n2, &state->settings, node) { 768 switch (setting->type) { 769 case PIN_MAP_TYPE_MUX_GROUP: 770 if (state == p->state) 771 pinmux_disable_setting(setting); 772 pinmux_free_setting(setting); 773 break; 774 case PIN_MAP_TYPE_CONFIGS_PIN: 775 case PIN_MAP_TYPE_CONFIGS_GROUP: 776 pinconf_free_setting(setting); 777 break; 778 default: 779 break; 780 } 781 list_del(&setting->node); 782 kfree(setting); 783 } 784 list_del(&state->node); 785 kfree(state); 786 } 787 788 pinctrl_dt_free_maps(p); 789 790 if (inlist) 791 list_del(&p->node); 792 kfree(p); 793 } 794 795 /** 796 * pinctrl_release() - release the pinctrl handle 797 * @kref: the kref in the pinctrl being released 798 */ 799 static void pinctrl_release(struct kref *kref) 800 { 801 struct pinctrl *p = container_of(kref, struct pinctrl, users); 802 803 pinctrl_put_locked(p, true); 804 } 805 806 /** 807 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 808 * @p: the pinctrl handle to release 809 */ 810 void pinctrl_put(struct pinctrl *p) 811 { 812 mutex_lock(&pinctrl_mutex); 813 kref_put(&p->users, pinctrl_release); 814 mutex_unlock(&pinctrl_mutex); 815 } 816 EXPORT_SYMBOL_GPL(pinctrl_put); 817 818 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p, 819 const char *name) 820 { 821 struct pinctrl_state *state; 822 823 state = find_state(p, name); 824 if (!state) { 825 if (pinctrl_dummy_state) { 826 /* create dummy state */ 827 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 828 name); 829 state = create_state(p, name); 830 } else 831 state = ERR_PTR(-ENODEV); 832 } 833 834 return state; 835 } 836 837 /** 838 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 839 * @p: the pinctrl handle to retrieve the state from 840 * @name: the state name to retrieve 841 */ 842 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name) 843 { 844 struct pinctrl_state *s; 845 846 mutex_lock(&pinctrl_mutex); 847 s = pinctrl_lookup_state_locked(p, name); 848 mutex_unlock(&pinctrl_mutex); 849 850 return s; 851 } 852 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 853 854 static int pinctrl_select_state_locked(struct pinctrl *p, 855 struct pinctrl_state *state) 856 { 857 struct pinctrl_setting *setting, *setting2; 858 int ret; 859 860 if (p->state == state) 861 return 0; 862 863 if (p->state) { 864 /* 865 * The set of groups with a mux configuration in the old state 866 * may not be identical to the set of groups with a mux setting 867 * in the new state. While this might be unusual, it's entirely 868 * possible for the "user"-supplied mapping table to be written 869 * that way. For each group that was configured in the old state 870 * but not in the new state, this code puts that group into a 871 * safe/disabled state. 872 */ 873 list_for_each_entry(setting, &p->state->settings, node) { 874 bool found = false; 875 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 876 continue; 877 list_for_each_entry(setting2, &state->settings, node) { 878 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 879 continue; 880 if (setting2->data.mux.group == 881 setting->data.mux.group) { 882 found = true; 883 break; 884 } 885 } 886 if (!found) 887 pinmux_disable_setting(setting); 888 } 889 } 890 891 p->state = state; 892 893 /* Apply all the settings for the new state */ 894 list_for_each_entry(setting, &state->settings, node) { 895 switch (setting->type) { 896 case PIN_MAP_TYPE_MUX_GROUP: 897 ret = pinmux_enable_setting(setting); 898 break; 899 case PIN_MAP_TYPE_CONFIGS_PIN: 900 case PIN_MAP_TYPE_CONFIGS_GROUP: 901 ret = pinconf_apply_setting(setting); 902 break; 903 default: 904 ret = -EINVAL; 905 break; 906 } 907 if (ret < 0) { 908 /* FIXME: Difficult to return to prev state */ 909 return ret; 910 } 911 } 912 913 return 0; 914 } 915 916 /** 917 * pinctrl_select() - select/activate/program a pinctrl state to HW 918 * @p: the pinctrl handle for the device that requests configuratio 919 * @state: the state handle to select/activate/program 920 */ 921 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 922 { 923 int ret; 924 925 mutex_lock(&pinctrl_mutex); 926 ret = pinctrl_select_state_locked(p, state); 927 mutex_unlock(&pinctrl_mutex); 928 929 return ret; 930 } 931 EXPORT_SYMBOL_GPL(pinctrl_select_state); 932 933 static void devm_pinctrl_release(struct device *dev, void *res) 934 { 935 pinctrl_put(*(struct pinctrl **)res); 936 } 937 938 /** 939 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 940 * @dev: the device to obtain the handle for 941 * 942 * If there is a need to explicitly destroy the returned struct pinctrl, 943 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 944 */ 945 struct pinctrl *devm_pinctrl_get(struct device *dev) 946 { 947 struct pinctrl **ptr, *p; 948 949 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 950 if (!ptr) 951 return ERR_PTR(-ENOMEM); 952 953 p = pinctrl_get(dev); 954 if (!IS_ERR(p)) { 955 *ptr = p; 956 devres_add(dev, ptr); 957 } else { 958 devres_free(ptr); 959 } 960 961 return p; 962 } 963 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 964 965 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 966 { 967 struct pinctrl **p = res; 968 969 return *p == data; 970 } 971 972 /** 973 * devm_pinctrl_put() - Resource managed pinctrl_put() 974 * @p: the pinctrl handle to release 975 * 976 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 977 * this function will not need to be called and the resource management 978 * code will ensure that the resource is freed. 979 */ 980 void devm_pinctrl_put(struct pinctrl *p) 981 { 982 WARN_ON(devres_destroy(p->dev, devm_pinctrl_release, 983 devm_pinctrl_match, p)); 984 pinctrl_put(p); 985 } 986 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 987 988 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 989 bool dup, bool locked) 990 { 991 int i, ret; 992 struct pinctrl_maps *maps_node; 993 994 pr_debug("add %d pinmux maps\n", num_maps); 995 996 /* First sanity check the new mapping */ 997 for (i = 0; i < num_maps; i++) { 998 if (!maps[i].dev_name) { 999 pr_err("failed to register map %s (%d): no device given\n", 1000 maps[i].name, i); 1001 return -EINVAL; 1002 } 1003 1004 if (!maps[i].name) { 1005 pr_err("failed to register map %d: no map name given\n", 1006 i); 1007 return -EINVAL; 1008 } 1009 1010 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1011 !maps[i].ctrl_dev_name) { 1012 pr_err("failed to register map %s (%d): no pin control device given\n", 1013 maps[i].name, i); 1014 return -EINVAL; 1015 } 1016 1017 switch (maps[i].type) { 1018 case PIN_MAP_TYPE_DUMMY_STATE: 1019 break; 1020 case PIN_MAP_TYPE_MUX_GROUP: 1021 ret = pinmux_validate_map(&maps[i], i); 1022 if (ret < 0) 1023 return ret; 1024 break; 1025 case PIN_MAP_TYPE_CONFIGS_PIN: 1026 case PIN_MAP_TYPE_CONFIGS_GROUP: 1027 ret = pinconf_validate_map(&maps[i], i); 1028 if (ret < 0) 1029 return ret; 1030 break; 1031 default: 1032 pr_err("failed to register map %s (%d): invalid type given\n", 1033 maps[i].name, i); 1034 return -EINVAL; 1035 } 1036 } 1037 1038 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1039 if (!maps_node) { 1040 pr_err("failed to alloc struct pinctrl_maps\n"); 1041 return -ENOMEM; 1042 } 1043 1044 maps_node->num_maps = num_maps; 1045 if (dup) { 1046 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1047 GFP_KERNEL); 1048 if (!maps_node->maps) { 1049 pr_err("failed to duplicate mapping table\n"); 1050 kfree(maps_node); 1051 return -ENOMEM; 1052 } 1053 } else { 1054 maps_node->maps = maps; 1055 } 1056 1057 if (!locked) 1058 mutex_lock(&pinctrl_mutex); 1059 list_add_tail(&maps_node->node, &pinctrl_maps); 1060 if (!locked) 1061 mutex_unlock(&pinctrl_mutex); 1062 1063 return 0; 1064 } 1065 1066 /** 1067 * pinctrl_register_mappings() - register a set of pin controller mappings 1068 * @maps: the pincontrol mappings table to register. This should probably be 1069 * marked with __initdata so it can be discarded after boot. This 1070 * function will perform a shallow copy for the mapping entries. 1071 * @num_maps: the number of maps in the mapping table 1072 */ 1073 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1074 unsigned num_maps) 1075 { 1076 return pinctrl_register_map(maps, num_maps, true, false); 1077 } 1078 1079 void pinctrl_unregister_map(struct pinctrl_map const *map) 1080 { 1081 struct pinctrl_maps *maps_node; 1082 1083 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1084 if (maps_node->maps == map) { 1085 list_del(&maps_node->node); 1086 return; 1087 } 1088 } 1089 } 1090 1091 /** 1092 * pinctrl_force_sleep() - turn a given controller device into sleep state 1093 * @pctldev: pin controller device 1094 */ 1095 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1096 { 1097 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1098 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1099 return 0; 1100 } 1101 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1102 1103 /** 1104 * pinctrl_force_default() - turn a given controller device into default state 1105 * @pctldev: pin controller device 1106 */ 1107 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1108 { 1109 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1110 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1111 return 0; 1112 } 1113 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1114 1115 #ifdef CONFIG_DEBUG_FS 1116 1117 static int pinctrl_pins_show(struct seq_file *s, void *what) 1118 { 1119 struct pinctrl_dev *pctldev = s->private; 1120 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1121 unsigned i, pin; 1122 1123 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1124 1125 mutex_lock(&pinctrl_mutex); 1126 1127 /* The pin number can be retrived from the pin controller descriptor */ 1128 for (i = 0; i < pctldev->desc->npins; i++) { 1129 struct pin_desc *desc; 1130 1131 pin = pctldev->desc->pins[i].number; 1132 desc = pin_desc_get(pctldev, pin); 1133 /* Pin space may be sparse */ 1134 if (desc == NULL) 1135 continue; 1136 1137 seq_printf(s, "pin %d (%s) ", pin, 1138 desc->name ? desc->name : "unnamed"); 1139 1140 /* Driver-specific info per pin */ 1141 if (ops->pin_dbg_show) 1142 ops->pin_dbg_show(pctldev, s, pin); 1143 1144 seq_puts(s, "\n"); 1145 } 1146 1147 mutex_unlock(&pinctrl_mutex); 1148 1149 return 0; 1150 } 1151 1152 static int pinctrl_groups_show(struct seq_file *s, void *what) 1153 { 1154 struct pinctrl_dev *pctldev = s->private; 1155 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1156 unsigned ngroups, selector = 0; 1157 1158 ngroups = ops->get_groups_count(pctldev); 1159 mutex_lock(&pinctrl_mutex); 1160 1161 seq_puts(s, "registered pin groups:\n"); 1162 while (selector < ngroups) { 1163 const unsigned *pins; 1164 unsigned num_pins; 1165 const char *gname = ops->get_group_name(pctldev, selector); 1166 const char *pname; 1167 int ret; 1168 int i; 1169 1170 ret = ops->get_group_pins(pctldev, selector, 1171 &pins, &num_pins); 1172 if (ret) 1173 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1174 gname); 1175 else { 1176 seq_printf(s, "group: %s\n", gname); 1177 for (i = 0; i < num_pins; i++) { 1178 pname = pin_get_name(pctldev, pins[i]); 1179 if (WARN_ON(!pname)) { 1180 mutex_unlock(&pinctrl_mutex); 1181 return -EINVAL; 1182 } 1183 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1184 } 1185 seq_puts(s, "\n"); 1186 } 1187 selector++; 1188 } 1189 1190 mutex_unlock(&pinctrl_mutex); 1191 1192 return 0; 1193 } 1194 1195 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1196 { 1197 struct pinctrl_dev *pctldev = s->private; 1198 struct pinctrl_gpio_range *range = NULL; 1199 1200 seq_puts(s, "GPIO ranges handled:\n"); 1201 1202 mutex_lock(&pinctrl_mutex); 1203 1204 /* Loop over the ranges */ 1205 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1206 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1207 range->id, range->name, 1208 range->base, (range->base + range->npins - 1), 1209 range->pin_base, 1210 (range->pin_base + range->npins - 1)); 1211 } 1212 1213 mutex_unlock(&pinctrl_mutex); 1214 1215 return 0; 1216 } 1217 1218 static int pinctrl_devices_show(struct seq_file *s, void *what) 1219 { 1220 struct pinctrl_dev *pctldev; 1221 1222 seq_puts(s, "name [pinmux] [pinconf]\n"); 1223 1224 mutex_lock(&pinctrl_mutex); 1225 1226 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1227 seq_printf(s, "%s ", pctldev->desc->name); 1228 if (pctldev->desc->pmxops) 1229 seq_puts(s, "yes "); 1230 else 1231 seq_puts(s, "no "); 1232 if (pctldev->desc->confops) 1233 seq_puts(s, "yes"); 1234 else 1235 seq_puts(s, "no"); 1236 seq_puts(s, "\n"); 1237 } 1238 1239 mutex_unlock(&pinctrl_mutex); 1240 1241 return 0; 1242 } 1243 1244 static inline const char *map_type(enum pinctrl_map_type type) 1245 { 1246 static const char * const names[] = { 1247 "INVALID", 1248 "DUMMY_STATE", 1249 "MUX_GROUP", 1250 "CONFIGS_PIN", 1251 "CONFIGS_GROUP", 1252 }; 1253 1254 if (type >= ARRAY_SIZE(names)) 1255 return "UNKNOWN"; 1256 1257 return names[type]; 1258 } 1259 1260 static int pinctrl_maps_show(struct seq_file *s, void *what) 1261 { 1262 struct pinctrl_maps *maps_node; 1263 int i; 1264 struct pinctrl_map const *map; 1265 1266 seq_puts(s, "Pinctrl maps:\n"); 1267 1268 mutex_lock(&pinctrl_mutex); 1269 1270 for_each_maps(maps_node, i, map) { 1271 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1272 map->dev_name, map->name, map_type(map->type), 1273 map->type); 1274 1275 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1276 seq_printf(s, "controlling device %s\n", 1277 map->ctrl_dev_name); 1278 1279 switch (map->type) { 1280 case PIN_MAP_TYPE_MUX_GROUP: 1281 pinmux_show_map(s, map); 1282 break; 1283 case PIN_MAP_TYPE_CONFIGS_PIN: 1284 case PIN_MAP_TYPE_CONFIGS_GROUP: 1285 pinconf_show_map(s, map); 1286 break; 1287 default: 1288 break; 1289 } 1290 1291 seq_printf(s, "\n"); 1292 } 1293 1294 mutex_unlock(&pinctrl_mutex); 1295 1296 return 0; 1297 } 1298 1299 static int pinctrl_show(struct seq_file *s, void *what) 1300 { 1301 struct pinctrl *p; 1302 struct pinctrl_state *state; 1303 struct pinctrl_setting *setting; 1304 1305 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1306 1307 mutex_lock(&pinctrl_mutex); 1308 1309 list_for_each_entry(p, &pinctrl_list, node) { 1310 seq_printf(s, "device: %s current state: %s\n", 1311 dev_name(p->dev), 1312 p->state ? p->state->name : "none"); 1313 1314 list_for_each_entry(state, &p->states, node) { 1315 seq_printf(s, " state: %s\n", state->name); 1316 1317 list_for_each_entry(setting, &state->settings, node) { 1318 struct pinctrl_dev *pctldev = setting->pctldev; 1319 1320 seq_printf(s, " type: %s controller %s ", 1321 map_type(setting->type), 1322 pinctrl_dev_get_name(pctldev)); 1323 1324 switch (setting->type) { 1325 case PIN_MAP_TYPE_MUX_GROUP: 1326 pinmux_show_setting(s, setting); 1327 break; 1328 case PIN_MAP_TYPE_CONFIGS_PIN: 1329 case PIN_MAP_TYPE_CONFIGS_GROUP: 1330 pinconf_show_setting(s, setting); 1331 break; 1332 default: 1333 break; 1334 } 1335 } 1336 } 1337 } 1338 1339 mutex_unlock(&pinctrl_mutex); 1340 1341 return 0; 1342 } 1343 1344 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1345 { 1346 return single_open(file, pinctrl_pins_show, inode->i_private); 1347 } 1348 1349 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1350 { 1351 return single_open(file, pinctrl_groups_show, inode->i_private); 1352 } 1353 1354 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1355 { 1356 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1357 } 1358 1359 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1360 { 1361 return single_open(file, pinctrl_devices_show, NULL); 1362 } 1363 1364 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1365 { 1366 return single_open(file, pinctrl_maps_show, NULL); 1367 } 1368 1369 static int pinctrl_open(struct inode *inode, struct file *file) 1370 { 1371 return single_open(file, pinctrl_show, NULL); 1372 } 1373 1374 static const struct file_operations pinctrl_pins_ops = { 1375 .open = pinctrl_pins_open, 1376 .read = seq_read, 1377 .llseek = seq_lseek, 1378 .release = single_release, 1379 }; 1380 1381 static const struct file_operations pinctrl_groups_ops = { 1382 .open = pinctrl_groups_open, 1383 .read = seq_read, 1384 .llseek = seq_lseek, 1385 .release = single_release, 1386 }; 1387 1388 static const struct file_operations pinctrl_gpioranges_ops = { 1389 .open = pinctrl_gpioranges_open, 1390 .read = seq_read, 1391 .llseek = seq_lseek, 1392 .release = single_release, 1393 }; 1394 1395 static const struct file_operations pinctrl_devices_ops = { 1396 .open = pinctrl_devices_open, 1397 .read = seq_read, 1398 .llseek = seq_lseek, 1399 .release = single_release, 1400 }; 1401 1402 static const struct file_operations pinctrl_maps_ops = { 1403 .open = pinctrl_maps_open, 1404 .read = seq_read, 1405 .llseek = seq_lseek, 1406 .release = single_release, 1407 }; 1408 1409 static const struct file_operations pinctrl_ops = { 1410 .open = pinctrl_open, 1411 .read = seq_read, 1412 .llseek = seq_lseek, 1413 .release = single_release, 1414 }; 1415 1416 static struct dentry *debugfs_root; 1417 1418 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1419 { 1420 struct dentry *device_root; 1421 1422 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1423 debugfs_root); 1424 pctldev->device_root = device_root; 1425 1426 if (IS_ERR(device_root) || !device_root) { 1427 pr_warn("failed to create debugfs directory for %s\n", 1428 dev_name(pctldev->dev)); 1429 return; 1430 } 1431 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1432 device_root, pctldev, &pinctrl_pins_ops); 1433 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1434 device_root, pctldev, &pinctrl_groups_ops); 1435 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1436 device_root, pctldev, &pinctrl_gpioranges_ops); 1437 pinmux_init_device_debugfs(device_root, pctldev); 1438 pinconf_init_device_debugfs(device_root, pctldev); 1439 } 1440 1441 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1442 { 1443 debugfs_remove_recursive(pctldev->device_root); 1444 } 1445 1446 static void pinctrl_init_debugfs(void) 1447 { 1448 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1449 if (IS_ERR(debugfs_root) || !debugfs_root) { 1450 pr_warn("failed to create debugfs directory\n"); 1451 debugfs_root = NULL; 1452 return; 1453 } 1454 1455 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1456 debugfs_root, NULL, &pinctrl_devices_ops); 1457 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1458 debugfs_root, NULL, &pinctrl_maps_ops); 1459 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1460 debugfs_root, NULL, &pinctrl_ops); 1461 } 1462 1463 #else /* CONFIG_DEBUG_FS */ 1464 1465 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1466 { 1467 } 1468 1469 static void pinctrl_init_debugfs(void) 1470 { 1471 } 1472 1473 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1474 { 1475 } 1476 1477 #endif 1478 1479 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1480 { 1481 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1482 1483 if (!ops || 1484 !ops->get_groups_count || 1485 !ops->get_group_name || 1486 !ops->get_group_pins) 1487 return -EINVAL; 1488 1489 if (ops->dt_node_to_map && !ops->dt_free_map) 1490 return -EINVAL; 1491 1492 return 0; 1493 } 1494 1495 /** 1496 * pinctrl_register() - register a pin controller device 1497 * @pctldesc: descriptor for this pin controller 1498 * @dev: parent device for this pin controller 1499 * @driver_data: private pin controller data for this pin controller 1500 */ 1501 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1502 struct device *dev, void *driver_data) 1503 { 1504 struct pinctrl_dev *pctldev; 1505 int ret; 1506 1507 if (!pctldesc) 1508 return NULL; 1509 if (!pctldesc->name) 1510 return NULL; 1511 1512 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1513 if (pctldev == NULL) { 1514 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1515 return NULL; 1516 } 1517 1518 /* Initialize pin control device struct */ 1519 pctldev->owner = pctldesc->owner; 1520 pctldev->desc = pctldesc; 1521 pctldev->driver_data = driver_data; 1522 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1523 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1524 pctldev->dev = dev; 1525 1526 /* check core ops for sanity */ 1527 if (pinctrl_check_ops(pctldev)) { 1528 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1529 goto out_err; 1530 } 1531 1532 /* If we're implementing pinmuxing, check the ops for sanity */ 1533 if (pctldesc->pmxops) { 1534 if (pinmux_check_ops(pctldev)) 1535 goto out_err; 1536 } 1537 1538 /* If we're implementing pinconfig, check the ops for sanity */ 1539 if (pctldesc->confops) { 1540 if (pinconf_check_ops(pctldev)) 1541 goto out_err; 1542 } 1543 1544 /* Register all the pins */ 1545 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1546 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1547 if (ret) { 1548 dev_err(dev, "error during pin registration\n"); 1549 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1550 pctldesc->npins); 1551 goto out_err; 1552 } 1553 1554 mutex_lock(&pinctrl_mutex); 1555 1556 list_add_tail(&pctldev->node, &pinctrldev_list); 1557 1558 pctldev->p = pinctrl_get_locked(pctldev->dev); 1559 if (!IS_ERR(pctldev->p)) { 1560 pctldev->hog_default = 1561 pinctrl_lookup_state_locked(pctldev->p, 1562 PINCTRL_STATE_DEFAULT); 1563 if (IS_ERR(pctldev->hog_default)) { 1564 dev_dbg(dev, "failed to lookup the default state\n"); 1565 } else { 1566 if (pinctrl_select_state_locked(pctldev->p, 1567 pctldev->hog_default)) 1568 dev_err(dev, 1569 "failed to select default state\n"); 1570 } 1571 1572 pctldev->hog_sleep = 1573 pinctrl_lookup_state_locked(pctldev->p, 1574 PINCTRL_STATE_SLEEP); 1575 if (IS_ERR(pctldev->hog_sleep)) 1576 dev_dbg(dev, "failed to lookup the sleep state\n"); 1577 } 1578 1579 mutex_unlock(&pinctrl_mutex); 1580 1581 pinctrl_init_device_debugfs(pctldev); 1582 1583 return pctldev; 1584 1585 out_err: 1586 kfree(pctldev); 1587 return NULL; 1588 } 1589 EXPORT_SYMBOL_GPL(pinctrl_register); 1590 1591 /** 1592 * pinctrl_unregister() - unregister pinmux 1593 * @pctldev: pin controller to unregister 1594 * 1595 * Called by pinmux drivers to unregister a pinmux. 1596 */ 1597 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1598 { 1599 struct pinctrl_gpio_range *range, *n; 1600 if (pctldev == NULL) 1601 return; 1602 1603 pinctrl_remove_device_debugfs(pctldev); 1604 1605 mutex_lock(&pinctrl_mutex); 1606 1607 if (!IS_ERR(pctldev->p)) 1608 pinctrl_put_locked(pctldev->p, true); 1609 1610 /* TODO: check that no pinmuxes are still active? */ 1611 list_del(&pctldev->node); 1612 /* Destroy descriptor tree */ 1613 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1614 pctldev->desc->npins); 1615 /* remove gpio ranges map */ 1616 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1617 list_del(&range->node); 1618 1619 kfree(pctldev); 1620 1621 mutex_unlock(&pinctrl_mutex); 1622 } 1623 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1624 1625 static int __init pinctrl_init(void) 1626 { 1627 pr_info("initialized pinctrl subsystem\n"); 1628 pinctrl_init_debugfs(); 1629 return 0; 1630 } 1631 1632 /* init early since many drivers really need to initialized pinmux early */ 1633 core_initcall(pinctrl_init); 1634