xref: /openbmc/linux/drivers/pinctrl/core.c (revision 9d749629)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 #include "core.h"
31 #include "devicetree.h"
32 #include "pinmux.h"
33 #include "pinconf.h"
34 
35 
36 static bool pinctrl_dummy_state;
37 
38 /* Mutex taken by all entry points */
39 DEFINE_MUTEX(pinctrl_mutex);
40 
41 /* Global list of pin control devices (struct pinctrl_dev) */
42 LIST_HEAD(pinctrldev_list);
43 
44 /* List of pin controller handles (struct pinctrl) */
45 static LIST_HEAD(pinctrl_list);
46 
47 /* List of pinctrl maps (struct pinctrl_maps) */
48 LIST_HEAD(pinctrl_maps);
49 
50 
51 /**
52  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
53  *
54  * Usually this function is called by platforms without pinctrl driver support
55  * but run with some shared drivers using pinctrl APIs.
56  * After calling this function, the pinctrl core will return successfully
57  * with creating a dummy state for the driver to keep going smoothly.
58  */
59 void pinctrl_provide_dummies(void)
60 {
61 	pinctrl_dummy_state = true;
62 }
63 
64 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
65 {
66 	/* We're not allowed to register devices without name */
67 	return pctldev->desc->name;
68 }
69 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
70 
71 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
72 {
73 	return dev_name(pctldev->dev);
74 }
75 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
76 
77 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
78 {
79 	return pctldev->driver_data;
80 }
81 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
82 
83 /**
84  * get_pinctrl_dev_from_devname() - look up pin controller device
85  * @devname: the name of a device instance, as returned by dev_name()
86  *
87  * Looks up a pin control device matching a certain device name or pure device
88  * pointer, the pure device pointer will take precedence.
89  */
90 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
91 {
92 	struct pinctrl_dev *pctldev = NULL;
93 	bool found = false;
94 
95 	if (!devname)
96 		return NULL;
97 
98 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
99 		if (!strcmp(dev_name(pctldev->dev), devname)) {
100 			/* Matched on device name */
101 			found = true;
102 			break;
103 		}
104 	}
105 
106 	return found ? pctldev : NULL;
107 }
108 
109 /**
110  * pin_get_from_name() - look up a pin number from a name
111  * @pctldev: the pin control device to lookup the pin on
112  * @name: the name of the pin to look up
113  */
114 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
115 {
116 	unsigned i, pin;
117 
118 	/* The pin number can be retrived from the pin controller descriptor */
119 	for (i = 0; i < pctldev->desc->npins; i++) {
120 		struct pin_desc *desc;
121 
122 		pin = pctldev->desc->pins[i].number;
123 		desc = pin_desc_get(pctldev, pin);
124 		/* Pin space may be sparse */
125 		if (desc == NULL)
126 			continue;
127 		if (desc->name && !strcmp(name, desc->name))
128 			return pin;
129 	}
130 
131 	return -EINVAL;
132 }
133 
134 /**
135  * pin_get_name_from_id() - look up a pin name from a pin id
136  * @pctldev: the pin control device to lookup the pin on
137  * @name: the name of the pin to look up
138  */
139 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
140 {
141 	const struct pin_desc *desc;
142 
143 	desc = pin_desc_get(pctldev, pin);
144 	if (desc == NULL) {
145 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
146 			pin);
147 		return NULL;
148 	}
149 
150 	return desc->name;
151 }
152 
153 /**
154  * pin_is_valid() - check if pin exists on controller
155  * @pctldev: the pin control device to check the pin on
156  * @pin: pin to check, use the local pin controller index number
157  *
158  * This tells us whether a certain pin exist on a certain pin controller or
159  * not. Pin lists may be sparse, so some pins may not exist.
160  */
161 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
162 {
163 	struct pin_desc *pindesc;
164 
165 	if (pin < 0)
166 		return false;
167 
168 	mutex_lock(&pinctrl_mutex);
169 	pindesc = pin_desc_get(pctldev, pin);
170 	mutex_unlock(&pinctrl_mutex);
171 
172 	return pindesc != NULL;
173 }
174 EXPORT_SYMBOL_GPL(pin_is_valid);
175 
176 /* Deletes a range of pin descriptors */
177 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
178 				  const struct pinctrl_pin_desc *pins,
179 				  unsigned num_pins)
180 {
181 	int i;
182 
183 	for (i = 0; i < num_pins; i++) {
184 		struct pin_desc *pindesc;
185 
186 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
187 					    pins[i].number);
188 		if (pindesc != NULL) {
189 			radix_tree_delete(&pctldev->pin_desc_tree,
190 					  pins[i].number);
191 			if (pindesc->dynamic_name)
192 				kfree(pindesc->name);
193 		}
194 		kfree(pindesc);
195 	}
196 }
197 
198 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
199 				    unsigned number, const char *name)
200 {
201 	struct pin_desc *pindesc;
202 
203 	pindesc = pin_desc_get(pctldev, number);
204 	if (pindesc != NULL) {
205 		pr_err("pin %d already registered on %s\n", number,
206 		       pctldev->desc->name);
207 		return -EINVAL;
208 	}
209 
210 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
211 	if (pindesc == NULL) {
212 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
213 		return -ENOMEM;
214 	}
215 
216 	/* Set owner */
217 	pindesc->pctldev = pctldev;
218 
219 	/* Copy basic pin info */
220 	if (name) {
221 		pindesc->name = name;
222 	} else {
223 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
224 		if (pindesc->name == NULL) {
225 			kfree(pindesc);
226 			return -ENOMEM;
227 		}
228 		pindesc->dynamic_name = true;
229 	}
230 
231 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
232 	pr_debug("registered pin %d (%s) on %s\n",
233 		 number, pindesc->name, pctldev->desc->name);
234 	return 0;
235 }
236 
237 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
238 				 struct pinctrl_pin_desc const *pins,
239 				 unsigned num_descs)
240 {
241 	unsigned i;
242 	int ret = 0;
243 
244 	for (i = 0; i < num_descs; i++) {
245 		ret = pinctrl_register_one_pin(pctldev,
246 					       pins[i].number, pins[i].name);
247 		if (ret)
248 			return ret;
249 	}
250 
251 	return 0;
252 }
253 
254 /**
255  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
256  * @pctldev: pin controller device to check
257  * @gpio: gpio pin to check taken from the global GPIO pin space
258  *
259  * Tries to match a GPIO pin number to the ranges handled by a certain pin
260  * controller, return the range or NULL
261  */
262 static struct pinctrl_gpio_range *
263 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
264 {
265 	struct pinctrl_gpio_range *range = NULL;
266 
267 	/* Loop over the ranges */
268 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
269 		/* Check if we're in the valid range */
270 		if (gpio >= range->base &&
271 		    gpio < range->base + range->npins) {
272 			return range;
273 		}
274 	}
275 
276 	return NULL;
277 }
278 
279 /**
280  * pinctrl_get_device_gpio_range() - find device for GPIO range
281  * @gpio: the pin to locate the pin controller for
282  * @outdev: the pin control device if found
283  * @outrange: the GPIO range if found
284  *
285  * Find the pin controller handling a certain GPIO pin from the pinspace of
286  * the GPIO subsystem, return the device and the matching GPIO range. Returns
287  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
288  * may still have not been registered.
289  */
290 static int pinctrl_get_device_gpio_range(unsigned gpio,
291 					 struct pinctrl_dev **outdev,
292 					 struct pinctrl_gpio_range **outrange)
293 {
294 	struct pinctrl_dev *pctldev = NULL;
295 
296 	/* Loop over the pin controllers */
297 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
298 		struct pinctrl_gpio_range *range;
299 
300 		range = pinctrl_match_gpio_range(pctldev, gpio);
301 		if (range != NULL) {
302 			*outdev = pctldev;
303 			*outrange = range;
304 			return 0;
305 		}
306 	}
307 
308 	return -EPROBE_DEFER;
309 }
310 
311 /**
312  * pinctrl_add_gpio_range() - register a GPIO range for a controller
313  * @pctldev: pin controller device to add the range to
314  * @range: the GPIO range to add
315  *
316  * This adds a range of GPIOs to be handled by a certain pin controller. Call
317  * this to register handled ranges after registering your pin controller.
318  */
319 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
320 			    struct pinctrl_gpio_range *range)
321 {
322 	mutex_lock(&pinctrl_mutex);
323 	list_add_tail(&range->node, &pctldev->gpio_ranges);
324 	mutex_unlock(&pinctrl_mutex);
325 }
326 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
327 
328 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
329 			     struct pinctrl_gpio_range *ranges,
330 			     unsigned nranges)
331 {
332 	int i;
333 
334 	for (i = 0; i < nranges; i++)
335 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
336 }
337 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
338 
339 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
340 		struct pinctrl_gpio_range *range)
341 {
342 	struct pinctrl_dev *pctldev = get_pinctrl_dev_from_devname(devname);
343 
344 	/*
345 	 * If we can't find this device, let's assume that is because
346 	 * it has not probed yet, so the driver trying to register this
347 	 * range need to defer probing.
348 	 */
349 	if (!pctldev)
350 		return ERR_PTR(-EPROBE_DEFER);
351 
352 	pinctrl_add_gpio_range(pctldev, range);
353 	return pctldev;
354 }
355 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
356 
357 /**
358  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
359  * @pctldev: the pin controller device to look in
360  * @pin: a controller-local number to find the range for
361  */
362 struct pinctrl_gpio_range *
363 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
364 				 unsigned int pin)
365 {
366 	struct pinctrl_gpio_range *range = NULL;
367 
368 	/* Loop over the ranges */
369 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
370 		/* Check if we're in the valid range */
371 		if (pin >= range->pin_base &&
372 		    pin < range->pin_base + range->npins) {
373 			return range;
374 		}
375 	}
376 
377 	return NULL;
378 }
379 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
380 
381 /**
382  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
383  * @pctldev: pin controller device to remove the range from
384  * @range: the GPIO range to remove
385  */
386 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
387 			       struct pinctrl_gpio_range *range)
388 {
389 	mutex_lock(&pinctrl_mutex);
390 	list_del(&range->node);
391 	mutex_unlock(&pinctrl_mutex);
392 }
393 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
394 
395 /**
396  * pinctrl_get_group_selector() - returns the group selector for a group
397  * @pctldev: the pin controller handling the group
398  * @pin_group: the pin group to look up
399  */
400 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
401 			       const char *pin_group)
402 {
403 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
404 	unsigned ngroups = pctlops->get_groups_count(pctldev);
405 	unsigned group_selector = 0;
406 
407 	while (group_selector < ngroups) {
408 		const char *gname = pctlops->get_group_name(pctldev,
409 							    group_selector);
410 		if (!strcmp(gname, pin_group)) {
411 			dev_dbg(pctldev->dev,
412 				"found group selector %u for %s\n",
413 				group_selector,
414 				pin_group);
415 			return group_selector;
416 		}
417 
418 		group_selector++;
419 	}
420 
421 	dev_err(pctldev->dev, "does not have pin group %s\n",
422 		pin_group);
423 
424 	return -EINVAL;
425 }
426 
427 /**
428  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
429  * @gpio: the GPIO pin number from the GPIO subsystem number space
430  *
431  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
432  * as part of their gpio_request() semantics, platforms and individual drivers
433  * shall *NOT* request GPIO pins to be muxed in.
434  */
435 int pinctrl_request_gpio(unsigned gpio)
436 {
437 	struct pinctrl_dev *pctldev;
438 	struct pinctrl_gpio_range *range;
439 	int ret;
440 	int pin;
441 
442 	mutex_lock(&pinctrl_mutex);
443 
444 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
445 	if (ret) {
446 		mutex_unlock(&pinctrl_mutex);
447 		return ret;
448 	}
449 
450 	/* Convert to the pin controllers number space */
451 	pin = gpio - range->base + range->pin_base;
452 
453 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
454 
455 	mutex_unlock(&pinctrl_mutex);
456 	return ret;
457 }
458 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
459 
460 /**
461  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
462  * @gpio: the GPIO pin number from the GPIO subsystem number space
463  *
464  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
465  * as part of their gpio_free() semantics, platforms and individual drivers
466  * shall *NOT* request GPIO pins to be muxed out.
467  */
468 void pinctrl_free_gpio(unsigned gpio)
469 {
470 	struct pinctrl_dev *pctldev;
471 	struct pinctrl_gpio_range *range;
472 	int ret;
473 	int pin;
474 
475 	mutex_lock(&pinctrl_mutex);
476 
477 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
478 	if (ret) {
479 		mutex_unlock(&pinctrl_mutex);
480 		return;
481 	}
482 
483 	/* Convert to the pin controllers number space */
484 	pin = gpio - range->base + range->pin_base;
485 
486 	pinmux_free_gpio(pctldev, pin, range);
487 
488 	mutex_unlock(&pinctrl_mutex);
489 }
490 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
491 
492 static int pinctrl_gpio_direction(unsigned gpio, bool input)
493 {
494 	struct pinctrl_dev *pctldev;
495 	struct pinctrl_gpio_range *range;
496 	int ret;
497 	int pin;
498 
499 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
500 	if (ret)
501 		return ret;
502 
503 	/* Convert to the pin controllers number space */
504 	pin = gpio - range->base + range->pin_base;
505 
506 	return pinmux_gpio_direction(pctldev, range, pin, input);
507 }
508 
509 /**
510  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
511  * @gpio: the GPIO pin number from the GPIO subsystem number space
512  *
513  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
514  * as part of their gpio_direction_input() semantics, platforms and individual
515  * drivers shall *NOT* touch pin control GPIO calls.
516  */
517 int pinctrl_gpio_direction_input(unsigned gpio)
518 {
519 	int ret;
520 	mutex_lock(&pinctrl_mutex);
521 	ret = pinctrl_gpio_direction(gpio, true);
522 	mutex_unlock(&pinctrl_mutex);
523 	return ret;
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
526 
527 /**
528  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
529  * @gpio: the GPIO pin number from the GPIO subsystem number space
530  *
531  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
532  * as part of their gpio_direction_output() semantics, platforms and individual
533  * drivers shall *NOT* touch pin control GPIO calls.
534  */
535 int pinctrl_gpio_direction_output(unsigned gpio)
536 {
537 	int ret;
538 	mutex_lock(&pinctrl_mutex);
539 	ret = pinctrl_gpio_direction(gpio, false);
540 	mutex_unlock(&pinctrl_mutex);
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
544 
545 static struct pinctrl_state *find_state(struct pinctrl *p,
546 					const char *name)
547 {
548 	struct pinctrl_state *state;
549 
550 	list_for_each_entry(state, &p->states, node)
551 		if (!strcmp(state->name, name))
552 			return state;
553 
554 	return NULL;
555 }
556 
557 static struct pinctrl_state *create_state(struct pinctrl *p,
558 					  const char *name)
559 {
560 	struct pinctrl_state *state;
561 
562 	state = kzalloc(sizeof(*state), GFP_KERNEL);
563 	if (state == NULL) {
564 		dev_err(p->dev,
565 			"failed to alloc struct pinctrl_state\n");
566 		return ERR_PTR(-ENOMEM);
567 	}
568 
569 	state->name = name;
570 	INIT_LIST_HEAD(&state->settings);
571 
572 	list_add_tail(&state->node, &p->states);
573 
574 	return state;
575 }
576 
577 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
578 {
579 	struct pinctrl_state *state;
580 	struct pinctrl_setting *setting;
581 	int ret;
582 
583 	state = find_state(p, map->name);
584 	if (!state)
585 		state = create_state(p, map->name);
586 	if (IS_ERR(state))
587 		return PTR_ERR(state);
588 
589 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
590 		return 0;
591 
592 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
593 	if (setting == NULL) {
594 		dev_err(p->dev,
595 			"failed to alloc struct pinctrl_setting\n");
596 		return -ENOMEM;
597 	}
598 
599 	setting->type = map->type;
600 
601 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
602 	if (setting->pctldev == NULL) {
603 		kfree(setting);
604 		/* Do not defer probing of hogs (circular loop) */
605 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
606 			return -ENODEV;
607 		/*
608 		 * OK let us guess that the driver is not there yet, and
609 		 * let's defer obtaining this pinctrl handle to later...
610 		 */
611 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
612 			map->ctrl_dev_name);
613 		return -EPROBE_DEFER;
614 	}
615 
616 	setting->dev_name = map->dev_name;
617 
618 	switch (map->type) {
619 	case PIN_MAP_TYPE_MUX_GROUP:
620 		ret = pinmux_map_to_setting(map, setting);
621 		break;
622 	case PIN_MAP_TYPE_CONFIGS_PIN:
623 	case PIN_MAP_TYPE_CONFIGS_GROUP:
624 		ret = pinconf_map_to_setting(map, setting);
625 		break;
626 	default:
627 		ret = -EINVAL;
628 		break;
629 	}
630 	if (ret < 0) {
631 		kfree(setting);
632 		return ret;
633 	}
634 
635 	list_add_tail(&setting->node, &state->settings);
636 
637 	return 0;
638 }
639 
640 static struct pinctrl *find_pinctrl(struct device *dev)
641 {
642 	struct pinctrl *p;
643 
644 	list_for_each_entry(p, &pinctrl_list, node)
645 		if (p->dev == dev)
646 			return p;
647 
648 	return NULL;
649 }
650 
651 static void pinctrl_put_locked(struct pinctrl *p, bool inlist);
652 
653 static struct pinctrl *create_pinctrl(struct device *dev)
654 {
655 	struct pinctrl *p;
656 	const char *devname;
657 	struct pinctrl_maps *maps_node;
658 	int i;
659 	struct pinctrl_map const *map;
660 	int ret;
661 
662 	/*
663 	 * create the state cookie holder struct pinctrl for each
664 	 * mapping, this is what consumers will get when requesting
665 	 * a pin control handle with pinctrl_get()
666 	 */
667 	p = kzalloc(sizeof(*p), GFP_KERNEL);
668 	if (p == NULL) {
669 		dev_err(dev, "failed to alloc struct pinctrl\n");
670 		return ERR_PTR(-ENOMEM);
671 	}
672 	p->dev = dev;
673 	INIT_LIST_HEAD(&p->states);
674 	INIT_LIST_HEAD(&p->dt_maps);
675 
676 	ret = pinctrl_dt_to_map(p);
677 	if (ret < 0) {
678 		kfree(p);
679 		return ERR_PTR(ret);
680 	}
681 
682 	devname = dev_name(dev);
683 
684 	/* Iterate over the pin control maps to locate the right ones */
685 	for_each_maps(maps_node, i, map) {
686 		/* Map must be for this device */
687 		if (strcmp(map->dev_name, devname))
688 			continue;
689 
690 		ret = add_setting(p, map);
691 		/*
692 		 * At this point the adding of a setting may:
693 		 *
694 		 * - Defer, if the pinctrl device is not yet available
695 		 * - Fail, if the pinctrl device is not yet available,
696 		 *   AND the setting is a hog. We cannot defer that, since
697 		 *   the hog will kick in immediately after the device
698 		 *   is registered.
699 		 *
700 		 * If the error returned was not -EPROBE_DEFER then we
701 		 * accumulate the errors to see if we end up with
702 		 * an -EPROBE_DEFER later, as that is the worst case.
703 		 */
704 		if (ret == -EPROBE_DEFER) {
705 			pinctrl_put_locked(p, false);
706 			return ERR_PTR(ret);
707 		}
708 	}
709 	if (ret < 0) {
710 		/* If some other error than deferral occured, return here */
711 		pinctrl_put_locked(p, false);
712 		return ERR_PTR(ret);
713 	}
714 
715 	kref_init(&p->users);
716 
717 	/* Add the pinctrl handle to the global list */
718 	list_add_tail(&p->node, &pinctrl_list);
719 
720 	return p;
721 }
722 
723 static struct pinctrl *pinctrl_get_locked(struct device *dev)
724 {
725 	struct pinctrl *p;
726 
727 	if (WARN_ON(!dev))
728 		return ERR_PTR(-EINVAL);
729 
730 	/*
731 	 * See if somebody else (such as the device core) has already
732 	 * obtained a handle to the pinctrl for this device. In that case,
733 	 * return another pointer to it.
734 	 */
735 	p = find_pinctrl(dev);
736 	if (p != NULL) {
737 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
738 		kref_get(&p->users);
739 		return p;
740 	}
741 
742 	return create_pinctrl(dev);
743 }
744 
745 /**
746  * pinctrl_get() - retrieves the pinctrl handle for a device
747  * @dev: the device to obtain the handle for
748  */
749 struct pinctrl *pinctrl_get(struct device *dev)
750 {
751 	struct pinctrl *p;
752 
753 	mutex_lock(&pinctrl_mutex);
754 	p = pinctrl_get_locked(dev);
755 	mutex_unlock(&pinctrl_mutex);
756 
757 	return p;
758 }
759 EXPORT_SYMBOL_GPL(pinctrl_get);
760 
761 static void pinctrl_put_locked(struct pinctrl *p, bool inlist)
762 {
763 	struct pinctrl_state *state, *n1;
764 	struct pinctrl_setting *setting, *n2;
765 
766 	list_for_each_entry_safe(state, n1, &p->states, node) {
767 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
768 			switch (setting->type) {
769 			case PIN_MAP_TYPE_MUX_GROUP:
770 				if (state == p->state)
771 					pinmux_disable_setting(setting);
772 				pinmux_free_setting(setting);
773 				break;
774 			case PIN_MAP_TYPE_CONFIGS_PIN:
775 			case PIN_MAP_TYPE_CONFIGS_GROUP:
776 				pinconf_free_setting(setting);
777 				break;
778 			default:
779 				break;
780 			}
781 			list_del(&setting->node);
782 			kfree(setting);
783 		}
784 		list_del(&state->node);
785 		kfree(state);
786 	}
787 
788 	pinctrl_dt_free_maps(p);
789 
790 	if (inlist)
791 		list_del(&p->node);
792 	kfree(p);
793 }
794 
795 /**
796  * pinctrl_release() - release the pinctrl handle
797  * @kref: the kref in the pinctrl being released
798  */
799 static void pinctrl_release(struct kref *kref)
800 {
801 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
802 
803 	pinctrl_put_locked(p, true);
804 }
805 
806 /**
807  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
808  * @p: the pinctrl handle to release
809  */
810 void pinctrl_put(struct pinctrl *p)
811 {
812 	mutex_lock(&pinctrl_mutex);
813 	kref_put(&p->users, pinctrl_release);
814 	mutex_unlock(&pinctrl_mutex);
815 }
816 EXPORT_SYMBOL_GPL(pinctrl_put);
817 
818 static struct pinctrl_state *pinctrl_lookup_state_locked(struct pinctrl *p,
819 							 const char *name)
820 {
821 	struct pinctrl_state *state;
822 
823 	state = find_state(p, name);
824 	if (!state) {
825 		if (pinctrl_dummy_state) {
826 			/* create dummy state */
827 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
828 				name);
829 			state = create_state(p, name);
830 		} else
831 			state = ERR_PTR(-ENODEV);
832 	}
833 
834 	return state;
835 }
836 
837 /**
838  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
839  * @p: the pinctrl handle to retrieve the state from
840  * @name: the state name to retrieve
841  */
842 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, const char *name)
843 {
844 	struct pinctrl_state *s;
845 
846 	mutex_lock(&pinctrl_mutex);
847 	s = pinctrl_lookup_state_locked(p, name);
848 	mutex_unlock(&pinctrl_mutex);
849 
850 	return s;
851 }
852 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
853 
854 static int pinctrl_select_state_locked(struct pinctrl *p,
855 				       struct pinctrl_state *state)
856 {
857 	struct pinctrl_setting *setting, *setting2;
858 	int ret;
859 
860 	if (p->state == state)
861 		return 0;
862 
863 	if (p->state) {
864 		/*
865 		 * The set of groups with a mux configuration in the old state
866 		 * may not be identical to the set of groups with a mux setting
867 		 * in the new state. While this might be unusual, it's entirely
868 		 * possible for the "user"-supplied mapping table to be written
869 		 * that way. For each group that was configured in the old state
870 		 * but not in the new state, this code puts that group into a
871 		 * safe/disabled state.
872 		 */
873 		list_for_each_entry(setting, &p->state->settings, node) {
874 			bool found = false;
875 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
876 				continue;
877 			list_for_each_entry(setting2, &state->settings, node) {
878 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
879 					continue;
880 				if (setting2->data.mux.group ==
881 						setting->data.mux.group) {
882 					found = true;
883 					break;
884 				}
885 			}
886 			if (!found)
887 				pinmux_disable_setting(setting);
888 		}
889 	}
890 
891 	p->state = state;
892 
893 	/* Apply all the settings for the new state */
894 	list_for_each_entry(setting, &state->settings, node) {
895 		switch (setting->type) {
896 		case PIN_MAP_TYPE_MUX_GROUP:
897 			ret = pinmux_enable_setting(setting);
898 			break;
899 		case PIN_MAP_TYPE_CONFIGS_PIN:
900 		case PIN_MAP_TYPE_CONFIGS_GROUP:
901 			ret = pinconf_apply_setting(setting);
902 			break;
903 		default:
904 			ret = -EINVAL;
905 			break;
906 		}
907 		if (ret < 0) {
908 			/* FIXME: Difficult to return to prev state */
909 			return ret;
910 		}
911 	}
912 
913 	return 0;
914 }
915 
916 /**
917  * pinctrl_select() - select/activate/program a pinctrl state to HW
918  * @p: the pinctrl handle for the device that requests configuratio
919  * @state: the state handle to select/activate/program
920  */
921 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
922 {
923 	int ret;
924 
925 	mutex_lock(&pinctrl_mutex);
926 	ret = pinctrl_select_state_locked(p, state);
927 	mutex_unlock(&pinctrl_mutex);
928 
929 	return ret;
930 }
931 EXPORT_SYMBOL_GPL(pinctrl_select_state);
932 
933 static void devm_pinctrl_release(struct device *dev, void *res)
934 {
935 	pinctrl_put(*(struct pinctrl **)res);
936 }
937 
938 /**
939  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
940  * @dev: the device to obtain the handle for
941  *
942  * If there is a need to explicitly destroy the returned struct pinctrl,
943  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
944  */
945 struct pinctrl *devm_pinctrl_get(struct device *dev)
946 {
947 	struct pinctrl **ptr, *p;
948 
949 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
950 	if (!ptr)
951 		return ERR_PTR(-ENOMEM);
952 
953 	p = pinctrl_get(dev);
954 	if (!IS_ERR(p)) {
955 		*ptr = p;
956 		devres_add(dev, ptr);
957 	} else {
958 		devres_free(ptr);
959 	}
960 
961 	return p;
962 }
963 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
964 
965 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
966 {
967 	struct pinctrl **p = res;
968 
969 	return *p == data;
970 }
971 
972 /**
973  * devm_pinctrl_put() - Resource managed pinctrl_put()
974  * @p: the pinctrl handle to release
975  *
976  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
977  * this function will not need to be called and the resource management
978  * code will ensure that the resource is freed.
979  */
980 void devm_pinctrl_put(struct pinctrl *p)
981 {
982 	WARN_ON(devres_destroy(p->dev, devm_pinctrl_release,
983 			       devm_pinctrl_match, p));
984 	pinctrl_put(p);
985 }
986 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
987 
988 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
989 			 bool dup, bool locked)
990 {
991 	int i, ret;
992 	struct pinctrl_maps *maps_node;
993 
994 	pr_debug("add %d pinmux maps\n", num_maps);
995 
996 	/* First sanity check the new mapping */
997 	for (i = 0; i < num_maps; i++) {
998 		if (!maps[i].dev_name) {
999 			pr_err("failed to register map %s (%d): no device given\n",
1000 			       maps[i].name, i);
1001 			return -EINVAL;
1002 		}
1003 
1004 		if (!maps[i].name) {
1005 			pr_err("failed to register map %d: no map name given\n",
1006 			       i);
1007 			return -EINVAL;
1008 		}
1009 
1010 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1011 				!maps[i].ctrl_dev_name) {
1012 			pr_err("failed to register map %s (%d): no pin control device given\n",
1013 			       maps[i].name, i);
1014 			return -EINVAL;
1015 		}
1016 
1017 		switch (maps[i].type) {
1018 		case PIN_MAP_TYPE_DUMMY_STATE:
1019 			break;
1020 		case PIN_MAP_TYPE_MUX_GROUP:
1021 			ret = pinmux_validate_map(&maps[i], i);
1022 			if (ret < 0)
1023 				return ret;
1024 			break;
1025 		case PIN_MAP_TYPE_CONFIGS_PIN:
1026 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1027 			ret = pinconf_validate_map(&maps[i], i);
1028 			if (ret < 0)
1029 				return ret;
1030 			break;
1031 		default:
1032 			pr_err("failed to register map %s (%d): invalid type given\n",
1033 			       maps[i].name, i);
1034 			return -EINVAL;
1035 		}
1036 	}
1037 
1038 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1039 	if (!maps_node) {
1040 		pr_err("failed to alloc struct pinctrl_maps\n");
1041 		return -ENOMEM;
1042 	}
1043 
1044 	maps_node->num_maps = num_maps;
1045 	if (dup) {
1046 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1047 					  GFP_KERNEL);
1048 		if (!maps_node->maps) {
1049 			pr_err("failed to duplicate mapping table\n");
1050 			kfree(maps_node);
1051 			return -ENOMEM;
1052 		}
1053 	} else {
1054 		maps_node->maps = maps;
1055 	}
1056 
1057 	if (!locked)
1058 		mutex_lock(&pinctrl_mutex);
1059 	list_add_tail(&maps_node->node, &pinctrl_maps);
1060 	if (!locked)
1061 		mutex_unlock(&pinctrl_mutex);
1062 
1063 	return 0;
1064 }
1065 
1066 /**
1067  * pinctrl_register_mappings() - register a set of pin controller mappings
1068  * @maps: the pincontrol mappings table to register. This should probably be
1069  *	marked with __initdata so it can be discarded after boot. This
1070  *	function will perform a shallow copy for the mapping entries.
1071  * @num_maps: the number of maps in the mapping table
1072  */
1073 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1074 			      unsigned num_maps)
1075 {
1076 	return pinctrl_register_map(maps, num_maps, true, false);
1077 }
1078 
1079 void pinctrl_unregister_map(struct pinctrl_map const *map)
1080 {
1081 	struct pinctrl_maps *maps_node;
1082 
1083 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1084 		if (maps_node->maps == map) {
1085 			list_del(&maps_node->node);
1086 			return;
1087 		}
1088 	}
1089 }
1090 
1091 /**
1092  * pinctrl_force_sleep() - turn a given controller device into sleep state
1093  * @pctldev: pin controller device
1094  */
1095 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1096 {
1097 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1098 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1099 	return 0;
1100 }
1101 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1102 
1103 /**
1104  * pinctrl_force_default() - turn a given controller device into default state
1105  * @pctldev: pin controller device
1106  */
1107 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1108 {
1109 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1110 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1111 	return 0;
1112 }
1113 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1114 
1115 #ifdef CONFIG_DEBUG_FS
1116 
1117 static int pinctrl_pins_show(struct seq_file *s, void *what)
1118 {
1119 	struct pinctrl_dev *pctldev = s->private;
1120 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1121 	unsigned i, pin;
1122 
1123 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1124 
1125 	mutex_lock(&pinctrl_mutex);
1126 
1127 	/* The pin number can be retrived from the pin controller descriptor */
1128 	for (i = 0; i < pctldev->desc->npins; i++) {
1129 		struct pin_desc *desc;
1130 
1131 		pin = pctldev->desc->pins[i].number;
1132 		desc = pin_desc_get(pctldev, pin);
1133 		/* Pin space may be sparse */
1134 		if (desc == NULL)
1135 			continue;
1136 
1137 		seq_printf(s, "pin %d (%s) ", pin,
1138 			   desc->name ? desc->name : "unnamed");
1139 
1140 		/* Driver-specific info per pin */
1141 		if (ops->pin_dbg_show)
1142 			ops->pin_dbg_show(pctldev, s, pin);
1143 
1144 		seq_puts(s, "\n");
1145 	}
1146 
1147 	mutex_unlock(&pinctrl_mutex);
1148 
1149 	return 0;
1150 }
1151 
1152 static int pinctrl_groups_show(struct seq_file *s, void *what)
1153 {
1154 	struct pinctrl_dev *pctldev = s->private;
1155 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1156 	unsigned ngroups, selector = 0;
1157 
1158 	ngroups = ops->get_groups_count(pctldev);
1159 	mutex_lock(&pinctrl_mutex);
1160 
1161 	seq_puts(s, "registered pin groups:\n");
1162 	while (selector < ngroups) {
1163 		const unsigned *pins;
1164 		unsigned num_pins;
1165 		const char *gname = ops->get_group_name(pctldev, selector);
1166 		const char *pname;
1167 		int ret;
1168 		int i;
1169 
1170 		ret = ops->get_group_pins(pctldev, selector,
1171 					  &pins, &num_pins);
1172 		if (ret)
1173 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1174 				   gname);
1175 		else {
1176 			seq_printf(s, "group: %s\n", gname);
1177 			for (i = 0; i < num_pins; i++) {
1178 				pname = pin_get_name(pctldev, pins[i]);
1179 				if (WARN_ON(!pname)) {
1180 					mutex_unlock(&pinctrl_mutex);
1181 					return -EINVAL;
1182 				}
1183 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1184 			}
1185 			seq_puts(s, "\n");
1186 		}
1187 		selector++;
1188 	}
1189 
1190 	mutex_unlock(&pinctrl_mutex);
1191 
1192 	return 0;
1193 }
1194 
1195 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1196 {
1197 	struct pinctrl_dev *pctldev = s->private;
1198 	struct pinctrl_gpio_range *range = NULL;
1199 
1200 	seq_puts(s, "GPIO ranges handled:\n");
1201 
1202 	mutex_lock(&pinctrl_mutex);
1203 
1204 	/* Loop over the ranges */
1205 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1206 		seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1207 			   range->id, range->name,
1208 			   range->base, (range->base + range->npins - 1),
1209 			   range->pin_base,
1210 			   (range->pin_base + range->npins - 1));
1211 	}
1212 
1213 	mutex_unlock(&pinctrl_mutex);
1214 
1215 	return 0;
1216 }
1217 
1218 static int pinctrl_devices_show(struct seq_file *s, void *what)
1219 {
1220 	struct pinctrl_dev *pctldev;
1221 
1222 	seq_puts(s, "name [pinmux] [pinconf]\n");
1223 
1224 	mutex_lock(&pinctrl_mutex);
1225 
1226 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1227 		seq_printf(s, "%s ", pctldev->desc->name);
1228 		if (pctldev->desc->pmxops)
1229 			seq_puts(s, "yes ");
1230 		else
1231 			seq_puts(s, "no ");
1232 		if (pctldev->desc->confops)
1233 			seq_puts(s, "yes");
1234 		else
1235 			seq_puts(s, "no");
1236 		seq_puts(s, "\n");
1237 	}
1238 
1239 	mutex_unlock(&pinctrl_mutex);
1240 
1241 	return 0;
1242 }
1243 
1244 static inline const char *map_type(enum pinctrl_map_type type)
1245 {
1246 	static const char * const names[] = {
1247 		"INVALID",
1248 		"DUMMY_STATE",
1249 		"MUX_GROUP",
1250 		"CONFIGS_PIN",
1251 		"CONFIGS_GROUP",
1252 	};
1253 
1254 	if (type >= ARRAY_SIZE(names))
1255 		return "UNKNOWN";
1256 
1257 	return names[type];
1258 }
1259 
1260 static int pinctrl_maps_show(struct seq_file *s, void *what)
1261 {
1262 	struct pinctrl_maps *maps_node;
1263 	int i;
1264 	struct pinctrl_map const *map;
1265 
1266 	seq_puts(s, "Pinctrl maps:\n");
1267 
1268 	mutex_lock(&pinctrl_mutex);
1269 
1270 	for_each_maps(maps_node, i, map) {
1271 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1272 			   map->dev_name, map->name, map_type(map->type),
1273 			   map->type);
1274 
1275 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1276 			seq_printf(s, "controlling device %s\n",
1277 				   map->ctrl_dev_name);
1278 
1279 		switch (map->type) {
1280 		case PIN_MAP_TYPE_MUX_GROUP:
1281 			pinmux_show_map(s, map);
1282 			break;
1283 		case PIN_MAP_TYPE_CONFIGS_PIN:
1284 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1285 			pinconf_show_map(s, map);
1286 			break;
1287 		default:
1288 			break;
1289 		}
1290 
1291 		seq_printf(s, "\n");
1292 	}
1293 
1294 	mutex_unlock(&pinctrl_mutex);
1295 
1296 	return 0;
1297 }
1298 
1299 static int pinctrl_show(struct seq_file *s, void *what)
1300 {
1301 	struct pinctrl *p;
1302 	struct pinctrl_state *state;
1303 	struct pinctrl_setting *setting;
1304 
1305 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1306 
1307 	mutex_lock(&pinctrl_mutex);
1308 
1309 	list_for_each_entry(p, &pinctrl_list, node) {
1310 		seq_printf(s, "device: %s current state: %s\n",
1311 			   dev_name(p->dev),
1312 			   p->state ? p->state->name : "none");
1313 
1314 		list_for_each_entry(state, &p->states, node) {
1315 			seq_printf(s, "  state: %s\n", state->name);
1316 
1317 			list_for_each_entry(setting, &state->settings, node) {
1318 				struct pinctrl_dev *pctldev = setting->pctldev;
1319 
1320 				seq_printf(s, "    type: %s controller %s ",
1321 					   map_type(setting->type),
1322 					   pinctrl_dev_get_name(pctldev));
1323 
1324 				switch (setting->type) {
1325 				case PIN_MAP_TYPE_MUX_GROUP:
1326 					pinmux_show_setting(s, setting);
1327 					break;
1328 				case PIN_MAP_TYPE_CONFIGS_PIN:
1329 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1330 					pinconf_show_setting(s, setting);
1331 					break;
1332 				default:
1333 					break;
1334 				}
1335 			}
1336 		}
1337 	}
1338 
1339 	mutex_unlock(&pinctrl_mutex);
1340 
1341 	return 0;
1342 }
1343 
1344 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1345 {
1346 	return single_open(file, pinctrl_pins_show, inode->i_private);
1347 }
1348 
1349 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1350 {
1351 	return single_open(file, pinctrl_groups_show, inode->i_private);
1352 }
1353 
1354 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1355 {
1356 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1357 }
1358 
1359 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1360 {
1361 	return single_open(file, pinctrl_devices_show, NULL);
1362 }
1363 
1364 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1365 {
1366 	return single_open(file, pinctrl_maps_show, NULL);
1367 }
1368 
1369 static int pinctrl_open(struct inode *inode, struct file *file)
1370 {
1371 	return single_open(file, pinctrl_show, NULL);
1372 }
1373 
1374 static const struct file_operations pinctrl_pins_ops = {
1375 	.open		= pinctrl_pins_open,
1376 	.read		= seq_read,
1377 	.llseek		= seq_lseek,
1378 	.release	= single_release,
1379 };
1380 
1381 static const struct file_operations pinctrl_groups_ops = {
1382 	.open		= pinctrl_groups_open,
1383 	.read		= seq_read,
1384 	.llseek		= seq_lseek,
1385 	.release	= single_release,
1386 };
1387 
1388 static const struct file_operations pinctrl_gpioranges_ops = {
1389 	.open		= pinctrl_gpioranges_open,
1390 	.read		= seq_read,
1391 	.llseek		= seq_lseek,
1392 	.release	= single_release,
1393 };
1394 
1395 static const struct file_operations pinctrl_devices_ops = {
1396 	.open		= pinctrl_devices_open,
1397 	.read		= seq_read,
1398 	.llseek		= seq_lseek,
1399 	.release	= single_release,
1400 };
1401 
1402 static const struct file_operations pinctrl_maps_ops = {
1403 	.open		= pinctrl_maps_open,
1404 	.read		= seq_read,
1405 	.llseek		= seq_lseek,
1406 	.release	= single_release,
1407 };
1408 
1409 static const struct file_operations pinctrl_ops = {
1410 	.open		= pinctrl_open,
1411 	.read		= seq_read,
1412 	.llseek		= seq_lseek,
1413 	.release	= single_release,
1414 };
1415 
1416 static struct dentry *debugfs_root;
1417 
1418 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1419 {
1420 	struct dentry *device_root;
1421 
1422 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1423 					 debugfs_root);
1424 	pctldev->device_root = device_root;
1425 
1426 	if (IS_ERR(device_root) || !device_root) {
1427 		pr_warn("failed to create debugfs directory for %s\n",
1428 			dev_name(pctldev->dev));
1429 		return;
1430 	}
1431 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1432 			    device_root, pctldev, &pinctrl_pins_ops);
1433 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1434 			    device_root, pctldev, &pinctrl_groups_ops);
1435 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1436 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1437 	pinmux_init_device_debugfs(device_root, pctldev);
1438 	pinconf_init_device_debugfs(device_root, pctldev);
1439 }
1440 
1441 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1442 {
1443 	debugfs_remove_recursive(pctldev->device_root);
1444 }
1445 
1446 static void pinctrl_init_debugfs(void)
1447 {
1448 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1449 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1450 		pr_warn("failed to create debugfs directory\n");
1451 		debugfs_root = NULL;
1452 		return;
1453 	}
1454 
1455 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1456 			    debugfs_root, NULL, &pinctrl_devices_ops);
1457 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1458 			    debugfs_root, NULL, &pinctrl_maps_ops);
1459 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1460 			    debugfs_root, NULL, &pinctrl_ops);
1461 }
1462 
1463 #else /* CONFIG_DEBUG_FS */
1464 
1465 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1466 {
1467 }
1468 
1469 static void pinctrl_init_debugfs(void)
1470 {
1471 }
1472 
1473 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1474 {
1475 }
1476 
1477 #endif
1478 
1479 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1480 {
1481 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1482 
1483 	if (!ops ||
1484 	    !ops->get_groups_count ||
1485 	    !ops->get_group_name ||
1486 	    !ops->get_group_pins)
1487 		return -EINVAL;
1488 
1489 	if (ops->dt_node_to_map && !ops->dt_free_map)
1490 		return -EINVAL;
1491 
1492 	return 0;
1493 }
1494 
1495 /**
1496  * pinctrl_register() - register a pin controller device
1497  * @pctldesc: descriptor for this pin controller
1498  * @dev: parent device for this pin controller
1499  * @driver_data: private pin controller data for this pin controller
1500  */
1501 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1502 				    struct device *dev, void *driver_data)
1503 {
1504 	struct pinctrl_dev *pctldev;
1505 	int ret;
1506 
1507 	if (!pctldesc)
1508 		return NULL;
1509 	if (!pctldesc->name)
1510 		return NULL;
1511 
1512 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1513 	if (pctldev == NULL) {
1514 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1515 		return NULL;
1516 	}
1517 
1518 	/* Initialize pin control device struct */
1519 	pctldev->owner = pctldesc->owner;
1520 	pctldev->desc = pctldesc;
1521 	pctldev->driver_data = driver_data;
1522 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1523 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1524 	pctldev->dev = dev;
1525 
1526 	/* check core ops for sanity */
1527 	if (pinctrl_check_ops(pctldev)) {
1528 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1529 		goto out_err;
1530 	}
1531 
1532 	/* If we're implementing pinmuxing, check the ops for sanity */
1533 	if (pctldesc->pmxops) {
1534 		if (pinmux_check_ops(pctldev))
1535 			goto out_err;
1536 	}
1537 
1538 	/* If we're implementing pinconfig, check the ops for sanity */
1539 	if (pctldesc->confops) {
1540 		if (pinconf_check_ops(pctldev))
1541 			goto out_err;
1542 	}
1543 
1544 	/* Register all the pins */
1545 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1546 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1547 	if (ret) {
1548 		dev_err(dev, "error during pin registration\n");
1549 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1550 				      pctldesc->npins);
1551 		goto out_err;
1552 	}
1553 
1554 	mutex_lock(&pinctrl_mutex);
1555 
1556 	list_add_tail(&pctldev->node, &pinctrldev_list);
1557 
1558 	pctldev->p = pinctrl_get_locked(pctldev->dev);
1559 	if (!IS_ERR(pctldev->p)) {
1560 		pctldev->hog_default =
1561 			pinctrl_lookup_state_locked(pctldev->p,
1562 						    PINCTRL_STATE_DEFAULT);
1563 		if (IS_ERR(pctldev->hog_default)) {
1564 			dev_dbg(dev, "failed to lookup the default state\n");
1565 		} else {
1566 			if (pinctrl_select_state_locked(pctldev->p,
1567 						pctldev->hog_default))
1568 				dev_err(dev,
1569 					"failed to select default state\n");
1570 		}
1571 
1572 		pctldev->hog_sleep =
1573 			pinctrl_lookup_state_locked(pctldev->p,
1574 						    PINCTRL_STATE_SLEEP);
1575 		if (IS_ERR(pctldev->hog_sleep))
1576 			dev_dbg(dev, "failed to lookup the sleep state\n");
1577 	}
1578 
1579 	mutex_unlock(&pinctrl_mutex);
1580 
1581 	pinctrl_init_device_debugfs(pctldev);
1582 
1583 	return pctldev;
1584 
1585 out_err:
1586 	kfree(pctldev);
1587 	return NULL;
1588 }
1589 EXPORT_SYMBOL_GPL(pinctrl_register);
1590 
1591 /**
1592  * pinctrl_unregister() - unregister pinmux
1593  * @pctldev: pin controller to unregister
1594  *
1595  * Called by pinmux drivers to unregister a pinmux.
1596  */
1597 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1598 {
1599 	struct pinctrl_gpio_range *range, *n;
1600 	if (pctldev == NULL)
1601 		return;
1602 
1603 	pinctrl_remove_device_debugfs(pctldev);
1604 
1605 	mutex_lock(&pinctrl_mutex);
1606 
1607 	if (!IS_ERR(pctldev->p))
1608 		pinctrl_put_locked(pctldev->p, true);
1609 
1610 	/* TODO: check that no pinmuxes are still active? */
1611 	list_del(&pctldev->node);
1612 	/* Destroy descriptor tree */
1613 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1614 			      pctldev->desc->npins);
1615 	/* remove gpio ranges map */
1616 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1617 		list_del(&range->node);
1618 
1619 	kfree(pctldev);
1620 
1621 	mutex_unlock(&pinctrl_mutex);
1622 }
1623 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1624 
1625 static int __init pinctrl_init(void)
1626 {
1627 	pr_info("initialized pinctrl subsystem\n");
1628 	pinctrl_init_debugfs();
1629 	return 0;
1630 }
1631 
1632 /* init early since many drivers really need to initialized pinmux early */
1633 core_initcall(pinctrl_init);
1634