1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", number); 235 return -EINVAL; 236 } 237 238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 239 if (pindesc == NULL) { 240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 241 return -ENOMEM; 242 } 243 244 /* Set owner */ 245 pindesc->pctldev = pctldev; 246 247 /* Copy basic pin info */ 248 if (name) { 249 pindesc->name = name; 250 } else { 251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 252 if (pindesc->name == NULL) { 253 kfree(pindesc); 254 return -ENOMEM; 255 } 256 pindesc->dynamic_name = true; 257 } 258 259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 260 pr_debug("registered pin %d (%s) on %s\n", 261 number, pindesc->name, pctldev->desc->name); 262 return 0; 263 } 264 265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 266 struct pinctrl_pin_desc const *pins, 267 unsigned num_descs) 268 { 269 unsigned i; 270 int ret = 0; 271 272 for (i = 0; i < num_descs; i++) { 273 ret = pinctrl_register_one_pin(pctldev, 274 pins[i].number, pins[i].name); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 mutex_lock(&pinctrldev_list_mutex); 353 354 /* Loop over the pin controllers */ 355 list_for_each_entry(pctldev, &pinctrldev_list, node) { 356 /* Loop over the ranges */ 357 mutex_lock(&pctldev->mutex); 358 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 359 /* Check if any gpio range overlapped with gpio chip */ 360 if (range->base + range->npins - 1 < chip->base || 361 range->base > chip->base + chip->ngpio - 1) 362 continue; 363 mutex_unlock(&pctldev->mutex); 364 mutex_unlock(&pinctrldev_list_mutex); 365 return true; 366 } 367 mutex_unlock(&pctldev->mutex); 368 } 369 370 mutex_unlock(&pinctrldev_list_mutex); 371 372 return false; 373 } 374 #else 375 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 376 #endif 377 378 /** 379 * pinctrl_get_device_gpio_range() - find device for GPIO range 380 * @gpio: the pin to locate the pin controller for 381 * @outdev: the pin control device if found 382 * @outrange: the GPIO range if found 383 * 384 * Find the pin controller handling a certain GPIO pin from the pinspace of 385 * the GPIO subsystem, return the device and the matching GPIO range. Returns 386 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 387 * may still have not been registered. 388 */ 389 static int pinctrl_get_device_gpio_range(unsigned gpio, 390 struct pinctrl_dev **outdev, 391 struct pinctrl_gpio_range **outrange) 392 { 393 struct pinctrl_dev *pctldev = NULL; 394 395 mutex_lock(&pinctrldev_list_mutex); 396 397 /* Loop over the pin controllers */ 398 list_for_each_entry(pctldev, &pinctrldev_list, node) { 399 struct pinctrl_gpio_range *range; 400 401 range = pinctrl_match_gpio_range(pctldev, gpio); 402 if (range != NULL) { 403 *outdev = pctldev; 404 *outrange = range; 405 mutex_unlock(&pinctrldev_list_mutex); 406 return 0; 407 } 408 } 409 410 mutex_unlock(&pinctrldev_list_mutex); 411 412 return -EPROBE_DEFER; 413 } 414 415 /** 416 * pinctrl_add_gpio_range() - register a GPIO range for a controller 417 * @pctldev: pin controller device to add the range to 418 * @range: the GPIO range to add 419 * 420 * This adds a range of GPIOs to be handled by a certain pin controller. Call 421 * this to register handled ranges after registering your pin controller. 422 */ 423 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 424 struct pinctrl_gpio_range *range) 425 { 426 mutex_lock(&pctldev->mutex); 427 list_add_tail(&range->node, &pctldev->gpio_ranges); 428 mutex_unlock(&pctldev->mutex); 429 } 430 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 431 432 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 433 struct pinctrl_gpio_range *ranges, 434 unsigned nranges) 435 { 436 int i; 437 438 for (i = 0; i < nranges; i++) 439 pinctrl_add_gpio_range(pctldev, &ranges[i]); 440 } 441 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 442 443 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 444 struct pinctrl_gpio_range *range) 445 { 446 struct pinctrl_dev *pctldev; 447 448 pctldev = get_pinctrl_dev_from_devname(devname); 449 450 /* 451 * If we can't find this device, let's assume that is because 452 * it has not probed yet, so the driver trying to register this 453 * range need to defer probing. 454 */ 455 if (!pctldev) { 456 return ERR_PTR(-EPROBE_DEFER); 457 } 458 pinctrl_add_gpio_range(pctldev, range); 459 460 return pctldev; 461 } 462 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 463 464 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 465 const unsigned **pins, unsigned *num_pins) 466 { 467 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 468 int gs; 469 470 if (!pctlops->get_group_pins) 471 return -EINVAL; 472 473 gs = pinctrl_get_group_selector(pctldev, pin_group); 474 if (gs < 0) 475 return gs; 476 477 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 478 } 479 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 480 481 /** 482 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 483 * @pctldev: the pin controller device to look in 484 * @pin: a controller-local number to find the range for 485 */ 486 struct pinctrl_gpio_range * 487 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 488 unsigned int pin) 489 { 490 struct pinctrl_gpio_range *range; 491 492 mutex_lock(&pctldev->mutex); 493 /* Loop over the ranges */ 494 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 495 /* Check if we're in the valid range */ 496 if (range->pins) { 497 int a; 498 for (a = 0; a < range->npins; a++) { 499 if (range->pins[a] == pin) 500 goto out; 501 } 502 } else if (pin >= range->pin_base && 503 pin < range->pin_base + range->npins) 504 goto out; 505 } 506 range = NULL; 507 out: 508 mutex_unlock(&pctldev->mutex); 509 return range; 510 } 511 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 512 513 /** 514 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 515 * @pctldev: pin controller device to remove the range from 516 * @range: the GPIO range to remove 517 */ 518 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 519 struct pinctrl_gpio_range *range) 520 { 521 mutex_lock(&pctldev->mutex); 522 list_del(&range->node); 523 mutex_unlock(&pctldev->mutex); 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 526 527 /** 528 * pinctrl_get_group_selector() - returns the group selector for a group 529 * @pctldev: the pin controller handling the group 530 * @pin_group: the pin group to look up 531 */ 532 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 533 const char *pin_group) 534 { 535 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 536 unsigned ngroups = pctlops->get_groups_count(pctldev); 537 unsigned group_selector = 0; 538 539 while (group_selector < ngroups) { 540 const char *gname = pctlops->get_group_name(pctldev, 541 group_selector); 542 if (!strcmp(gname, pin_group)) { 543 dev_dbg(pctldev->dev, 544 "found group selector %u for %s\n", 545 group_selector, 546 pin_group); 547 return group_selector; 548 } 549 550 group_selector++; 551 } 552 553 dev_err(pctldev->dev, "does not have pin group %s\n", 554 pin_group); 555 556 return -EINVAL; 557 } 558 559 /** 560 * pinctrl_request_gpio() - request a single pin to be used as GPIO 561 * @gpio: the GPIO pin number from the GPIO subsystem number space 562 * 563 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 564 * as part of their gpio_request() semantics, platforms and individual drivers 565 * shall *NOT* request GPIO pins to be muxed in. 566 */ 567 int pinctrl_request_gpio(unsigned gpio) 568 { 569 struct pinctrl_dev *pctldev; 570 struct pinctrl_gpio_range *range; 571 int ret; 572 int pin; 573 574 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 575 if (ret) { 576 if (pinctrl_ready_for_gpio_range(gpio)) 577 ret = 0; 578 return ret; 579 } 580 581 mutex_lock(&pctldev->mutex); 582 583 /* Convert to the pin controllers number space */ 584 pin = gpio_to_pin(range, gpio); 585 586 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 587 588 mutex_unlock(&pctldev->mutex); 589 590 return ret; 591 } 592 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 593 594 /** 595 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 596 * @gpio: the GPIO pin number from the GPIO subsystem number space 597 * 598 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 599 * as part of their gpio_free() semantics, platforms and individual drivers 600 * shall *NOT* request GPIO pins to be muxed out. 601 */ 602 void pinctrl_free_gpio(unsigned gpio) 603 { 604 struct pinctrl_dev *pctldev; 605 struct pinctrl_gpio_range *range; 606 int ret; 607 int pin; 608 609 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 610 if (ret) { 611 return; 612 } 613 mutex_lock(&pctldev->mutex); 614 615 /* Convert to the pin controllers number space */ 616 pin = gpio_to_pin(range, gpio); 617 618 pinmux_free_gpio(pctldev, pin, range); 619 620 mutex_unlock(&pctldev->mutex); 621 } 622 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 623 624 static int pinctrl_gpio_direction(unsigned gpio, bool input) 625 { 626 struct pinctrl_dev *pctldev; 627 struct pinctrl_gpio_range *range; 628 int ret; 629 int pin; 630 631 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 632 if (ret) { 633 return ret; 634 } 635 636 mutex_lock(&pctldev->mutex); 637 638 /* Convert to the pin controllers number space */ 639 pin = gpio_to_pin(range, gpio); 640 ret = pinmux_gpio_direction(pctldev, range, pin, input); 641 642 mutex_unlock(&pctldev->mutex); 643 644 return ret; 645 } 646 647 /** 648 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 649 * @gpio: the GPIO pin number from the GPIO subsystem number space 650 * 651 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 652 * as part of their gpio_direction_input() semantics, platforms and individual 653 * drivers shall *NOT* touch pin control GPIO calls. 654 */ 655 int pinctrl_gpio_direction_input(unsigned gpio) 656 { 657 return pinctrl_gpio_direction(gpio, true); 658 } 659 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 660 661 /** 662 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 663 * @gpio: the GPIO pin number from the GPIO subsystem number space 664 * 665 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 666 * as part of their gpio_direction_output() semantics, platforms and individual 667 * drivers shall *NOT* touch pin control GPIO calls. 668 */ 669 int pinctrl_gpio_direction_output(unsigned gpio) 670 { 671 return pinctrl_gpio_direction(gpio, false); 672 } 673 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 674 675 static struct pinctrl_state *find_state(struct pinctrl *p, 676 const char *name) 677 { 678 struct pinctrl_state *state; 679 680 list_for_each_entry(state, &p->states, node) 681 if (!strcmp(state->name, name)) 682 return state; 683 684 return NULL; 685 } 686 687 static struct pinctrl_state *create_state(struct pinctrl *p, 688 const char *name) 689 { 690 struct pinctrl_state *state; 691 692 state = kzalloc(sizeof(*state), GFP_KERNEL); 693 if (state == NULL) { 694 dev_err(p->dev, 695 "failed to alloc struct pinctrl_state\n"); 696 return ERR_PTR(-ENOMEM); 697 } 698 699 state->name = name; 700 INIT_LIST_HEAD(&state->settings); 701 702 list_add_tail(&state->node, &p->states); 703 704 return state; 705 } 706 707 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 708 { 709 struct pinctrl_state *state; 710 struct pinctrl_setting *setting; 711 int ret; 712 713 state = find_state(p, map->name); 714 if (!state) 715 state = create_state(p, map->name); 716 if (IS_ERR(state)) 717 return PTR_ERR(state); 718 719 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 720 return 0; 721 722 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 723 if (setting == NULL) { 724 dev_err(p->dev, 725 "failed to alloc struct pinctrl_setting\n"); 726 return -ENOMEM; 727 } 728 729 setting->type = map->type; 730 731 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 732 if (setting->pctldev == NULL) { 733 kfree(setting); 734 /* Do not defer probing of hogs (circular loop) */ 735 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 736 return -ENODEV; 737 /* 738 * OK let us guess that the driver is not there yet, and 739 * let's defer obtaining this pinctrl handle to later... 740 */ 741 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 742 map->ctrl_dev_name); 743 return -EPROBE_DEFER; 744 } 745 746 setting->dev_name = map->dev_name; 747 748 switch (map->type) { 749 case PIN_MAP_TYPE_MUX_GROUP: 750 ret = pinmux_map_to_setting(map, setting); 751 break; 752 case PIN_MAP_TYPE_CONFIGS_PIN: 753 case PIN_MAP_TYPE_CONFIGS_GROUP: 754 ret = pinconf_map_to_setting(map, setting); 755 break; 756 default: 757 ret = -EINVAL; 758 break; 759 } 760 if (ret < 0) { 761 kfree(setting); 762 return ret; 763 } 764 765 list_add_tail(&setting->node, &state->settings); 766 767 return 0; 768 } 769 770 static struct pinctrl *find_pinctrl(struct device *dev) 771 { 772 struct pinctrl *p; 773 774 mutex_lock(&pinctrl_list_mutex); 775 list_for_each_entry(p, &pinctrl_list, node) 776 if (p->dev == dev) { 777 mutex_unlock(&pinctrl_list_mutex); 778 return p; 779 } 780 781 mutex_unlock(&pinctrl_list_mutex); 782 return NULL; 783 } 784 785 static void pinctrl_free(struct pinctrl *p, bool inlist); 786 787 static struct pinctrl *create_pinctrl(struct device *dev) 788 { 789 struct pinctrl *p; 790 const char *devname; 791 struct pinctrl_maps *maps_node; 792 int i; 793 struct pinctrl_map const *map; 794 int ret; 795 796 /* 797 * create the state cookie holder struct pinctrl for each 798 * mapping, this is what consumers will get when requesting 799 * a pin control handle with pinctrl_get() 800 */ 801 p = kzalloc(sizeof(*p), GFP_KERNEL); 802 if (p == NULL) { 803 dev_err(dev, "failed to alloc struct pinctrl\n"); 804 return ERR_PTR(-ENOMEM); 805 } 806 p->dev = dev; 807 INIT_LIST_HEAD(&p->states); 808 INIT_LIST_HEAD(&p->dt_maps); 809 810 ret = pinctrl_dt_to_map(p); 811 if (ret < 0) { 812 kfree(p); 813 return ERR_PTR(ret); 814 } 815 816 devname = dev_name(dev); 817 818 mutex_lock(&pinctrl_maps_mutex); 819 /* Iterate over the pin control maps to locate the right ones */ 820 for_each_maps(maps_node, i, map) { 821 /* Map must be for this device */ 822 if (strcmp(map->dev_name, devname)) 823 continue; 824 825 ret = add_setting(p, map); 826 /* 827 * At this point the adding of a setting may: 828 * 829 * - Defer, if the pinctrl device is not yet available 830 * - Fail, if the pinctrl device is not yet available, 831 * AND the setting is a hog. We cannot defer that, since 832 * the hog will kick in immediately after the device 833 * is registered. 834 * 835 * If the error returned was not -EPROBE_DEFER then we 836 * accumulate the errors to see if we end up with 837 * an -EPROBE_DEFER later, as that is the worst case. 838 */ 839 if (ret == -EPROBE_DEFER) { 840 pinctrl_free(p, false); 841 mutex_unlock(&pinctrl_maps_mutex); 842 return ERR_PTR(ret); 843 } 844 } 845 mutex_unlock(&pinctrl_maps_mutex); 846 847 if (ret < 0) { 848 /* If some other error than deferral occured, return here */ 849 pinctrl_free(p, false); 850 return ERR_PTR(ret); 851 } 852 853 kref_init(&p->users); 854 855 /* Add the pinctrl handle to the global list */ 856 mutex_lock(&pinctrl_list_mutex); 857 list_add_tail(&p->node, &pinctrl_list); 858 mutex_unlock(&pinctrl_list_mutex); 859 860 return p; 861 } 862 863 /** 864 * pinctrl_get() - retrieves the pinctrl handle for a device 865 * @dev: the device to obtain the handle for 866 */ 867 struct pinctrl *pinctrl_get(struct device *dev) 868 { 869 struct pinctrl *p; 870 871 if (WARN_ON(!dev)) 872 return ERR_PTR(-EINVAL); 873 874 /* 875 * See if somebody else (such as the device core) has already 876 * obtained a handle to the pinctrl for this device. In that case, 877 * return another pointer to it. 878 */ 879 p = find_pinctrl(dev); 880 if (p != NULL) { 881 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 882 kref_get(&p->users); 883 return p; 884 } 885 886 return create_pinctrl(dev); 887 } 888 EXPORT_SYMBOL_GPL(pinctrl_get); 889 890 static void pinctrl_free_setting(bool disable_setting, 891 struct pinctrl_setting *setting) 892 { 893 switch (setting->type) { 894 case PIN_MAP_TYPE_MUX_GROUP: 895 if (disable_setting) 896 pinmux_disable_setting(setting); 897 pinmux_free_setting(setting); 898 break; 899 case PIN_MAP_TYPE_CONFIGS_PIN: 900 case PIN_MAP_TYPE_CONFIGS_GROUP: 901 pinconf_free_setting(setting); 902 break; 903 default: 904 break; 905 } 906 } 907 908 static void pinctrl_free(struct pinctrl *p, bool inlist) 909 { 910 struct pinctrl_state *state, *n1; 911 struct pinctrl_setting *setting, *n2; 912 913 mutex_lock(&pinctrl_list_mutex); 914 list_for_each_entry_safe(state, n1, &p->states, node) { 915 list_for_each_entry_safe(setting, n2, &state->settings, node) { 916 pinctrl_free_setting(state == p->state, setting); 917 list_del(&setting->node); 918 kfree(setting); 919 } 920 list_del(&state->node); 921 kfree(state); 922 } 923 924 pinctrl_dt_free_maps(p); 925 926 if (inlist) 927 list_del(&p->node); 928 kfree(p); 929 mutex_unlock(&pinctrl_list_mutex); 930 } 931 932 /** 933 * pinctrl_release() - release the pinctrl handle 934 * @kref: the kref in the pinctrl being released 935 */ 936 static void pinctrl_release(struct kref *kref) 937 { 938 struct pinctrl *p = container_of(kref, struct pinctrl, users); 939 940 pinctrl_free(p, true); 941 } 942 943 /** 944 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 945 * @p: the pinctrl handle to release 946 */ 947 void pinctrl_put(struct pinctrl *p) 948 { 949 kref_put(&p->users, pinctrl_release); 950 } 951 EXPORT_SYMBOL_GPL(pinctrl_put); 952 953 /** 954 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 955 * @p: the pinctrl handle to retrieve the state from 956 * @name: the state name to retrieve 957 */ 958 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 959 const char *name) 960 { 961 struct pinctrl_state *state; 962 963 state = find_state(p, name); 964 if (!state) { 965 if (pinctrl_dummy_state) { 966 /* create dummy state */ 967 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 968 name); 969 state = create_state(p, name); 970 } else 971 state = ERR_PTR(-ENODEV); 972 } 973 974 return state; 975 } 976 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 977 978 /** 979 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 980 * @p: the pinctrl handle for the device that requests configuration 981 * @state: the state handle to select/activate/program 982 */ 983 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 984 { 985 struct pinctrl_setting *setting, *setting2; 986 struct pinctrl_state *old_state = p->state; 987 int ret; 988 989 if (p->state == state) 990 return 0; 991 992 if (p->state) { 993 /* 994 * For each pinmux setting in the old state, forget SW's record 995 * of mux owner for that pingroup. Any pingroups which are 996 * still owned by the new state will be re-acquired by the call 997 * to pinmux_enable_setting() in the loop below. 998 */ 999 list_for_each_entry(setting, &p->state->settings, node) { 1000 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1001 continue; 1002 pinmux_disable_setting(setting); 1003 } 1004 } 1005 1006 p->state = NULL; 1007 1008 /* Apply all the settings for the new state */ 1009 list_for_each_entry(setting, &state->settings, node) { 1010 switch (setting->type) { 1011 case PIN_MAP_TYPE_MUX_GROUP: 1012 ret = pinmux_enable_setting(setting); 1013 break; 1014 case PIN_MAP_TYPE_CONFIGS_PIN: 1015 case PIN_MAP_TYPE_CONFIGS_GROUP: 1016 ret = pinconf_apply_setting(setting); 1017 break; 1018 default: 1019 ret = -EINVAL; 1020 break; 1021 } 1022 1023 if (ret < 0) { 1024 goto unapply_new_state; 1025 } 1026 } 1027 1028 p->state = state; 1029 1030 return 0; 1031 1032 unapply_new_state: 1033 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1034 1035 list_for_each_entry(setting2, &state->settings, node) { 1036 if (&setting2->node == &setting->node) 1037 break; 1038 /* 1039 * All we can do here is pinmux_disable_setting. 1040 * That means that some pins are muxed differently now 1041 * than they were before applying the setting (We can't 1042 * "unmux a pin"!), but it's not a big deal since the pins 1043 * are free to be muxed by another apply_setting. 1044 */ 1045 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1046 pinmux_disable_setting(setting2); 1047 } 1048 1049 /* There's no infinite recursive loop here because p->state is NULL */ 1050 if (old_state) 1051 pinctrl_select_state(p, old_state); 1052 1053 return ret; 1054 } 1055 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1056 1057 static void devm_pinctrl_release(struct device *dev, void *res) 1058 { 1059 pinctrl_put(*(struct pinctrl **)res); 1060 } 1061 1062 /** 1063 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1064 * @dev: the device to obtain the handle for 1065 * 1066 * If there is a need to explicitly destroy the returned struct pinctrl, 1067 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1068 */ 1069 struct pinctrl *devm_pinctrl_get(struct device *dev) 1070 { 1071 struct pinctrl **ptr, *p; 1072 1073 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1074 if (!ptr) 1075 return ERR_PTR(-ENOMEM); 1076 1077 p = pinctrl_get(dev); 1078 if (!IS_ERR(p)) { 1079 *ptr = p; 1080 devres_add(dev, ptr); 1081 } else { 1082 devres_free(ptr); 1083 } 1084 1085 return p; 1086 } 1087 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1088 1089 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1090 { 1091 struct pinctrl **p = res; 1092 1093 return *p == data; 1094 } 1095 1096 /** 1097 * devm_pinctrl_put() - Resource managed pinctrl_put() 1098 * @p: the pinctrl handle to release 1099 * 1100 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1101 * this function will not need to be called and the resource management 1102 * code will ensure that the resource is freed. 1103 */ 1104 void devm_pinctrl_put(struct pinctrl *p) 1105 { 1106 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1107 devm_pinctrl_match, p)); 1108 } 1109 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1110 1111 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1112 bool dup) 1113 { 1114 int i, ret; 1115 struct pinctrl_maps *maps_node; 1116 1117 pr_debug("add %u pinctrl maps\n", num_maps); 1118 1119 /* First sanity check the new mapping */ 1120 for (i = 0; i < num_maps; i++) { 1121 if (!maps[i].dev_name) { 1122 pr_err("failed to register map %s (%d): no device given\n", 1123 maps[i].name, i); 1124 return -EINVAL; 1125 } 1126 1127 if (!maps[i].name) { 1128 pr_err("failed to register map %d: no map name given\n", 1129 i); 1130 return -EINVAL; 1131 } 1132 1133 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1134 !maps[i].ctrl_dev_name) { 1135 pr_err("failed to register map %s (%d): no pin control device given\n", 1136 maps[i].name, i); 1137 return -EINVAL; 1138 } 1139 1140 switch (maps[i].type) { 1141 case PIN_MAP_TYPE_DUMMY_STATE: 1142 break; 1143 case PIN_MAP_TYPE_MUX_GROUP: 1144 ret = pinmux_validate_map(&maps[i], i); 1145 if (ret < 0) 1146 return ret; 1147 break; 1148 case PIN_MAP_TYPE_CONFIGS_PIN: 1149 case PIN_MAP_TYPE_CONFIGS_GROUP: 1150 ret = pinconf_validate_map(&maps[i], i); 1151 if (ret < 0) 1152 return ret; 1153 break; 1154 default: 1155 pr_err("failed to register map %s (%d): invalid type given\n", 1156 maps[i].name, i); 1157 return -EINVAL; 1158 } 1159 } 1160 1161 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1162 if (!maps_node) { 1163 pr_err("failed to alloc struct pinctrl_maps\n"); 1164 return -ENOMEM; 1165 } 1166 1167 maps_node->num_maps = num_maps; 1168 if (dup) { 1169 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1170 GFP_KERNEL); 1171 if (!maps_node->maps) { 1172 pr_err("failed to duplicate mapping table\n"); 1173 kfree(maps_node); 1174 return -ENOMEM; 1175 } 1176 } else { 1177 maps_node->maps = maps; 1178 } 1179 1180 mutex_lock(&pinctrl_maps_mutex); 1181 list_add_tail(&maps_node->node, &pinctrl_maps); 1182 mutex_unlock(&pinctrl_maps_mutex); 1183 1184 return 0; 1185 } 1186 1187 /** 1188 * pinctrl_register_mappings() - register a set of pin controller mappings 1189 * @maps: the pincontrol mappings table to register. This should probably be 1190 * marked with __initdata so it can be discarded after boot. This 1191 * function will perform a shallow copy for the mapping entries. 1192 * @num_maps: the number of maps in the mapping table 1193 */ 1194 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1195 unsigned num_maps) 1196 { 1197 return pinctrl_register_map(maps, num_maps, true); 1198 } 1199 1200 void pinctrl_unregister_map(struct pinctrl_map const *map) 1201 { 1202 struct pinctrl_maps *maps_node; 1203 1204 mutex_lock(&pinctrl_maps_mutex); 1205 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1206 if (maps_node->maps == map) { 1207 list_del(&maps_node->node); 1208 kfree(maps_node); 1209 mutex_unlock(&pinctrl_maps_mutex); 1210 return; 1211 } 1212 } 1213 mutex_unlock(&pinctrl_maps_mutex); 1214 } 1215 1216 /** 1217 * pinctrl_force_sleep() - turn a given controller device into sleep state 1218 * @pctldev: pin controller device 1219 */ 1220 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1221 { 1222 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1223 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1227 1228 /** 1229 * pinctrl_force_default() - turn a given controller device into default state 1230 * @pctldev: pin controller device 1231 */ 1232 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1233 { 1234 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1235 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1236 return 0; 1237 } 1238 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1239 1240 #ifdef CONFIG_PM 1241 1242 /** 1243 * pinctrl_pm_select_state() - select pinctrl state for PM 1244 * @dev: device to select default state for 1245 * @state: state to set 1246 */ 1247 static int pinctrl_pm_select_state(struct device *dev, 1248 struct pinctrl_state *state) 1249 { 1250 struct dev_pin_info *pins = dev->pins; 1251 int ret; 1252 1253 if (IS_ERR(state)) 1254 return 0; /* No such state */ 1255 ret = pinctrl_select_state(pins->p, state); 1256 if (ret) 1257 dev_err(dev, "failed to activate pinctrl state %s\n", 1258 state->name); 1259 return ret; 1260 } 1261 1262 /** 1263 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1264 * @dev: device to select default state for 1265 */ 1266 int pinctrl_pm_select_default_state(struct device *dev) 1267 { 1268 if (!dev->pins) 1269 return 0; 1270 1271 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1272 } 1273 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1274 1275 /** 1276 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1277 * @dev: device to select sleep state for 1278 */ 1279 int pinctrl_pm_select_sleep_state(struct device *dev) 1280 { 1281 if (!dev->pins) 1282 return 0; 1283 1284 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1285 } 1286 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1287 1288 /** 1289 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1290 * @dev: device to select idle state for 1291 */ 1292 int pinctrl_pm_select_idle_state(struct device *dev) 1293 { 1294 if (!dev->pins) 1295 return 0; 1296 1297 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1298 } 1299 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1300 #endif 1301 1302 #ifdef CONFIG_DEBUG_FS 1303 1304 static int pinctrl_pins_show(struct seq_file *s, void *what) 1305 { 1306 struct pinctrl_dev *pctldev = s->private; 1307 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1308 unsigned i, pin; 1309 1310 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1311 1312 mutex_lock(&pctldev->mutex); 1313 1314 /* The pin number can be retrived from the pin controller descriptor */ 1315 for (i = 0; i < pctldev->desc->npins; i++) { 1316 struct pin_desc *desc; 1317 1318 pin = pctldev->desc->pins[i].number; 1319 desc = pin_desc_get(pctldev, pin); 1320 /* Pin space may be sparse */ 1321 if (desc == NULL) 1322 continue; 1323 1324 seq_printf(s, "pin %d (%s) ", pin, 1325 desc->name ? desc->name : "unnamed"); 1326 1327 /* Driver-specific info per pin */ 1328 if (ops->pin_dbg_show) 1329 ops->pin_dbg_show(pctldev, s, pin); 1330 1331 seq_puts(s, "\n"); 1332 } 1333 1334 mutex_unlock(&pctldev->mutex); 1335 1336 return 0; 1337 } 1338 1339 static int pinctrl_groups_show(struct seq_file *s, void *what) 1340 { 1341 struct pinctrl_dev *pctldev = s->private; 1342 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1343 unsigned ngroups, selector = 0; 1344 1345 mutex_lock(&pctldev->mutex); 1346 1347 ngroups = ops->get_groups_count(pctldev); 1348 1349 seq_puts(s, "registered pin groups:\n"); 1350 while (selector < ngroups) { 1351 const unsigned *pins = NULL; 1352 unsigned num_pins = 0; 1353 const char *gname = ops->get_group_name(pctldev, selector); 1354 const char *pname; 1355 int ret = 0; 1356 int i; 1357 1358 if (ops->get_group_pins) 1359 ret = ops->get_group_pins(pctldev, selector, 1360 &pins, &num_pins); 1361 if (ret) 1362 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1363 gname); 1364 else { 1365 seq_printf(s, "group: %s\n", gname); 1366 for (i = 0; i < num_pins; i++) { 1367 pname = pin_get_name(pctldev, pins[i]); 1368 if (WARN_ON(!pname)) { 1369 mutex_unlock(&pctldev->mutex); 1370 return -EINVAL; 1371 } 1372 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1373 } 1374 seq_puts(s, "\n"); 1375 } 1376 selector++; 1377 } 1378 1379 mutex_unlock(&pctldev->mutex); 1380 1381 return 0; 1382 } 1383 1384 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1385 { 1386 struct pinctrl_dev *pctldev = s->private; 1387 struct pinctrl_gpio_range *range = NULL; 1388 1389 seq_puts(s, "GPIO ranges handled:\n"); 1390 1391 mutex_lock(&pctldev->mutex); 1392 1393 /* Loop over the ranges */ 1394 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1395 if (range->pins) { 1396 int a; 1397 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1398 range->id, range->name, 1399 range->base, (range->base + range->npins - 1)); 1400 for (a = 0; a < range->npins - 1; a++) 1401 seq_printf(s, "%u, ", range->pins[a]); 1402 seq_printf(s, "%u}\n", range->pins[a]); 1403 } 1404 else 1405 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1406 range->id, range->name, 1407 range->base, (range->base + range->npins - 1), 1408 range->pin_base, 1409 (range->pin_base + range->npins - 1)); 1410 } 1411 1412 mutex_unlock(&pctldev->mutex); 1413 1414 return 0; 1415 } 1416 1417 static int pinctrl_devices_show(struct seq_file *s, void *what) 1418 { 1419 struct pinctrl_dev *pctldev; 1420 1421 seq_puts(s, "name [pinmux] [pinconf]\n"); 1422 1423 mutex_lock(&pinctrldev_list_mutex); 1424 1425 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1426 seq_printf(s, "%s ", pctldev->desc->name); 1427 if (pctldev->desc->pmxops) 1428 seq_puts(s, "yes "); 1429 else 1430 seq_puts(s, "no "); 1431 if (pctldev->desc->confops) 1432 seq_puts(s, "yes"); 1433 else 1434 seq_puts(s, "no"); 1435 seq_puts(s, "\n"); 1436 } 1437 1438 mutex_unlock(&pinctrldev_list_mutex); 1439 1440 return 0; 1441 } 1442 1443 static inline const char *map_type(enum pinctrl_map_type type) 1444 { 1445 static const char * const names[] = { 1446 "INVALID", 1447 "DUMMY_STATE", 1448 "MUX_GROUP", 1449 "CONFIGS_PIN", 1450 "CONFIGS_GROUP", 1451 }; 1452 1453 if (type >= ARRAY_SIZE(names)) 1454 return "UNKNOWN"; 1455 1456 return names[type]; 1457 } 1458 1459 static int pinctrl_maps_show(struct seq_file *s, void *what) 1460 { 1461 struct pinctrl_maps *maps_node; 1462 int i; 1463 struct pinctrl_map const *map; 1464 1465 seq_puts(s, "Pinctrl maps:\n"); 1466 1467 mutex_lock(&pinctrl_maps_mutex); 1468 for_each_maps(maps_node, i, map) { 1469 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1470 map->dev_name, map->name, map_type(map->type), 1471 map->type); 1472 1473 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1474 seq_printf(s, "controlling device %s\n", 1475 map->ctrl_dev_name); 1476 1477 switch (map->type) { 1478 case PIN_MAP_TYPE_MUX_GROUP: 1479 pinmux_show_map(s, map); 1480 break; 1481 case PIN_MAP_TYPE_CONFIGS_PIN: 1482 case PIN_MAP_TYPE_CONFIGS_GROUP: 1483 pinconf_show_map(s, map); 1484 break; 1485 default: 1486 break; 1487 } 1488 1489 seq_printf(s, "\n"); 1490 } 1491 mutex_unlock(&pinctrl_maps_mutex); 1492 1493 return 0; 1494 } 1495 1496 static int pinctrl_show(struct seq_file *s, void *what) 1497 { 1498 struct pinctrl *p; 1499 struct pinctrl_state *state; 1500 struct pinctrl_setting *setting; 1501 1502 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1503 1504 mutex_lock(&pinctrl_list_mutex); 1505 1506 list_for_each_entry(p, &pinctrl_list, node) { 1507 seq_printf(s, "device: %s current state: %s\n", 1508 dev_name(p->dev), 1509 p->state ? p->state->name : "none"); 1510 1511 list_for_each_entry(state, &p->states, node) { 1512 seq_printf(s, " state: %s\n", state->name); 1513 1514 list_for_each_entry(setting, &state->settings, node) { 1515 struct pinctrl_dev *pctldev = setting->pctldev; 1516 1517 seq_printf(s, " type: %s controller %s ", 1518 map_type(setting->type), 1519 pinctrl_dev_get_name(pctldev)); 1520 1521 switch (setting->type) { 1522 case PIN_MAP_TYPE_MUX_GROUP: 1523 pinmux_show_setting(s, setting); 1524 break; 1525 case PIN_MAP_TYPE_CONFIGS_PIN: 1526 case PIN_MAP_TYPE_CONFIGS_GROUP: 1527 pinconf_show_setting(s, setting); 1528 break; 1529 default: 1530 break; 1531 } 1532 } 1533 } 1534 } 1535 1536 mutex_unlock(&pinctrl_list_mutex); 1537 1538 return 0; 1539 } 1540 1541 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1542 { 1543 return single_open(file, pinctrl_pins_show, inode->i_private); 1544 } 1545 1546 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1547 { 1548 return single_open(file, pinctrl_groups_show, inode->i_private); 1549 } 1550 1551 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1552 { 1553 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1554 } 1555 1556 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1557 { 1558 return single_open(file, pinctrl_devices_show, NULL); 1559 } 1560 1561 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1562 { 1563 return single_open(file, pinctrl_maps_show, NULL); 1564 } 1565 1566 static int pinctrl_open(struct inode *inode, struct file *file) 1567 { 1568 return single_open(file, pinctrl_show, NULL); 1569 } 1570 1571 static const struct file_operations pinctrl_pins_ops = { 1572 .open = pinctrl_pins_open, 1573 .read = seq_read, 1574 .llseek = seq_lseek, 1575 .release = single_release, 1576 }; 1577 1578 static const struct file_operations pinctrl_groups_ops = { 1579 .open = pinctrl_groups_open, 1580 .read = seq_read, 1581 .llseek = seq_lseek, 1582 .release = single_release, 1583 }; 1584 1585 static const struct file_operations pinctrl_gpioranges_ops = { 1586 .open = pinctrl_gpioranges_open, 1587 .read = seq_read, 1588 .llseek = seq_lseek, 1589 .release = single_release, 1590 }; 1591 1592 static const struct file_operations pinctrl_devices_ops = { 1593 .open = pinctrl_devices_open, 1594 .read = seq_read, 1595 .llseek = seq_lseek, 1596 .release = single_release, 1597 }; 1598 1599 static const struct file_operations pinctrl_maps_ops = { 1600 .open = pinctrl_maps_open, 1601 .read = seq_read, 1602 .llseek = seq_lseek, 1603 .release = single_release, 1604 }; 1605 1606 static const struct file_operations pinctrl_ops = { 1607 .open = pinctrl_open, 1608 .read = seq_read, 1609 .llseek = seq_lseek, 1610 .release = single_release, 1611 }; 1612 1613 static struct dentry *debugfs_root; 1614 1615 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1616 { 1617 struct dentry *device_root; 1618 1619 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1620 debugfs_root); 1621 pctldev->device_root = device_root; 1622 1623 if (IS_ERR(device_root) || !device_root) { 1624 pr_warn("failed to create debugfs directory for %s\n", 1625 dev_name(pctldev->dev)); 1626 return; 1627 } 1628 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1629 device_root, pctldev, &pinctrl_pins_ops); 1630 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1631 device_root, pctldev, &pinctrl_groups_ops); 1632 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1633 device_root, pctldev, &pinctrl_gpioranges_ops); 1634 if (pctldev->desc->pmxops) 1635 pinmux_init_device_debugfs(device_root, pctldev); 1636 if (pctldev->desc->confops) 1637 pinconf_init_device_debugfs(device_root, pctldev); 1638 } 1639 1640 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1641 { 1642 debugfs_remove_recursive(pctldev->device_root); 1643 } 1644 1645 static void pinctrl_init_debugfs(void) 1646 { 1647 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1648 if (IS_ERR(debugfs_root) || !debugfs_root) { 1649 pr_warn("failed to create debugfs directory\n"); 1650 debugfs_root = NULL; 1651 return; 1652 } 1653 1654 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1655 debugfs_root, NULL, &pinctrl_devices_ops); 1656 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1657 debugfs_root, NULL, &pinctrl_maps_ops); 1658 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1659 debugfs_root, NULL, &pinctrl_ops); 1660 } 1661 1662 #else /* CONFIG_DEBUG_FS */ 1663 1664 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1665 { 1666 } 1667 1668 static void pinctrl_init_debugfs(void) 1669 { 1670 } 1671 1672 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1673 { 1674 } 1675 1676 #endif 1677 1678 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1679 { 1680 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1681 1682 if (!ops || 1683 !ops->get_groups_count || 1684 !ops->get_group_name) 1685 return -EINVAL; 1686 1687 if (ops->dt_node_to_map && !ops->dt_free_map) 1688 return -EINVAL; 1689 1690 return 0; 1691 } 1692 1693 /** 1694 * pinctrl_register() - register a pin controller device 1695 * @pctldesc: descriptor for this pin controller 1696 * @dev: parent device for this pin controller 1697 * @driver_data: private pin controller data for this pin controller 1698 */ 1699 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1700 struct device *dev, void *driver_data) 1701 { 1702 struct pinctrl_dev *pctldev; 1703 int ret; 1704 1705 if (!pctldesc) 1706 return ERR_PTR(-EINVAL); 1707 if (!pctldesc->name) 1708 return ERR_PTR(-EINVAL); 1709 1710 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1711 if (pctldev == NULL) { 1712 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1713 return ERR_PTR(-ENOMEM); 1714 } 1715 1716 /* Initialize pin control device struct */ 1717 pctldev->owner = pctldesc->owner; 1718 pctldev->desc = pctldesc; 1719 pctldev->driver_data = driver_data; 1720 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1721 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1722 pctldev->dev = dev; 1723 mutex_init(&pctldev->mutex); 1724 1725 /* check core ops for sanity */ 1726 ret = pinctrl_check_ops(pctldev); 1727 if (ret) { 1728 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1729 goto out_err; 1730 } 1731 1732 /* If we're implementing pinmuxing, check the ops for sanity */ 1733 if (pctldesc->pmxops) { 1734 ret = pinmux_check_ops(pctldev); 1735 if (ret) 1736 goto out_err; 1737 } 1738 1739 /* If we're implementing pinconfig, check the ops for sanity */ 1740 if (pctldesc->confops) { 1741 ret = pinconf_check_ops(pctldev); 1742 if (ret) 1743 goto out_err; 1744 } 1745 1746 /* Register all the pins */ 1747 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1748 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1749 if (ret) { 1750 dev_err(dev, "error during pin registration\n"); 1751 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1752 pctldesc->npins); 1753 goto out_err; 1754 } 1755 1756 mutex_lock(&pinctrldev_list_mutex); 1757 list_add_tail(&pctldev->node, &pinctrldev_list); 1758 mutex_unlock(&pinctrldev_list_mutex); 1759 1760 pctldev->p = pinctrl_get(pctldev->dev); 1761 1762 if (!IS_ERR(pctldev->p)) { 1763 pctldev->hog_default = 1764 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1765 if (IS_ERR(pctldev->hog_default)) { 1766 dev_dbg(dev, "failed to lookup the default state\n"); 1767 } else { 1768 if (pinctrl_select_state(pctldev->p, 1769 pctldev->hog_default)) 1770 dev_err(dev, 1771 "failed to select default state\n"); 1772 } 1773 1774 pctldev->hog_sleep = 1775 pinctrl_lookup_state(pctldev->p, 1776 PINCTRL_STATE_SLEEP); 1777 if (IS_ERR(pctldev->hog_sleep)) 1778 dev_dbg(dev, "failed to lookup the sleep state\n"); 1779 } 1780 1781 pinctrl_init_device_debugfs(pctldev); 1782 1783 return pctldev; 1784 1785 out_err: 1786 mutex_destroy(&pctldev->mutex); 1787 kfree(pctldev); 1788 return ERR_PTR(ret); 1789 } 1790 EXPORT_SYMBOL_GPL(pinctrl_register); 1791 1792 /** 1793 * pinctrl_unregister() - unregister pinmux 1794 * @pctldev: pin controller to unregister 1795 * 1796 * Called by pinmux drivers to unregister a pinmux. 1797 */ 1798 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1799 { 1800 struct pinctrl_gpio_range *range, *n; 1801 if (pctldev == NULL) 1802 return; 1803 1804 mutex_lock(&pctldev->mutex); 1805 pinctrl_remove_device_debugfs(pctldev); 1806 mutex_unlock(&pctldev->mutex); 1807 1808 if (!IS_ERR(pctldev->p)) 1809 pinctrl_put(pctldev->p); 1810 1811 mutex_lock(&pinctrldev_list_mutex); 1812 mutex_lock(&pctldev->mutex); 1813 /* TODO: check that no pinmuxes are still active? */ 1814 list_del(&pctldev->node); 1815 /* Destroy descriptor tree */ 1816 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1817 pctldev->desc->npins); 1818 /* remove gpio ranges map */ 1819 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1820 list_del(&range->node); 1821 1822 mutex_unlock(&pctldev->mutex); 1823 mutex_destroy(&pctldev->mutex); 1824 kfree(pctldev); 1825 mutex_unlock(&pinctrldev_list_mutex); 1826 } 1827 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1828 1829 static int __init pinctrl_init(void) 1830 { 1831 pr_info("initialized pinctrl subsystem\n"); 1832 pinctrl_init_debugfs(); 1833 return 0; 1834 } 1835 1836 /* init early since many drivers really need to initialized pinmux early */ 1837 core_initcall(pinctrl_init); 1838