1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", number); 235 return -EINVAL; 236 } 237 238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 239 if (pindesc == NULL) { 240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 241 return -ENOMEM; 242 } 243 244 /* Set owner */ 245 pindesc->pctldev = pctldev; 246 247 /* Copy basic pin info */ 248 if (name) { 249 pindesc->name = name; 250 } else { 251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 252 if (pindesc->name == NULL) { 253 kfree(pindesc); 254 return -ENOMEM; 255 } 256 pindesc->dynamic_name = true; 257 } 258 259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 260 pr_debug("registered pin %d (%s) on %s\n", 261 number, pindesc->name, pctldev->desc->name); 262 return 0; 263 } 264 265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 266 struct pinctrl_pin_desc const *pins, 267 unsigned num_descs) 268 { 269 unsigned i; 270 int ret = 0; 271 272 for (i = 0; i < num_descs; i++) { 273 ret = pinctrl_register_one_pin(pctldev, 274 pins[i].number, pins[i].name); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range != NULL) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 /** 485 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 486 * @pctldev: the pin controller device to look in 487 * @pin: a controller-local number to find the range for 488 */ 489 struct pinctrl_gpio_range * 490 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 491 unsigned int pin) 492 { 493 struct pinctrl_gpio_range *range; 494 495 mutex_lock(&pctldev->mutex); 496 /* Loop over the ranges */ 497 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 498 /* Check if we're in the valid range */ 499 if (range->pins) { 500 int a; 501 for (a = 0; a < range->npins; a++) { 502 if (range->pins[a] == pin) 503 goto out; 504 } 505 } else if (pin >= range->pin_base && 506 pin < range->pin_base + range->npins) 507 goto out; 508 } 509 range = NULL; 510 out: 511 mutex_unlock(&pctldev->mutex); 512 return range; 513 } 514 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 515 516 /** 517 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 518 * @pctldev: pin controller device to remove the range from 519 * @range: the GPIO range to remove 520 */ 521 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 522 struct pinctrl_gpio_range *range) 523 { 524 mutex_lock(&pctldev->mutex); 525 list_del(&range->node); 526 mutex_unlock(&pctldev->mutex); 527 } 528 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 529 530 /** 531 * pinctrl_get_group_selector() - returns the group selector for a group 532 * @pctldev: the pin controller handling the group 533 * @pin_group: the pin group to look up 534 */ 535 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 536 const char *pin_group) 537 { 538 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 539 unsigned ngroups = pctlops->get_groups_count(pctldev); 540 unsigned group_selector = 0; 541 542 while (group_selector < ngroups) { 543 const char *gname = pctlops->get_group_name(pctldev, 544 group_selector); 545 if (!strcmp(gname, pin_group)) { 546 dev_dbg(pctldev->dev, 547 "found group selector %u for %s\n", 548 group_selector, 549 pin_group); 550 return group_selector; 551 } 552 553 group_selector++; 554 } 555 556 dev_err(pctldev->dev, "does not have pin group %s\n", 557 pin_group); 558 559 return -EINVAL; 560 } 561 562 /** 563 * pinctrl_request_gpio() - request a single pin to be used as GPIO 564 * @gpio: the GPIO pin number from the GPIO subsystem number space 565 * 566 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 567 * as part of their gpio_request() semantics, platforms and individual drivers 568 * shall *NOT* request GPIO pins to be muxed in. 569 */ 570 int pinctrl_request_gpio(unsigned gpio) 571 { 572 struct pinctrl_dev *pctldev; 573 struct pinctrl_gpio_range *range; 574 int ret; 575 int pin; 576 577 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 578 if (ret) { 579 if (pinctrl_ready_for_gpio_range(gpio)) 580 ret = 0; 581 return ret; 582 } 583 584 mutex_lock(&pctldev->mutex); 585 586 /* Convert to the pin controllers number space */ 587 pin = gpio_to_pin(range, gpio); 588 589 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 590 591 mutex_unlock(&pctldev->mutex); 592 593 return ret; 594 } 595 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 596 597 /** 598 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 599 * @gpio: the GPIO pin number from the GPIO subsystem number space 600 * 601 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 602 * as part of their gpio_free() semantics, platforms and individual drivers 603 * shall *NOT* request GPIO pins to be muxed out. 604 */ 605 void pinctrl_free_gpio(unsigned gpio) 606 { 607 struct pinctrl_dev *pctldev; 608 struct pinctrl_gpio_range *range; 609 int ret; 610 int pin; 611 612 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 613 if (ret) { 614 return; 615 } 616 mutex_lock(&pctldev->mutex); 617 618 /* Convert to the pin controllers number space */ 619 pin = gpio_to_pin(range, gpio); 620 621 pinmux_free_gpio(pctldev, pin, range); 622 623 mutex_unlock(&pctldev->mutex); 624 } 625 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 626 627 static int pinctrl_gpio_direction(unsigned gpio, bool input) 628 { 629 struct pinctrl_dev *pctldev; 630 struct pinctrl_gpio_range *range; 631 int ret; 632 int pin; 633 634 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 635 if (ret) { 636 return ret; 637 } 638 639 mutex_lock(&pctldev->mutex); 640 641 /* Convert to the pin controllers number space */ 642 pin = gpio_to_pin(range, gpio); 643 ret = pinmux_gpio_direction(pctldev, range, pin, input); 644 645 mutex_unlock(&pctldev->mutex); 646 647 return ret; 648 } 649 650 /** 651 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 652 * @gpio: the GPIO pin number from the GPIO subsystem number space 653 * 654 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 655 * as part of their gpio_direction_input() semantics, platforms and individual 656 * drivers shall *NOT* touch pin control GPIO calls. 657 */ 658 int pinctrl_gpio_direction_input(unsigned gpio) 659 { 660 return pinctrl_gpio_direction(gpio, true); 661 } 662 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 663 664 /** 665 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 666 * @gpio: the GPIO pin number from the GPIO subsystem number space 667 * 668 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 669 * as part of their gpio_direction_output() semantics, platforms and individual 670 * drivers shall *NOT* touch pin control GPIO calls. 671 */ 672 int pinctrl_gpio_direction_output(unsigned gpio) 673 { 674 return pinctrl_gpio_direction(gpio, false); 675 } 676 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 677 678 static struct pinctrl_state *find_state(struct pinctrl *p, 679 const char *name) 680 { 681 struct pinctrl_state *state; 682 683 list_for_each_entry(state, &p->states, node) 684 if (!strcmp(state->name, name)) 685 return state; 686 687 return NULL; 688 } 689 690 static struct pinctrl_state *create_state(struct pinctrl *p, 691 const char *name) 692 { 693 struct pinctrl_state *state; 694 695 state = kzalloc(sizeof(*state), GFP_KERNEL); 696 if (state == NULL) { 697 dev_err(p->dev, 698 "failed to alloc struct pinctrl_state\n"); 699 return ERR_PTR(-ENOMEM); 700 } 701 702 state->name = name; 703 INIT_LIST_HEAD(&state->settings); 704 705 list_add_tail(&state->node, &p->states); 706 707 return state; 708 } 709 710 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 711 { 712 struct pinctrl_state *state; 713 struct pinctrl_setting *setting; 714 int ret; 715 716 state = find_state(p, map->name); 717 if (!state) 718 state = create_state(p, map->name); 719 if (IS_ERR(state)) 720 return PTR_ERR(state); 721 722 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 723 return 0; 724 725 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 726 if (setting == NULL) { 727 dev_err(p->dev, 728 "failed to alloc struct pinctrl_setting\n"); 729 return -ENOMEM; 730 } 731 732 setting->type = map->type; 733 734 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 735 if (setting->pctldev == NULL) { 736 kfree(setting); 737 /* Do not defer probing of hogs (circular loop) */ 738 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 739 return -ENODEV; 740 /* 741 * OK let us guess that the driver is not there yet, and 742 * let's defer obtaining this pinctrl handle to later... 743 */ 744 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 745 map->ctrl_dev_name); 746 return -EPROBE_DEFER; 747 } 748 749 setting->dev_name = map->dev_name; 750 751 switch (map->type) { 752 case PIN_MAP_TYPE_MUX_GROUP: 753 ret = pinmux_map_to_setting(map, setting); 754 break; 755 case PIN_MAP_TYPE_CONFIGS_PIN: 756 case PIN_MAP_TYPE_CONFIGS_GROUP: 757 ret = pinconf_map_to_setting(map, setting); 758 break; 759 default: 760 ret = -EINVAL; 761 break; 762 } 763 if (ret < 0) { 764 kfree(setting); 765 return ret; 766 } 767 768 list_add_tail(&setting->node, &state->settings); 769 770 return 0; 771 } 772 773 static struct pinctrl *find_pinctrl(struct device *dev) 774 { 775 struct pinctrl *p; 776 777 mutex_lock(&pinctrl_list_mutex); 778 list_for_each_entry(p, &pinctrl_list, node) 779 if (p->dev == dev) { 780 mutex_unlock(&pinctrl_list_mutex); 781 return p; 782 } 783 784 mutex_unlock(&pinctrl_list_mutex); 785 return NULL; 786 } 787 788 static void pinctrl_free(struct pinctrl *p, bool inlist); 789 790 static struct pinctrl *create_pinctrl(struct device *dev) 791 { 792 struct pinctrl *p; 793 const char *devname; 794 struct pinctrl_maps *maps_node; 795 int i; 796 struct pinctrl_map const *map; 797 int ret; 798 799 /* 800 * create the state cookie holder struct pinctrl for each 801 * mapping, this is what consumers will get when requesting 802 * a pin control handle with pinctrl_get() 803 */ 804 p = kzalloc(sizeof(*p), GFP_KERNEL); 805 if (p == NULL) { 806 dev_err(dev, "failed to alloc struct pinctrl\n"); 807 return ERR_PTR(-ENOMEM); 808 } 809 p->dev = dev; 810 INIT_LIST_HEAD(&p->states); 811 INIT_LIST_HEAD(&p->dt_maps); 812 813 ret = pinctrl_dt_to_map(p); 814 if (ret < 0) { 815 kfree(p); 816 return ERR_PTR(ret); 817 } 818 819 devname = dev_name(dev); 820 821 mutex_lock(&pinctrl_maps_mutex); 822 /* Iterate over the pin control maps to locate the right ones */ 823 for_each_maps(maps_node, i, map) { 824 /* Map must be for this device */ 825 if (strcmp(map->dev_name, devname)) 826 continue; 827 828 ret = add_setting(p, map); 829 /* 830 * At this point the adding of a setting may: 831 * 832 * - Defer, if the pinctrl device is not yet available 833 * - Fail, if the pinctrl device is not yet available, 834 * AND the setting is a hog. We cannot defer that, since 835 * the hog will kick in immediately after the device 836 * is registered. 837 * 838 * If the error returned was not -EPROBE_DEFER then we 839 * accumulate the errors to see if we end up with 840 * an -EPROBE_DEFER later, as that is the worst case. 841 */ 842 if (ret == -EPROBE_DEFER) { 843 pinctrl_free(p, false); 844 mutex_unlock(&pinctrl_maps_mutex); 845 return ERR_PTR(ret); 846 } 847 } 848 mutex_unlock(&pinctrl_maps_mutex); 849 850 if (ret < 0) { 851 /* If some other error than deferral occured, return here */ 852 pinctrl_free(p, false); 853 return ERR_PTR(ret); 854 } 855 856 kref_init(&p->users); 857 858 /* Add the pinctrl handle to the global list */ 859 mutex_lock(&pinctrl_list_mutex); 860 list_add_tail(&p->node, &pinctrl_list); 861 mutex_unlock(&pinctrl_list_mutex); 862 863 return p; 864 } 865 866 /** 867 * pinctrl_get() - retrieves the pinctrl handle for a device 868 * @dev: the device to obtain the handle for 869 */ 870 struct pinctrl *pinctrl_get(struct device *dev) 871 { 872 struct pinctrl *p; 873 874 if (WARN_ON(!dev)) 875 return ERR_PTR(-EINVAL); 876 877 /* 878 * See if somebody else (such as the device core) has already 879 * obtained a handle to the pinctrl for this device. In that case, 880 * return another pointer to it. 881 */ 882 p = find_pinctrl(dev); 883 if (p != NULL) { 884 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 885 kref_get(&p->users); 886 return p; 887 } 888 889 return create_pinctrl(dev); 890 } 891 EXPORT_SYMBOL_GPL(pinctrl_get); 892 893 static void pinctrl_free_setting(bool disable_setting, 894 struct pinctrl_setting *setting) 895 { 896 switch (setting->type) { 897 case PIN_MAP_TYPE_MUX_GROUP: 898 if (disable_setting) 899 pinmux_disable_setting(setting); 900 pinmux_free_setting(setting); 901 break; 902 case PIN_MAP_TYPE_CONFIGS_PIN: 903 case PIN_MAP_TYPE_CONFIGS_GROUP: 904 pinconf_free_setting(setting); 905 break; 906 default: 907 break; 908 } 909 } 910 911 static void pinctrl_free(struct pinctrl *p, bool inlist) 912 { 913 struct pinctrl_state *state, *n1; 914 struct pinctrl_setting *setting, *n2; 915 916 mutex_lock(&pinctrl_list_mutex); 917 list_for_each_entry_safe(state, n1, &p->states, node) { 918 list_for_each_entry_safe(setting, n2, &state->settings, node) { 919 pinctrl_free_setting(state == p->state, setting); 920 list_del(&setting->node); 921 kfree(setting); 922 } 923 list_del(&state->node); 924 kfree(state); 925 } 926 927 pinctrl_dt_free_maps(p); 928 929 if (inlist) 930 list_del(&p->node); 931 kfree(p); 932 mutex_unlock(&pinctrl_list_mutex); 933 } 934 935 /** 936 * pinctrl_release() - release the pinctrl handle 937 * @kref: the kref in the pinctrl being released 938 */ 939 static void pinctrl_release(struct kref *kref) 940 { 941 struct pinctrl *p = container_of(kref, struct pinctrl, users); 942 943 pinctrl_free(p, true); 944 } 945 946 /** 947 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 948 * @p: the pinctrl handle to release 949 */ 950 void pinctrl_put(struct pinctrl *p) 951 { 952 kref_put(&p->users, pinctrl_release); 953 } 954 EXPORT_SYMBOL_GPL(pinctrl_put); 955 956 /** 957 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 958 * @p: the pinctrl handle to retrieve the state from 959 * @name: the state name to retrieve 960 */ 961 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 962 const char *name) 963 { 964 struct pinctrl_state *state; 965 966 state = find_state(p, name); 967 if (!state) { 968 if (pinctrl_dummy_state) { 969 /* create dummy state */ 970 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 971 name); 972 state = create_state(p, name); 973 } else 974 state = ERR_PTR(-ENODEV); 975 } 976 977 return state; 978 } 979 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 980 981 /** 982 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 983 * @p: the pinctrl handle for the device that requests configuration 984 * @state: the state handle to select/activate/program 985 */ 986 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 987 { 988 struct pinctrl_setting *setting, *setting2; 989 struct pinctrl_state *old_state = p->state; 990 int ret; 991 992 if (p->state == state) 993 return 0; 994 995 if (p->state) { 996 /* 997 * For each pinmux setting in the old state, forget SW's record 998 * of mux owner for that pingroup. Any pingroups which are 999 * still owned by the new state will be re-acquired by the call 1000 * to pinmux_enable_setting() in the loop below. 1001 */ 1002 list_for_each_entry(setting, &p->state->settings, node) { 1003 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1004 continue; 1005 pinmux_disable_setting(setting); 1006 } 1007 } 1008 1009 p->state = NULL; 1010 1011 /* Apply all the settings for the new state */ 1012 list_for_each_entry(setting, &state->settings, node) { 1013 switch (setting->type) { 1014 case PIN_MAP_TYPE_MUX_GROUP: 1015 ret = pinmux_enable_setting(setting); 1016 break; 1017 case PIN_MAP_TYPE_CONFIGS_PIN: 1018 case PIN_MAP_TYPE_CONFIGS_GROUP: 1019 ret = pinconf_apply_setting(setting); 1020 break; 1021 default: 1022 ret = -EINVAL; 1023 break; 1024 } 1025 1026 if (ret < 0) { 1027 goto unapply_new_state; 1028 } 1029 } 1030 1031 p->state = state; 1032 1033 return 0; 1034 1035 unapply_new_state: 1036 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1037 1038 list_for_each_entry(setting2, &state->settings, node) { 1039 if (&setting2->node == &setting->node) 1040 break; 1041 /* 1042 * All we can do here is pinmux_disable_setting. 1043 * That means that some pins are muxed differently now 1044 * than they were before applying the setting (We can't 1045 * "unmux a pin"!), but it's not a big deal since the pins 1046 * are free to be muxed by another apply_setting. 1047 */ 1048 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1049 pinmux_disable_setting(setting2); 1050 } 1051 1052 /* There's no infinite recursive loop here because p->state is NULL */ 1053 if (old_state) 1054 pinctrl_select_state(p, old_state); 1055 1056 return ret; 1057 } 1058 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1059 1060 static void devm_pinctrl_release(struct device *dev, void *res) 1061 { 1062 pinctrl_put(*(struct pinctrl **)res); 1063 } 1064 1065 /** 1066 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1067 * @dev: the device to obtain the handle for 1068 * 1069 * If there is a need to explicitly destroy the returned struct pinctrl, 1070 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1071 */ 1072 struct pinctrl *devm_pinctrl_get(struct device *dev) 1073 { 1074 struct pinctrl **ptr, *p; 1075 1076 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1077 if (!ptr) 1078 return ERR_PTR(-ENOMEM); 1079 1080 p = pinctrl_get(dev); 1081 if (!IS_ERR(p)) { 1082 *ptr = p; 1083 devres_add(dev, ptr); 1084 } else { 1085 devres_free(ptr); 1086 } 1087 1088 return p; 1089 } 1090 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1091 1092 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1093 { 1094 struct pinctrl **p = res; 1095 1096 return *p == data; 1097 } 1098 1099 /** 1100 * devm_pinctrl_put() - Resource managed pinctrl_put() 1101 * @p: the pinctrl handle to release 1102 * 1103 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1104 * this function will not need to be called and the resource management 1105 * code will ensure that the resource is freed. 1106 */ 1107 void devm_pinctrl_put(struct pinctrl *p) 1108 { 1109 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1110 devm_pinctrl_match, p)); 1111 } 1112 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1113 1114 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1115 bool dup) 1116 { 1117 int i, ret; 1118 struct pinctrl_maps *maps_node; 1119 1120 pr_debug("add %u pinctrl maps\n", num_maps); 1121 1122 /* First sanity check the new mapping */ 1123 for (i = 0; i < num_maps; i++) { 1124 if (!maps[i].dev_name) { 1125 pr_err("failed to register map %s (%d): no device given\n", 1126 maps[i].name, i); 1127 return -EINVAL; 1128 } 1129 1130 if (!maps[i].name) { 1131 pr_err("failed to register map %d: no map name given\n", 1132 i); 1133 return -EINVAL; 1134 } 1135 1136 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1137 !maps[i].ctrl_dev_name) { 1138 pr_err("failed to register map %s (%d): no pin control device given\n", 1139 maps[i].name, i); 1140 return -EINVAL; 1141 } 1142 1143 switch (maps[i].type) { 1144 case PIN_MAP_TYPE_DUMMY_STATE: 1145 break; 1146 case PIN_MAP_TYPE_MUX_GROUP: 1147 ret = pinmux_validate_map(&maps[i], i); 1148 if (ret < 0) 1149 return ret; 1150 break; 1151 case PIN_MAP_TYPE_CONFIGS_PIN: 1152 case PIN_MAP_TYPE_CONFIGS_GROUP: 1153 ret = pinconf_validate_map(&maps[i], i); 1154 if (ret < 0) 1155 return ret; 1156 break; 1157 default: 1158 pr_err("failed to register map %s (%d): invalid type given\n", 1159 maps[i].name, i); 1160 return -EINVAL; 1161 } 1162 } 1163 1164 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1165 if (!maps_node) { 1166 pr_err("failed to alloc struct pinctrl_maps\n"); 1167 return -ENOMEM; 1168 } 1169 1170 maps_node->num_maps = num_maps; 1171 if (dup) { 1172 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1173 GFP_KERNEL); 1174 if (!maps_node->maps) { 1175 pr_err("failed to duplicate mapping table\n"); 1176 kfree(maps_node); 1177 return -ENOMEM; 1178 } 1179 } else { 1180 maps_node->maps = maps; 1181 } 1182 1183 mutex_lock(&pinctrl_maps_mutex); 1184 list_add_tail(&maps_node->node, &pinctrl_maps); 1185 mutex_unlock(&pinctrl_maps_mutex); 1186 1187 return 0; 1188 } 1189 1190 /** 1191 * pinctrl_register_mappings() - register a set of pin controller mappings 1192 * @maps: the pincontrol mappings table to register. This should probably be 1193 * marked with __initdata so it can be discarded after boot. This 1194 * function will perform a shallow copy for the mapping entries. 1195 * @num_maps: the number of maps in the mapping table 1196 */ 1197 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1198 unsigned num_maps) 1199 { 1200 return pinctrl_register_map(maps, num_maps, true); 1201 } 1202 1203 void pinctrl_unregister_map(struct pinctrl_map const *map) 1204 { 1205 struct pinctrl_maps *maps_node; 1206 1207 mutex_lock(&pinctrl_maps_mutex); 1208 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1209 if (maps_node->maps == map) { 1210 list_del(&maps_node->node); 1211 kfree(maps_node); 1212 mutex_unlock(&pinctrl_maps_mutex); 1213 return; 1214 } 1215 } 1216 mutex_unlock(&pinctrl_maps_mutex); 1217 } 1218 1219 /** 1220 * pinctrl_force_sleep() - turn a given controller device into sleep state 1221 * @pctldev: pin controller device 1222 */ 1223 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1224 { 1225 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1226 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1227 return 0; 1228 } 1229 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1230 1231 /** 1232 * pinctrl_force_default() - turn a given controller device into default state 1233 * @pctldev: pin controller device 1234 */ 1235 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1236 { 1237 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1238 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1239 return 0; 1240 } 1241 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1242 1243 /** 1244 * pinctrl_init_done() - tell pinctrl probe is done 1245 * 1246 * We'll use this time to switch the pins from "init" to "default" unless the 1247 * driver selected some other state. 1248 * 1249 * @dev: device to that's done probing 1250 */ 1251 int pinctrl_init_done(struct device *dev) 1252 { 1253 struct dev_pin_info *pins = dev->pins; 1254 int ret; 1255 1256 if (!pins) 1257 return 0; 1258 1259 if (IS_ERR(pins->init_state)) 1260 return 0; /* No such state */ 1261 1262 if (pins->p->state != pins->init_state) 1263 return 0; /* Not at init anyway */ 1264 1265 if (IS_ERR(pins->default_state)) 1266 return 0; /* No default state */ 1267 1268 ret = pinctrl_select_state(pins->p, pins->default_state); 1269 if (ret) 1270 dev_err(dev, "failed to activate default pinctrl state\n"); 1271 1272 return ret; 1273 } 1274 1275 #ifdef CONFIG_PM 1276 1277 /** 1278 * pinctrl_pm_select_state() - select pinctrl state for PM 1279 * @dev: device to select default state for 1280 * @state: state to set 1281 */ 1282 static int pinctrl_pm_select_state(struct device *dev, 1283 struct pinctrl_state *state) 1284 { 1285 struct dev_pin_info *pins = dev->pins; 1286 int ret; 1287 1288 if (IS_ERR(state)) 1289 return 0; /* No such state */ 1290 ret = pinctrl_select_state(pins->p, state); 1291 if (ret) 1292 dev_err(dev, "failed to activate pinctrl state %s\n", 1293 state->name); 1294 return ret; 1295 } 1296 1297 /** 1298 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1299 * @dev: device to select default state for 1300 */ 1301 int pinctrl_pm_select_default_state(struct device *dev) 1302 { 1303 if (!dev->pins) 1304 return 0; 1305 1306 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1307 } 1308 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1309 1310 /** 1311 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1312 * @dev: device to select sleep state for 1313 */ 1314 int pinctrl_pm_select_sleep_state(struct device *dev) 1315 { 1316 if (!dev->pins) 1317 return 0; 1318 1319 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1320 } 1321 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1322 1323 /** 1324 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1325 * @dev: device to select idle state for 1326 */ 1327 int pinctrl_pm_select_idle_state(struct device *dev) 1328 { 1329 if (!dev->pins) 1330 return 0; 1331 1332 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1333 } 1334 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1335 #endif 1336 1337 #ifdef CONFIG_DEBUG_FS 1338 1339 static int pinctrl_pins_show(struct seq_file *s, void *what) 1340 { 1341 struct pinctrl_dev *pctldev = s->private; 1342 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1343 unsigned i, pin; 1344 1345 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1346 1347 mutex_lock(&pctldev->mutex); 1348 1349 /* The pin number can be retrived from the pin controller descriptor */ 1350 for (i = 0; i < pctldev->desc->npins; i++) { 1351 struct pin_desc *desc; 1352 1353 pin = pctldev->desc->pins[i].number; 1354 desc = pin_desc_get(pctldev, pin); 1355 /* Pin space may be sparse */ 1356 if (desc == NULL) 1357 continue; 1358 1359 seq_printf(s, "pin %d (%s) ", pin, 1360 desc->name ? desc->name : "unnamed"); 1361 1362 /* Driver-specific info per pin */ 1363 if (ops->pin_dbg_show) 1364 ops->pin_dbg_show(pctldev, s, pin); 1365 1366 seq_puts(s, "\n"); 1367 } 1368 1369 mutex_unlock(&pctldev->mutex); 1370 1371 return 0; 1372 } 1373 1374 static int pinctrl_groups_show(struct seq_file *s, void *what) 1375 { 1376 struct pinctrl_dev *pctldev = s->private; 1377 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1378 unsigned ngroups, selector = 0; 1379 1380 mutex_lock(&pctldev->mutex); 1381 1382 ngroups = ops->get_groups_count(pctldev); 1383 1384 seq_puts(s, "registered pin groups:\n"); 1385 while (selector < ngroups) { 1386 const unsigned *pins = NULL; 1387 unsigned num_pins = 0; 1388 const char *gname = ops->get_group_name(pctldev, selector); 1389 const char *pname; 1390 int ret = 0; 1391 int i; 1392 1393 if (ops->get_group_pins) 1394 ret = ops->get_group_pins(pctldev, selector, 1395 &pins, &num_pins); 1396 if (ret) 1397 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1398 gname); 1399 else { 1400 seq_printf(s, "group: %s\n", gname); 1401 for (i = 0; i < num_pins; i++) { 1402 pname = pin_get_name(pctldev, pins[i]); 1403 if (WARN_ON(!pname)) { 1404 mutex_unlock(&pctldev->mutex); 1405 return -EINVAL; 1406 } 1407 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1408 } 1409 seq_puts(s, "\n"); 1410 } 1411 selector++; 1412 } 1413 1414 mutex_unlock(&pctldev->mutex); 1415 1416 return 0; 1417 } 1418 1419 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1420 { 1421 struct pinctrl_dev *pctldev = s->private; 1422 struct pinctrl_gpio_range *range = NULL; 1423 1424 seq_puts(s, "GPIO ranges handled:\n"); 1425 1426 mutex_lock(&pctldev->mutex); 1427 1428 /* Loop over the ranges */ 1429 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1430 if (range->pins) { 1431 int a; 1432 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1433 range->id, range->name, 1434 range->base, (range->base + range->npins - 1)); 1435 for (a = 0; a < range->npins - 1; a++) 1436 seq_printf(s, "%u, ", range->pins[a]); 1437 seq_printf(s, "%u}\n", range->pins[a]); 1438 } 1439 else 1440 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1441 range->id, range->name, 1442 range->base, (range->base + range->npins - 1), 1443 range->pin_base, 1444 (range->pin_base + range->npins - 1)); 1445 } 1446 1447 mutex_unlock(&pctldev->mutex); 1448 1449 return 0; 1450 } 1451 1452 static int pinctrl_devices_show(struct seq_file *s, void *what) 1453 { 1454 struct pinctrl_dev *pctldev; 1455 1456 seq_puts(s, "name [pinmux] [pinconf]\n"); 1457 1458 mutex_lock(&pinctrldev_list_mutex); 1459 1460 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1461 seq_printf(s, "%s ", pctldev->desc->name); 1462 if (pctldev->desc->pmxops) 1463 seq_puts(s, "yes "); 1464 else 1465 seq_puts(s, "no "); 1466 if (pctldev->desc->confops) 1467 seq_puts(s, "yes"); 1468 else 1469 seq_puts(s, "no"); 1470 seq_puts(s, "\n"); 1471 } 1472 1473 mutex_unlock(&pinctrldev_list_mutex); 1474 1475 return 0; 1476 } 1477 1478 static inline const char *map_type(enum pinctrl_map_type type) 1479 { 1480 static const char * const names[] = { 1481 "INVALID", 1482 "DUMMY_STATE", 1483 "MUX_GROUP", 1484 "CONFIGS_PIN", 1485 "CONFIGS_GROUP", 1486 }; 1487 1488 if (type >= ARRAY_SIZE(names)) 1489 return "UNKNOWN"; 1490 1491 return names[type]; 1492 } 1493 1494 static int pinctrl_maps_show(struct seq_file *s, void *what) 1495 { 1496 struct pinctrl_maps *maps_node; 1497 int i; 1498 struct pinctrl_map const *map; 1499 1500 seq_puts(s, "Pinctrl maps:\n"); 1501 1502 mutex_lock(&pinctrl_maps_mutex); 1503 for_each_maps(maps_node, i, map) { 1504 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1505 map->dev_name, map->name, map_type(map->type), 1506 map->type); 1507 1508 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1509 seq_printf(s, "controlling device %s\n", 1510 map->ctrl_dev_name); 1511 1512 switch (map->type) { 1513 case PIN_MAP_TYPE_MUX_GROUP: 1514 pinmux_show_map(s, map); 1515 break; 1516 case PIN_MAP_TYPE_CONFIGS_PIN: 1517 case PIN_MAP_TYPE_CONFIGS_GROUP: 1518 pinconf_show_map(s, map); 1519 break; 1520 default: 1521 break; 1522 } 1523 1524 seq_printf(s, "\n"); 1525 } 1526 mutex_unlock(&pinctrl_maps_mutex); 1527 1528 return 0; 1529 } 1530 1531 static int pinctrl_show(struct seq_file *s, void *what) 1532 { 1533 struct pinctrl *p; 1534 struct pinctrl_state *state; 1535 struct pinctrl_setting *setting; 1536 1537 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1538 1539 mutex_lock(&pinctrl_list_mutex); 1540 1541 list_for_each_entry(p, &pinctrl_list, node) { 1542 seq_printf(s, "device: %s current state: %s\n", 1543 dev_name(p->dev), 1544 p->state ? p->state->name : "none"); 1545 1546 list_for_each_entry(state, &p->states, node) { 1547 seq_printf(s, " state: %s\n", state->name); 1548 1549 list_for_each_entry(setting, &state->settings, node) { 1550 struct pinctrl_dev *pctldev = setting->pctldev; 1551 1552 seq_printf(s, " type: %s controller %s ", 1553 map_type(setting->type), 1554 pinctrl_dev_get_name(pctldev)); 1555 1556 switch (setting->type) { 1557 case PIN_MAP_TYPE_MUX_GROUP: 1558 pinmux_show_setting(s, setting); 1559 break; 1560 case PIN_MAP_TYPE_CONFIGS_PIN: 1561 case PIN_MAP_TYPE_CONFIGS_GROUP: 1562 pinconf_show_setting(s, setting); 1563 break; 1564 default: 1565 break; 1566 } 1567 } 1568 } 1569 } 1570 1571 mutex_unlock(&pinctrl_list_mutex); 1572 1573 return 0; 1574 } 1575 1576 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1577 { 1578 return single_open(file, pinctrl_pins_show, inode->i_private); 1579 } 1580 1581 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1582 { 1583 return single_open(file, pinctrl_groups_show, inode->i_private); 1584 } 1585 1586 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1587 { 1588 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1589 } 1590 1591 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1592 { 1593 return single_open(file, pinctrl_devices_show, NULL); 1594 } 1595 1596 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1597 { 1598 return single_open(file, pinctrl_maps_show, NULL); 1599 } 1600 1601 static int pinctrl_open(struct inode *inode, struct file *file) 1602 { 1603 return single_open(file, pinctrl_show, NULL); 1604 } 1605 1606 static const struct file_operations pinctrl_pins_ops = { 1607 .open = pinctrl_pins_open, 1608 .read = seq_read, 1609 .llseek = seq_lseek, 1610 .release = single_release, 1611 }; 1612 1613 static const struct file_operations pinctrl_groups_ops = { 1614 .open = pinctrl_groups_open, 1615 .read = seq_read, 1616 .llseek = seq_lseek, 1617 .release = single_release, 1618 }; 1619 1620 static const struct file_operations pinctrl_gpioranges_ops = { 1621 .open = pinctrl_gpioranges_open, 1622 .read = seq_read, 1623 .llseek = seq_lseek, 1624 .release = single_release, 1625 }; 1626 1627 static const struct file_operations pinctrl_devices_ops = { 1628 .open = pinctrl_devices_open, 1629 .read = seq_read, 1630 .llseek = seq_lseek, 1631 .release = single_release, 1632 }; 1633 1634 static const struct file_operations pinctrl_maps_ops = { 1635 .open = pinctrl_maps_open, 1636 .read = seq_read, 1637 .llseek = seq_lseek, 1638 .release = single_release, 1639 }; 1640 1641 static const struct file_operations pinctrl_ops = { 1642 .open = pinctrl_open, 1643 .read = seq_read, 1644 .llseek = seq_lseek, 1645 .release = single_release, 1646 }; 1647 1648 static struct dentry *debugfs_root; 1649 1650 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1651 { 1652 struct dentry *device_root; 1653 1654 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1655 debugfs_root); 1656 pctldev->device_root = device_root; 1657 1658 if (IS_ERR(device_root) || !device_root) { 1659 pr_warn("failed to create debugfs directory for %s\n", 1660 dev_name(pctldev->dev)); 1661 return; 1662 } 1663 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1664 device_root, pctldev, &pinctrl_pins_ops); 1665 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1666 device_root, pctldev, &pinctrl_groups_ops); 1667 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1668 device_root, pctldev, &pinctrl_gpioranges_ops); 1669 if (pctldev->desc->pmxops) 1670 pinmux_init_device_debugfs(device_root, pctldev); 1671 if (pctldev->desc->confops) 1672 pinconf_init_device_debugfs(device_root, pctldev); 1673 } 1674 1675 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1676 { 1677 debugfs_remove_recursive(pctldev->device_root); 1678 } 1679 1680 static void pinctrl_init_debugfs(void) 1681 { 1682 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1683 if (IS_ERR(debugfs_root) || !debugfs_root) { 1684 pr_warn("failed to create debugfs directory\n"); 1685 debugfs_root = NULL; 1686 return; 1687 } 1688 1689 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1690 debugfs_root, NULL, &pinctrl_devices_ops); 1691 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1692 debugfs_root, NULL, &pinctrl_maps_ops); 1693 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1694 debugfs_root, NULL, &pinctrl_ops); 1695 } 1696 1697 #else /* CONFIG_DEBUG_FS */ 1698 1699 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1700 { 1701 } 1702 1703 static void pinctrl_init_debugfs(void) 1704 { 1705 } 1706 1707 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1708 { 1709 } 1710 1711 #endif 1712 1713 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1714 { 1715 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1716 1717 if (!ops || 1718 !ops->get_groups_count || 1719 !ops->get_group_name) 1720 return -EINVAL; 1721 1722 if (ops->dt_node_to_map && !ops->dt_free_map) 1723 return -EINVAL; 1724 1725 return 0; 1726 } 1727 1728 /** 1729 * pinctrl_register() - register a pin controller device 1730 * @pctldesc: descriptor for this pin controller 1731 * @dev: parent device for this pin controller 1732 * @driver_data: private pin controller data for this pin controller 1733 */ 1734 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1735 struct device *dev, void *driver_data) 1736 { 1737 struct pinctrl_dev *pctldev; 1738 int ret; 1739 1740 if (!pctldesc) 1741 return ERR_PTR(-EINVAL); 1742 if (!pctldesc->name) 1743 return ERR_PTR(-EINVAL); 1744 1745 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1746 if (pctldev == NULL) { 1747 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1748 return ERR_PTR(-ENOMEM); 1749 } 1750 1751 /* Initialize pin control device struct */ 1752 pctldev->owner = pctldesc->owner; 1753 pctldev->desc = pctldesc; 1754 pctldev->driver_data = driver_data; 1755 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1756 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1757 pctldev->dev = dev; 1758 mutex_init(&pctldev->mutex); 1759 1760 /* check core ops for sanity */ 1761 ret = pinctrl_check_ops(pctldev); 1762 if (ret) { 1763 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1764 goto out_err; 1765 } 1766 1767 /* If we're implementing pinmuxing, check the ops for sanity */ 1768 if (pctldesc->pmxops) { 1769 ret = pinmux_check_ops(pctldev); 1770 if (ret) 1771 goto out_err; 1772 } 1773 1774 /* If we're implementing pinconfig, check the ops for sanity */ 1775 if (pctldesc->confops) { 1776 ret = pinconf_check_ops(pctldev); 1777 if (ret) 1778 goto out_err; 1779 } 1780 1781 /* Register all the pins */ 1782 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1783 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1784 if (ret) { 1785 dev_err(dev, "error during pin registration\n"); 1786 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1787 pctldesc->npins); 1788 goto out_err; 1789 } 1790 1791 mutex_lock(&pinctrldev_list_mutex); 1792 list_add_tail(&pctldev->node, &pinctrldev_list); 1793 mutex_unlock(&pinctrldev_list_mutex); 1794 1795 pctldev->p = pinctrl_get(pctldev->dev); 1796 1797 if (!IS_ERR(pctldev->p)) { 1798 pctldev->hog_default = 1799 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1800 if (IS_ERR(pctldev->hog_default)) { 1801 dev_dbg(dev, "failed to lookup the default state\n"); 1802 } else { 1803 if (pinctrl_select_state(pctldev->p, 1804 pctldev->hog_default)) 1805 dev_err(dev, 1806 "failed to select default state\n"); 1807 } 1808 1809 pctldev->hog_sleep = 1810 pinctrl_lookup_state(pctldev->p, 1811 PINCTRL_STATE_SLEEP); 1812 if (IS_ERR(pctldev->hog_sleep)) 1813 dev_dbg(dev, "failed to lookup the sleep state\n"); 1814 } 1815 1816 pinctrl_init_device_debugfs(pctldev); 1817 1818 return pctldev; 1819 1820 out_err: 1821 mutex_destroy(&pctldev->mutex); 1822 kfree(pctldev); 1823 return ERR_PTR(ret); 1824 } 1825 EXPORT_SYMBOL_GPL(pinctrl_register); 1826 1827 /** 1828 * pinctrl_unregister() - unregister pinmux 1829 * @pctldev: pin controller to unregister 1830 * 1831 * Called by pinmux drivers to unregister a pinmux. 1832 */ 1833 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1834 { 1835 struct pinctrl_gpio_range *range, *n; 1836 if (pctldev == NULL) 1837 return; 1838 1839 mutex_lock(&pctldev->mutex); 1840 pinctrl_remove_device_debugfs(pctldev); 1841 mutex_unlock(&pctldev->mutex); 1842 1843 if (!IS_ERR(pctldev->p)) 1844 pinctrl_put(pctldev->p); 1845 1846 mutex_lock(&pinctrldev_list_mutex); 1847 mutex_lock(&pctldev->mutex); 1848 /* TODO: check that no pinmuxes are still active? */ 1849 list_del(&pctldev->node); 1850 /* Destroy descriptor tree */ 1851 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1852 pctldev->desc->npins); 1853 /* remove gpio ranges map */ 1854 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1855 list_del(&range->node); 1856 1857 mutex_unlock(&pctldev->mutex); 1858 mutex_destroy(&pctldev->mutex); 1859 kfree(pctldev); 1860 mutex_unlock(&pinctrldev_list_mutex); 1861 } 1862 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1863 1864 static int __init pinctrl_init(void) 1865 { 1866 pr_info("initialized pinctrl subsystem\n"); 1867 pinctrl_init_debugfs(); 1868 return 0; 1869 } 1870 1871 /* init early since many drivers really need to initialized pinmux early */ 1872 core_initcall(pinctrl_init); 1873