xref: /openbmc/linux/drivers/pinctrl/core.c (revision 8b235f2f)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    unsigned number, const char *name)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, number);
233 	if (pindesc != NULL) {
234 		dev_err(pctldev->dev, "pin %d already registered\n", number);
235 		return -EINVAL;
236 	}
237 
238 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
239 	if (pindesc == NULL) {
240 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
241 		return -ENOMEM;
242 	}
243 
244 	/* Set owner */
245 	pindesc->pctldev = pctldev;
246 
247 	/* Copy basic pin info */
248 	if (name) {
249 		pindesc->name = name;
250 	} else {
251 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
252 		if (pindesc->name == NULL) {
253 			kfree(pindesc);
254 			return -ENOMEM;
255 		}
256 		pindesc->dynamic_name = true;
257 	}
258 
259 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
260 	pr_debug("registered pin %d (%s) on %s\n",
261 		 number, pindesc->name, pctldev->desc->name);
262 	return 0;
263 }
264 
265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
266 				 struct pinctrl_pin_desc const *pins,
267 				 unsigned num_descs)
268 {
269 	unsigned i;
270 	int ret = 0;
271 
272 	for (i = 0; i < num_descs; i++) {
273 		ret = pinctrl_register_one_pin(pctldev,
274 					       pins[i].number, pins[i].name);
275 		if (ret)
276 			return ret;
277 	}
278 
279 	return 0;
280 }
281 
282 /**
283  * gpio_to_pin() - GPIO range GPIO number to pin number translation
284  * @range: GPIO range used for the translation
285  * @gpio: gpio pin to translate to a pin number
286  *
287  * Finds the pin number for a given GPIO using the specified GPIO range
288  * as a base for translation. The distinction between linear GPIO ranges
289  * and pin list based GPIO ranges is managed correctly by this function.
290  *
291  * This function assumes the gpio is part of the specified GPIO range, use
292  * only after making sure this is the case (e.g. by calling it on the
293  * result of successful pinctrl_get_device_gpio_range calls)!
294  */
295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
296 				unsigned int gpio)
297 {
298 	unsigned int offset = gpio - range->base;
299 	if (range->pins)
300 		return range->pins[offset];
301 	else
302 		return range->pin_base + offset;
303 }
304 
305 /**
306  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
307  * @pctldev: pin controller device to check
308  * @gpio: gpio pin to check taken from the global GPIO pin space
309  *
310  * Tries to match a GPIO pin number to the ranges handled by a certain pin
311  * controller, return the range or NULL
312  */
313 static struct pinctrl_gpio_range *
314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
315 {
316 	struct pinctrl_gpio_range *range = NULL;
317 
318 	mutex_lock(&pctldev->mutex);
319 	/* Loop over the ranges */
320 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
321 		/* Check if we're in the valid range */
322 		if (gpio >= range->base &&
323 		    gpio < range->base + range->npins) {
324 			mutex_unlock(&pctldev->mutex);
325 			return range;
326 		}
327 	}
328 	mutex_unlock(&pctldev->mutex);
329 	return NULL;
330 }
331 
332 /**
333  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
334  * the same GPIO chip are in range
335  * @gpio: gpio pin to check taken from the global GPIO pin space
336  *
337  * This function is complement of pinctrl_match_gpio_range(). If the return
338  * value of pinctrl_match_gpio_range() is NULL, this function could be used
339  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
340  * of the same GPIO chip don't have back-end pinctrl interface.
341  * If the return value is true, it means that pinctrl device is ready & the
342  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
343  * is false, it means that pinctrl device may not be ready.
344  */
345 #ifdef CONFIG_GPIOLIB
346 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
347 {
348 	struct pinctrl_dev *pctldev;
349 	struct pinctrl_gpio_range *range = NULL;
350 	struct gpio_chip *chip = gpio_to_chip(gpio);
351 
352 	mutex_lock(&pinctrldev_list_mutex);
353 
354 	/* Loop over the pin controllers */
355 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
356 		/* Loop over the ranges */
357 		mutex_lock(&pctldev->mutex);
358 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
359 			/* Check if any gpio range overlapped with gpio chip */
360 			if (range->base + range->npins - 1 < chip->base ||
361 			    range->base > chip->base + chip->ngpio - 1)
362 				continue;
363 			mutex_unlock(&pctldev->mutex);
364 			mutex_unlock(&pinctrldev_list_mutex);
365 			return true;
366 		}
367 		mutex_unlock(&pctldev->mutex);
368 	}
369 
370 	mutex_unlock(&pinctrldev_list_mutex);
371 
372 	return false;
373 }
374 #else
375 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
376 #endif
377 
378 /**
379  * pinctrl_get_device_gpio_range() - find device for GPIO range
380  * @gpio: the pin to locate the pin controller for
381  * @outdev: the pin control device if found
382  * @outrange: the GPIO range if found
383  *
384  * Find the pin controller handling a certain GPIO pin from the pinspace of
385  * the GPIO subsystem, return the device and the matching GPIO range. Returns
386  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
387  * may still have not been registered.
388  */
389 static int pinctrl_get_device_gpio_range(unsigned gpio,
390 					 struct pinctrl_dev **outdev,
391 					 struct pinctrl_gpio_range **outrange)
392 {
393 	struct pinctrl_dev *pctldev = NULL;
394 
395 	mutex_lock(&pinctrldev_list_mutex);
396 
397 	/* Loop over the pin controllers */
398 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
399 		struct pinctrl_gpio_range *range;
400 
401 		range = pinctrl_match_gpio_range(pctldev, gpio);
402 		if (range != NULL) {
403 			*outdev = pctldev;
404 			*outrange = range;
405 			mutex_unlock(&pinctrldev_list_mutex);
406 			return 0;
407 		}
408 	}
409 
410 	mutex_unlock(&pinctrldev_list_mutex);
411 
412 	return -EPROBE_DEFER;
413 }
414 
415 /**
416  * pinctrl_add_gpio_range() - register a GPIO range for a controller
417  * @pctldev: pin controller device to add the range to
418  * @range: the GPIO range to add
419  *
420  * This adds a range of GPIOs to be handled by a certain pin controller. Call
421  * this to register handled ranges after registering your pin controller.
422  */
423 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
424 			    struct pinctrl_gpio_range *range)
425 {
426 	mutex_lock(&pctldev->mutex);
427 	list_add_tail(&range->node, &pctldev->gpio_ranges);
428 	mutex_unlock(&pctldev->mutex);
429 }
430 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
431 
432 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
433 			     struct pinctrl_gpio_range *ranges,
434 			     unsigned nranges)
435 {
436 	int i;
437 
438 	for (i = 0; i < nranges; i++)
439 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
440 }
441 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
442 
443 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
444 		struct pinctrl_gpio_range *range)
445 {
446 	struct pinctrl_dev *pctldev;
447 
448 	pctldev = get_pinctrl_dev_from_devname(devname);
449 
450 	/*
451 	 * If we can't find this device, let's assume that is because
452 	 * it has not probed yet, so the driver trying to register this
453 	 * range need to defer probing.
454 	 */
455 	if (!pctldev) {
456 		return ERR_PTR(-EPROBE_DEFER);
457 	}
458 	pinctrl_add_gpio_range(pctldev, range);
459 
460 	return pctldev;
461 }
462 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
463 
464 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
465 				const unsigned **pins, unsigned *num_pins)
466 {
467 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
468 	int gs;
469 
470 	if (!pctlops->get_group_pins)
471 		return -EINVAL;
472 
473 	gs = pinctrl_get_group_selector(pctldev, pin_group);
474 	if (gs < 0)
475 		return gs;
476 
477 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
478 }
479 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
480 
481 /**
482  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
483  * @pctldev: the pin controller device to look in
484  * @pin: a controller-local number to find the range for
485  */
486 struct pinctrl_gpio_range *
487 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
488 				 unsigned int pin)
489 {
490 	struct pinctrl_gpio_range *range;
491 
492 	mutex_lock(&pctldev->mutex);
493 	/* Loop over the ranges */
494 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
495 		/* Check if we're in the valid range */
496 		if (range->pins) {
497 			int a;
498 			for (a = 0; a < range->npins; a++) {
499 				if (range->pins[a] == pin)
500 					goto out;
501 			}
502 		} else if (pin >= range->pin_base &&
503 			   pin < range->pin_base + range->npins)
504 			goto out;
505 	}
506 	range = NULL;
507 out:
508 	mutex_unlock(&pctldev->mutex);
509 	return range;
510 }
511 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
512 
513 /**
514  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
515  * @pctldev: pin controller device to remove the range from
516  * @range: the GPIO range to remove
517  */
518 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
519 			       struct pinctrl_gpio_range *range)
520 {
521 	mutex_lock(&pctldev->mutex);
522 	list_del(&range->node);
523 	mutex_unlock(&pctldev->mutex);
524 }
525 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
526 
527 /**
528  * pinctrl_get_group_selector() - returns the group selector for a group
529  * @pctldev: the pin controller handling the group
530  * @pin_group: the pin group to look up
531  */
532 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
533 			       const char *pin_group)
534 {
535 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
536 	unsigned ngroups = pctlops->get_groups_count(pctldev);
537 	unsigned group_selector = 0;
538 
539 	while (group_selector < ngroups) {
540 		const char *gname = pctlops->get_group_name(pctldev,
541 							    group_selector);
542 		if (!strcmp(gname, pin_group)) {
543 			dev_dbg(pctldev->dev,
544 				"found group selector %u for %s\n",
545 				group_selector,
546 				pin_group);
547 			return group_selector;
548 		}
549 
550 		group_selector++;
551 	}
552 
553 	dev_err(pctldev->dev, "does not have pin group %s\n",
554 		pin_group);
555 
556 	return -EINVAL;
557 }
558 
559 /**
560  * pinctrl_request_gpio() - request a single pin to be used as GPIO
561  * @gpio: the GPIO pin number from the GPIO subsystem number space
562  *
563  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
564  * as part of their gpio_request() semantics, platforms and individual drivers
565  * shall *NOT* request GPIO pins to be muxed in.
566  */
567 int pinctrl_request_gpio(unsigned gpio)
568 {
569 	struct pinctrl_dev *pctldev;
570 	struct pinctrl_gpio_range *range;
571 	int ret;
572 	int pin;
573 
574 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
575 	if (ret) {
576 		if (pinctrl_ready_for_gpio_range(gpio))
577 			ret = 0;
578 		return ret;
579 	}
580 
581 	mutex_lock(&pctldev->mutex);
582 
583 	/* Convert to the pin controllers number space */
584 	pin = gpio_to_pin(range, gpio);
585 
586 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
587 
588 	mutex_unlock(&pctldev->mutex);
589 
590 	return ret;
591 }
592 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
593 
594 /**
595  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
596  * @gpio: the GPIO pin number from the GPIO subsystem number space
597  *
598  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
599  * as part of their gpio_free() semantics, platforms and individual drivers
600  * shall *NOT* request GPIO pins to be muxed out.
601  */
602 void pinctrl_free_gpio(unsigned gpio)
603 {
604 	struct pinctrl_dev *pctldev;
605 	struct pinctrl_gpio_range *range;
606 	int ret;
607 	int pin;
608 
609 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
610 	if (ret) {
611 		return;
612 	}
613 	mutex_lock(&pctldev->mutex);
614 
615 	/* Convert to the pin controllers number space */
616 	pin = gpio_to_pin(range, gpio);
617 
618 	pinmux_free_gpio(pctldev, pin, range);
619 
620 	mutex_unlock(&pctldev->mutex);
621 }
622 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
623 
624 static int pinctrl_gpio_direction(unsigned gpio, bool input)
625 {
626 	struct pinctrl_dev *pctldev;
627 	struct pinctrl_gpio_range *range;
628 	int ret;
629 	int pin;
630 
631 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
632 	if (ret) {
633 		return ret;
634 	}
635 
636 	mutex_lock(&pctldev->mutex);
637 
638 	/* Convert to the pin controllers number space */
639 	pin = gpio_to_pin(range, gpio);
640 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
641 
642 	mutex_unlock(&pctldev->mutex);
643 
644 	return ret;
645 }
646 
647 /**
648  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
649  * @gpio: the GPIO pin number from the GPIO subsystem number space
650  *
651  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
652  * as part of their gpio_direction_input() semantics, platforms and individual
653  * drivers shall *NOT* touch pin control GPIO calls.
654  */
655 int pinctrl_gpio_direction_input(unsigned gpio)
656 {
657 	return pinctrl_gpio_direction(gpio, true);
658 }
659 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
660 
661 /**
662  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
663  * @gpio: the GPIO pin number from the GPIO subsystem number space
664  *
665  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
666  * as part of their gpio_direction_output() semantics, platforms and individual
667  * drivers shall *NOT* touch pin control GPIO calls.
668  */
669 int pinctrl_gpio_direction_output(unsigned gpio)
670 {
671 	return pinctrl_gpio_direction(gpio, false);
672 }
673 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
674 
675 static struct pinctrl_state *find_state(struct pinctrl *p,
676 					const char *name)
677 {
678 	struct pinctrl_state *state;
679 
680 	list_for_each_entry(state, &p->states, node)
681 		if (!strcmp(state->name, name))
682 			return state;
683 
684 	return NULL;
685 }
686 
687 static struct pinctrl_state *create_state(struct pinctrl *p,
688 					  const char *name)
689 {
690 	struct pinctrl_state *state;
691 
692 	state = kzalloc(sizeof(*state), GFP_KERNEL);
693 	if (state == NULL) {
694 		dev_err(p->dev,
695 			"failed to alloc struct pinctrl_state\n");
696 		return ERR_PTR(-ENOMEM);
697 	}
698 
699 	state->name = name;
700 	INIT_LIST_HEAD(&state->settings);
701 
702 	list_add_tail(&state->node, &p->states);
703 
704 	return state;
705 }
706 
707 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
708 {
709 	struct pinctrl_state *state;
710 	struct pinctrl_setting *setting;
711 	int ret;
712 
713 	state = find_state(p, map->name);
714 	if (!state)
715 		state = create_state(p, map->name);
716 	if (IS_ERR(state))
717 		return PTR_ERR(state);
718 
719 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
720 		return 0;
721 
722 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
723 	if (setting == NULL) {
724 		dev_err(p->dev,
725 			"failed to alloc struct pinctrl_setting\n");
726 		return -ENOMEM;
727 	}
728 
729 	setting->type = map->type;
730 
731 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
732 	if (setting->pctldev == NULL) {
733 		kfree(setting);
734 		/* Do not defer probing of hogs (circular loop) */
735 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
736 			return -ENODEV;
737 		/*
738 		 * OK let us guess that the driver is not there yet, and
739 		 * let's defer obtaining this pinctrl handle to later...
740 		 */
741 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
742 			map->ctrl_dev_name);
743 		return -EPROBE_DEFER;
744 	}
745 
746 	setting->dev_name = map->dev_name;
747 
748 	switch (map->type) {
749 	case PIN_MAP_TYPE_MUX_GROUP:
750 		ret = pinmux_map_to_setting(map, setting);
751 		break;
752 	case PIN_MAP_TYPE_CONFIGS_PIN:
753 	case PIN_MAP_TYPE_CONFIGS_GROUP:
754 		ret = pinconf_map_to_setting(map, setting);
755 		break;
756 	default:
757 		ret = -EINVAL;
758 		break;
759 	}
760 	if (ret < 0) {
761 		kfree(setting);
762 		return ret;
763 	}
764 
765 	list_add_tail(&setting->node, &state->settings);
766 
767 	return 0;
768 }
769 
770 static struct pinctrl *find_pinctrl(struct device *dev)
771 {
772 	struct pinctrl *p;
773 
774 	mutex_lock(&pinctrl_list_mutex);
775 	list_for_each_entry(p, &pinctrl_list, node)
776 		if (p->dev == dev) {
777 			mutex_unlock(&pinctrl_list_mutex);
778 			return p;
779 		}
780 
781 	mutex_unlock(&pinctrl_list_mutex);
782 	return NULL;
783 }
784 
785 static void pinctrl_free(struct pinctrl *p, bool inlist);
786 
787 static struct pinctrl *create_pinctrl(struct device *dev)
788 {
789 	struct pinctrl *p;
790 	const char *devname;
791 	struct pinctrl_maps *maps_node;
792 	int i;
793 	struct pinctrl_map const *map;
794 	int ret;
795 
796 	/*
797 	 * create the state cookie holder struct pinctrl for each
798 	 * mapping, this is what consumers will get when requesting
799 	 * a pin control handle with pinctrl_get()
800 	 */
801 	p = kzalloc(sizeof(*p), GFP_KERNEL);
802 	if (p == NULL) {
803 		dev_err(dev, "failed to alloc struct pinctrl\n");
804 		return ERR_PTR(-ENOMEM);
805 	}
806 	p->dev = dev;
807 	INIT_LIST_HEAD(&p->states);
808 	INIT_LIST_HEAD(&p->dt_maps);
809 
810 	ret = pinctrl_dt_to_map(p);
811 	if (ret < 0) {
812 		kfree(p);
813 		return ERR_PTR(ret);
814 	}
815 
816 	devname = dev_name(dev);
817 
818 	mutex_lock(&pinctrl_maps_mutex);
819 	/* Iterate over the pin control maps to locate the right ones */
820 	for_each_maps(maps_node, i, map) {
821 		/* Map must be for this device */
822 		if (strcmp(map->dev_name, devname))
823 			continue;
824 
825 		ret = add_setting(p, map);
826 		/*
827 		 * At this point the adding of a setting may:
828 		 *
829 		 * - Defer, if the pinctrl device is not yet available
830 		 * - Fail, if the pinctrl device is not yet available,
831 		 *   AND the setting is a hog. We cannot defer that, since
832 		 *   the hog will kick in immediately after the device
833 		 *   is registered.
834 		 *
835 		 * If the error returned was not -EPROBE_DEFER then we
836 		 * accumulate the errors to see if we end up with
837 		 * an -EPROBE_DEFER later, as that is the worst case.
838 		 */
839 		if (ret == -EPROBE_DEFER) {
840 			pinctrl_free(p, false);
841 			mutex_unlock(&pinctrl_maps_mutex);
842 			return ERR_PTR(ret);
843 		}
844 	}
845 	mutex_unlock(&pinctrl_maps_mutex);
846 
847 	if (ret < 0) {
848 		/* If some other error than deferral occured, return here */
849 		pinctrl_free(p, false);
850 		return ERR_PTR(ret);
851 	}
852 
853 	kref_init(&p->users);
854 
855 	/* Add the pinctrl handle to the global list */
856 	mutex_lock(&pinctrl_list_mutex);
857 	list_add_tail(&p->node, &pinctrl_list);
858 	mutex_unlock(&pinctrl_list_mutex);
859 
860 	return p;
861 }
862 
863 /**
864  * pinctrl_get() - retrieves the pinctrl handle for a device
865  * @dev: the device to obtain the handle for
866  */
867 struct pinctrl *pinctrl_get(struct device *dev)
868 {
869 	struct pinctrl *p;
870 
871 	if (WARN_ON(!dev))
872 		return ERR_PTR(-EINVAL);
873 
874 	/*
875 	 * See if somebody else (such as the device core) has already
876 	 * obtained a handle to the pinctrl for this device. In that case,
877 	 * return another pointer to it.
878 	 */
879 	p = find_pinctrl(dev);
880 	if (p != NULL) {
881 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
882 		kref_get(&p->users);
883 		return p;
884 	}
885 
886 	return create_pinctrl(dev);
887 }
888 EXPORT_SYMBOL_GPL(pinctrl_get);
889 
890 static void pinctrl_free_setting(bool disable_setting,
891 				 struct pinctrl_setting *setting)
892 {
893 	switch (setting->type) {
894 	case PIN_MAP_TYPE_MUX_GROUP:
895 		if (disable_setting)
896 			pinmux_disable_setting(setting);
897 		pinmux_free_setting(setting);
898 		break;
899 	case PIN_MAP_TYPE_CONFIGS_PIN:
900 	case PIN_MAP_TYPE_CONFIGS_GROUP:
901 		pinconf_free_setting(setting);
902 		break;
903 	default:
904 		break;
905 	}
906 }
907 
908 static void pinctrl_free(struct pinctrl *p, bool inlist)
909 {
910 	struct pinctrl_state *state, *n1;
911 	struct pinctrl_setting *setting, *n2;
912 
913 	mutex_lock(&pinctrl_list_mutex);
914 	list_for_each_entry_safe(state, n1, &p->states, node) {
915 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
916 			pinctrl_free_setting(state == p->state, setting);
917 			list_del(&setting->node);
918 			kfree(setting);
919 		}
920 		list_del(&state->node);
921 		kfree(state);
922 	}
923 
924 	pinctrl_dt_free_maps(p);
925 
926 	if (inlist)
927 		list_del(&p->node);
928 	kfree(p);
929 	mutex_unlock(&pinctrl_list_mutex);
930 }
931 
932 /**
933  * pinctrl_release() - release the pinctrl handle
934  * @kref: the kref in the pinctrl being released
935  */
936 static void pinctrl_release(struct kref *kref)
937 {
938 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
939 
940 	pinctrl_free(p, true);
941 }
942 
943 /**
944  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
945  * @p: the pinctrl handle to release
946  */
947 void pinctrl_put(struct pinctrl *p)
948 {
949 	kref_put(&p->users, pinctrl_release);
950 }
951 EXPORT_SYMBOL_GPL(pinctrl_put);
952 
953 /**
954  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
955  * @p: the pinctrl handle to retrieve the state from
956  * @name: the state name to retrieve
957  */
958 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
959 						 const char *name)
960 {
961 	struct pinctrl_state *state;
962 
963 	state = find_state(p, name);
964 	if (!state) {
965 		if (pinctrl_dummy_state) {
966 			/* create dummy state */
967 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
968 				name);
969 			state = create_state(p, name);
970 		} else
971 			state = ERR_PTR(-ENODEV);
972 	}
973 
974 	return state;
975 }
976 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
977 
978 /**
979  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
980  * @p: the pinctrl handle for the device that requests configuration
981  * @state: the state handle to select/activate/program
982  */
983 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
984 {
985 	struct pinctrl_setting *setting, *setting2;
986 	struct pinctrl_state *old_state = p->state;
987 	int ret;
988 
989 	if (p->state == state)
990 		return 0;
991 
992 	if (p->state) {
993 		/*
994 		 * For each pinmux setting in the old state, forget SW's record
995 		 * of mux owner for that pingroup. Any pingroups which are
996 		 * still owned by the new state will be re-acquired by the call
997 		 * to pinmux_enable_setting() in the loop below.
998 		 */
999 		list_for_each_entry(setting, &p->state->settings, node) {
1000 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1001 				continue;
1002 			pinmux_disable_setting(setting);
1003 		}
1004 	}
1005 
1006 	p->state = NULL;
1007 
1008 	/* Apply all the settings for the new state */
1009 	list_for_each_entry(setting, &state->settings, node) {
1010 		switch (setting->type) {
1011 		case PIN_MAP_TYPE_MUX_GROUP:
1012 			ret = pinmux_enable_setting(setting);
1013 			break;
1014 		case PIN_MAP_TYPE_CONFIGS_PIN:
1015 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1016 			ret = pinconf_apply_setting(setting);
1017 			break;
1018 		default:
1019 			ret = -EINVAL;
1020 			break;
1021 		}
1022 
1023 		if (ret < 0) {
1024 			goto unapply_new_state;
1025 		}
1026 	}
1027 
1028 	p->state = state;
1029 
1030 	return 0;
1031 
1032 unapply_new_state:
1033 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1034 
1035 	list_for_each_entry(setting2, &state->settings, node) {
1036 		if (&setting2->node == &setting->node)
1037 			break;
1038 		/*
1039 		 * All we can do here is pinmux_disable_setting.
1040 		 * That means that some pins are muxed differently now
1041 		 * than they were before applying the setting (We can't
1042 		 * "unmux a pin"!), but it's not a big deal since the pins
1043 		 * are free to be muxed by another apply_setting.
1044 		 */
1045 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1046 			pinmux_disable_setting(setting2);
1047 	}
1048 
1049 	/* There's no infinite recursive loop here because p->state is NULL */
1050 	if (old_state)
1051 		pinctrl_select_state(p, old_state);
1052 
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1056 
1057 static void devm_pinctrl_release(struct device *dev, void *res)
1058 {
1059 	pinctrl_put(*(struct pinctrl **)res);
1060 }
1061 
1062 /**
1063  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1064  * @dev: the device to obtain the handle for
1065  *
1066  * If there is a need to explicitly destroy the returned struct pinctrl,
1067  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1068  */
1069 struct pinctrl *devm_pinctrl_get(struct device *dev)
1070 {
1071 	struct pinctrl **ptr, *p;
1072 
1073 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1074 	if (!ptr)
1075 		return ERR_PTR(-ENOMEM);
1076 
1077 	p = pinctrl_get(dev);
1078 	if (!IS_ERR(p)) {
1079 		*ptr = p;
1080 		devres_add(dev, ptr);
1081 	} else {
1082 		devres_free(ptr);
1083 	}
1084 
1085 	return p;
1086 }
1087 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1088 
1089 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1090 {
1091 	struct pinctrl **p = res;
1092 
1093 	return *p == data;
1094 }
1095 
1096 /**
1097  * devm_pinctrl_put() - Resource managed pinctrl_put()
1098  * @p: the pinctrl handle to release
1099  *
1100  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1101  * this function will not need to be called and the resource management
1102  * code will ensure that the resource is freed.
1103  */
1104 void devm_pinctrl_put(struct pinctrl *p)
1105 {
1106 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1107 			       devm_pinctrl_match, p));
1108 }
1109 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1110 
1111 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1112 			 bool dup)
1113 {
1114 	int i, ret;
1115 	struct pinctrl_maps *maps_node;
1116 
1117 	pr_debug("add %u pinctrl maps\n", num_maps);
1118 
1119 	/* First sanity check the new mapping */
1120 	for (i = 0; i < num_maps; i++) {
1121 		if (!maps[i].dev_name) {
1122 			pr_err("failed to register map %s (%d): no device given\n",
1123 			       maps[i].name, i);
1124 			return -EINVAL;
1125 		}
1126 
1127 		if (!maps[i].name) {
1128 			pr_err("failed to register map %d: no map name given\n",
1129 			       i);
1130 			return -EINVAL;
1131 		}
1132 
1133 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1134 				!maps[i].ctrl_dev_name) {
1135 			pr_err("failed to register map %s (%d): no pin control device given\n",
1136 			       maps[i].name, i);
1137 			return -EINVAL;
1138 		}
1139 
1140 		switch (maps[i].type) {
1141 		case PIN_MAP_TYPE_DUMMY_STATE:
1142 			break;
1143 		case PIN_MAP_TYPE_MUX_GROUP:
1144 			ret = pinmux_validate_map(&maps[i], i);
1145 			if (ret < 0)
1146 				return ret;
1147 			break;
1148 		case PIN_MAP_TYPE_CONFIGS_PIN:
1149 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1150 			ret = pinconf_validate_map(&maps[i], i);
1151 			if (ret < 0)
1152 				return ret;
1153 			break;
1154 		default:
1155 			pr_err("failed to register map %s (%d): invalid type given\n",
1156 			       maps[i].name, i);
1157 			return -EINVAL;
1158 		}
1159 	}
1160 
1161 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1162 	if (!maps_node) {
1163 		pr_err("failed to alloc struct pinctrl_maps\n");
1164 		return -ENOMEM;
1165 	}
1166 
1167 	maps_node->num_maps = num_maps;
1168 	if (dup) {
1169 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1170 					  GFP_KERNEL);
1171 		if (!maps_node->maps) {
1172 			pr_err("failed to duplicate mapping table\n");
1173 			kfree(maps_node);
1174 			return -ENOMEM;
1175 		}
1176 	} else {
1177 		maps_node->maps = maps;
1178 	}
1179 
1180 	mutex_lock(&pinctrl_maps_mutex);
1181 	list_add_tail(&maps_node->node, &pinctrl_maps);
1182 	mutex_unlock(&pinctrl_maps_mutex);
1183 
1184 	return 0;
1185 }
1186 
1187 /**
1188  * pinctrl_register_mappings() - register a set of pin controller mappings
1189  * @maps: the pincontrol mappings table to register. This should probably be
1190  *	marked with __initdata so it can be discarded after boot. This
1191  *	function will perform a shallow copy for the mapping entries.
1192  * @num_maps: the number of maps in the mapping table
1193  */
1194 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1195 			      unsigned num_maps)
1196 {
1197 	return pinctrl_register_map(maps, num_maps, true);
1198 }
1199 
1200 void pinctrl_unregister_map(struct pinctrl_map const *map)
1201 {
1202 	struct pinctrl_maps *maps_node;
1203 
1204 	mutex_lock(&pinctrl_maps_mutex);
1205 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1206 		if (maps_node->maps == map) {
1207 			list_del(&maps_node->node);
1208 			kfree(maps_node);
1209 			mutex_unlock(&pinctrl_maps_mutex);
1210 			return;
1211 		}
1212 	}
1213 	mutex_unlock(&pinctrl_maps_mutex);
1214 }
1215 
1216 /**
1217  * pinctrl_force_sleep() - turn a given controller device into sleep state
1218  * @pctldev: pin controller device
1219  */
1220 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1221 {
1222 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1223 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1224 	return 0;
1225 }
1226 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1227 
1228 /**
1229  * pinctrl_force_default() - turn a given controller device into default state
1230  * @pctldev: pin controller device
1231  */
1232 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1233 {
1234 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1235 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1236 	return 0;
1237 }
1238 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1239 
1240 #ifdef CONFIG_PM
1241 
1242 /**
1243  * pinctrl_pm_select_state() - select pinctrl state for PM
1244  * @dev: device to select default state for
1245  * @state: state to set
1246  */
1247 static int pinctrl_pm_select_state(struct device *dev,
1248 				   struct pinctrl_state *state)
1249 {
1250 	struct dev_pin_info *pins = dev->pins;
1251 	int ret;
1252 
1253 	if (IS_ERR(state))
1254 		return 0; /* No such state */
1255 	ret = pinctrl_select_state(pins->p, state);
1256 	if (ret)
1257 		dev_err(dev, "failed to activate pinctrl state %s\n",
1258 			state->name);
1259 	return ret;
1260 }
1261 
1262 /**
1263  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1264  * @dev: device to select default state for
1265  */
1266 int pinctrl_pm_select_default_state(struct device *dev)
1267 {
1268 	if (!dev->pins)
1269 		return 0;
1270 
1271 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1272 }
1273 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1274 
1275 /**
1276  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1277  * @dev: device to select sleep state for
1278  */
1279 int pinctrl_pm_select_sleep_state(struct device *dev)
1280 {
1281 	if (!dev->pins)
1282 		return 0;
1283 
1284 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1285 }
1286 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1287 
1288 /**
1289  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1290  * @dev: device to select idle state for
1291  */
1292 int pinctrl_pm_select_idle_state(struct device *dev)
1293 {
1294 	if (!dev->pins)
1295 		return 0;
1296 
1297 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1298 }
1299 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1300 #endif
1301 
1302 #ifdef CONFIG_DEBUG_FS
1303 
1304 static int pinctrl_pins_show(struct seq_file *s, void *what)
1305 {
1306 	struct pinctrl_dev *pctldev = s->private;
1307 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1308 	unsigned i, pin;
1309 
1310 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1311 
1312 	mutex_lock(&pctldev->mutex);
1313 
1314 	/* The pin number can be retrived from the pin controller descriptor */
1315 	for (i = 0; i < pctldev->desc->npins; i++) {
1316 		struct pin_desc *desc;
1317 
1318 		pin = pctldev->desc->pins[i].number;
1319 		desc = pin_desc_get(pctldev, pin);
1320 		/* Pin space may be sparse */
1321 		if (desc == NULL)
1322 			continue;
1323 
1324 		seq_printf(s, "pin %d (%s) ", pin,
1325 			   desc->name ? desc->name : "unnamed");
1326 
1327 		/* Driver-specific info per pin */
1328 		if (ops->pin_dbg_show)
1329 			ops->pin_dbg_show(pctldev, s, pin);
1330 
1331 		seq_puts(s, "\n");
1332 	}
1333 
1334 	mutex_unlock(&pctldev->mutex);
1335 
1336 	return 0;
1337 }
1338 
1339 static int pinctrl_groups_show(struct seq_file *s, void *what)
1340 {
1341 	struct pinctrl_dev *pctldev = s->private;
1342 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1343 	unsigned ngroups, selector = 0;
1344 
1345 	mutex_lock(&pctldev->mutex);
1346 
1347 	ngroups = ops->get_groups_count(pctldev);
1348 
1349 	seq_puts(s, "registered pin groups:\n");
1350 	while (selector < ngroups) {
1351 		const unsigned *pins = NULL;
1352 		unsigned num_pins = 0;
1353 		const char *gname = ops->get_group_name(pctldev, selector);
1354 		const char *pname;
1355 		int ret = 0;
1356 		int i;
1357 
1358 		if (ops->get_group_pins)
1359 			ret = ops->get_group_pins(pctldev, selector,
1360 						  &pins, &num_pins);
1361 		if (ret)
1362 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1363 				   gname);
1364 		else {
1365 			seq_printf(s, "group: %s\n", gname);
1366 			for (i = 0; i < num_pins; i++) {
1367 				pname = pin_get_name(pctldev, pins[i]);
1368 				if (WARN_ON(!pname)) {
1369 					mutex_unlock(&pctldev->mutex);
1370 					return -EINVAL;
1371 				}
1372 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1373 			}
1374 			seq_puts(s, "\n");
1375 		}
1376 		selector++;
1377 	}
1378 
1379 	mutex_unlock(&pctldev->mutex);
1380 
1381 	return 0;
1382 }
1383 
1384 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1385 {
1386 	struct pinctrl_dev *pctldev = s->private;
1387 	struct pinctrl_gpio_range *range = NULL;
1388 
1389 	seq_puts(s, "GPIO ranges handled:\n");
1390 
1391 	mutex_lock(&pctldev->mutex);
1392 
1393 	/* Loop over the ranges */
1394 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1395 		if (range->pins) {
1396 			int a;
1397 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1398 				range->id, range->name,
1399 				range->base, (range->base + range->npins - 1));
1400 			for (a = 0; a < range->npins - 1; a++)
1401 				seq_printf(s, "%u, ", range->pins[a]);
1402 			seq_printf(s, "%u}\n", range->pins[a]);
1403 		}
1404 		else
1405 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1406 				range->id, range->name,
1407 				range->base, (range->base + range->npins - 1),
1408 				range->pin_base,
1409 				(range->pin_base + range->npins - 1));
1410 	}
1411 
1412 	mutex_unlock(&pctldev->mutex);
1413 
1414 	return 0;
1415 }
1416 
1417 static int pinctrl_devices_show(struct seq_file *s, void *what)
1418 {
1419 	struct pinctrl_dev *pctldev;
1420 
1421 	seq_puts(s, "name [pinmux] [pinconf]\n");
1422 
1423 	mutex_lock(&pinctrldev_list_mutex);
1424 
1425 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1426 		seq_printf(s, "%s ", pctldev->desc->name);
1427 		if (pctldev->desc->pmxops)
1428 			seq_puts(s, "yes ");
1429 		else
1430 			seq_puts(s, "no ");
1431 		if (pctldev->desc->confops)
1432 			seq_puts(s, "yes");
1433 		else
1434 			seq_puts(s, "no");
1435 		seq_puts(s, "\n");
1436 	}
1437 
1438 	mutex_unlock(&pinctrldev_list_mutex);
1439 
1440 	return 0;
1441 }
1442 
1443 static inline const char *map_type(enum pinctrl_map_type type)
1444 {
1445 	static const char * const names[] = {
1446 		"INVALID",
1447 		"DUMMY_STATE",
1448 		"MUX_GROUP",
1449 		"CONFIGS_PIN",
1450 		"CONFIGS_GROUP",
1451 	};
1452 
1453 	if (type >= ARRAY_SIZE(names))
1454 		return "UNKNOWN";
1455 
1456 	return names[type];
1457 }
1458 
1459 static int pinctrl_maps_show(struct seq_file *s, void *what)
1460 {
1461 	struct pinctrl_maps *maps_node;
1462 	int i;
1463 	struct pinctrl_map const *map;
1464 
1465 	seq_puts(s, "Pinctrl maps:\n");
1466 
1467 	mutex_lock(&pinctrl_maps_mutex);
1468 	for_each_maps(maps_node, i, map) {
1469 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1470 			   map->dev_name, map->name, map_type(map->type),
1471 			   map->type);
1472 
1473 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1474 			seq_printf(s, "controlling device %s\n",
1475 				   map->ctrl_dev_name);
1476 
1477 		switch (map->type) {
1478 		case PIN_MAP_TYPE_MUX_GROUP:
1479 			pinmux_show_map(s, map);
1480 			break;
1481 		case PIN_MAP_TYPE_CONFIGS_PIN:
1482 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1483 			pinconf_show_map(s, map);
1484 			break;
1485 		default:
1486 			break;
1487 		}
1488 
1489 		seq_printf(s, "\n");
1490 	}
1491 	mutex_unlock(&pinctrl_maps_mutex);
1492 
1493 	return 0;
1494 }
1495 
1496 static int pinctrl_show(struct seq_file *s, void *what)
1497 {
1498 	struct pinctrl *p;
1499 	struct pinctrl_state *state;
1500 	struct pinctrl_setting *setting;
1501 
1502 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1503 
1504 	mutex_lock(&pinctrl_list_mutex);
1505 
1506 	list_for_each_entry(p, &pinctrl_list, node) {
1507 		seq_printf(s, "device: %s current state: %s\n",
1508 			   dev_name(p->dev),
1509 			   p->state ? p->state->name : "none");
1510 
1511 		list_for_each_entry(state, &p->states, node) {
1512 			seq_printf(s, "  state: %s\n", state->name);
1513 
1514 			list_for_each_entry(setting, &state->settings, node) {
1515 				struct pinctrl_dev *pctldev = setting->pctldev;
1516 
1517 				seq_printf(s, "    type: %s controller %s ",
1518 					   map_type(setting->type),
1519 					   pinctrl_dev_get_name(pctldev));
1520 
1521 				switch (setting->type) {
1522 				case PIN_MAP_TYPE_MUX_GROUP:
1523 					pinmux_show_setting(s, setting);
1524 					break;
1525 				case PIN_MAP_TYPE_CONFIGS_PIN:
1526 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1527 					pinconf_show_setting(s, setting);
1528 					break;
1529 				default:
1530 					break;
1531 				}
1532 			}
1533 		}
1534 	}
1535 
1536 	mutex_unlock(&pinctrl_list_mutex);
1537 
1538 	return 0;
1539 }
1540 
1541 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1542 {
1543 	return single_open(file, pinctrl_pins_show, inode->i_private);
1544 }
1545 
1546 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1547 {
1548 	return single_open(file, pinctrl_groups_show, inode->i_private);
1549 }
1550 
1551 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1552 {
1553 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1554 }
1555 
1556 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1557 {
1558 	return single_open(file, pinctrl_devices_show, NULL);
1559 }
1560 
1561 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1562 {
1563 	return single_open(file, pinctrl_maps_show, NULL);
1564 }
1565 
1566 static int pinctrl_open(struct inode *inode, struct file *file)
1567 {
1568 	return single_open(file, pinctrl_show, NULL);
1569 }
1570 
1571 static const struct file_operations pinctrl_pins_ops = {
1572 	.open		= pinctrl_pins_open,
1573 	.read		= seq_read,
1574 	.llseek		= seq_lseek,
1575 	.release	= single_release,
1576 };
1577 
1578 static const struct file_operations pinctrl_groups_ops = {
1579 	.open		= pinctrl_groups_open,
1580 	.read		= seq_read,
1581 	.llseek		= seq_lseek,
1582 	.release	= single_release,
1583 };
1584 
1585 static const struct file_operations pinctrl_gpioranges_ops = {
1586 	.open		= pinctrl_gpioranges_open,
1587 	.read		= seq_read,
1588 	.llseek		= seq_lseek,
1589 	.release	= single_release,
1590 };
1591 
1592 static const struct file_operations pinctrl_devices_ops = {
1593 	.open		= pinctrl_devices_open,
1594 	.read		= seq_read,
1595 	.llseek		= seq_lseek,
1596 	.release	= single_release,
1597 };
1598 
1599 static const struct file_operations pinctrl_maps_ops = {
1600 	.open		= pinctrl_maps_open,
1601 	.read		= seq_read,
1602 	.llseek		= seq_lseek,
1603 	.release	= single_release,
1604 };
1605 
1606 static const struct file_operations pinctrl_ops = {
1607 	.open		= pinctrl_open,
1608 	.read		= seq_read,
1609 	.llseek		= seq_lseek,
1610 	.release	= single_release,
1611 };
1612 
1613 static struct dentry *debugfs_root;
1614 
1615 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1616 {
1617 	struct dentry *device_root;
1618 
1619 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1620 					 debugfs_root);
1621 	pctldev->device_root = device_root;
1622 
1623 	if (IS_ERR(device_root) || !device_root) {
1624 		pr_warn("failed to create debugfs directory for %s\n",
1625 			dev_name(pctldev->dev));
1626 		return;
1627 	}
1628 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1629 			    device_root, pctldev, &pinctrl_pins_ops);
1630 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1631 			    device_root, pctldev, &pinctrl_groups_ops);
1632 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1633 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1634 	if (pctldev->desc->pmxops)
1635 		pinmux_init_device_debugfs(device_root, pctldev);
1636 	if (pctldev->desc->confops)
1637 		pinconf_init_device_debugfs(device_root, pctldev);
1638 }
1639 
1640 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1641 {
1642 	debugfs_remove_recursive(pctldev->device_root);
1643 }
1644 
1645 static void pinctrl_init_debugfs(void)
1646 {
1647 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1648 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1649 		pr_warn("failed to create debugfs directory\n");
1650 		debugfs_root = NULL;
1651 		return;
1652 	}
1653 
1654 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1655 			    debugfs_root, NULL, &pinctrl_devices_ops);
1656 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1657 			    debugfs_root, NULL, &pinctrl_maps_ops);
1658 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1659 			    debugfs_root, NULL, &pinctrl_ops);
1660 }
1661 
1662 #else /* CONFIG_DEBUG_FS */
1663 
1664 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1665 {
1666 }
1667 
1668 static void pinctrl_init_debugfs(void)
1669 {
1670 }
1671 
1672 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1673 {
1674 }
1675 
1676 #endif
1677 
1678 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1679 {
1680 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1681 
1682 	if (!ops ||
1683 	    !ops->get_groups_count ||
1684 	    !ops->get_group_name)
1685 		return -EINVAL;
1686 
1687 	if (ops->dt_node_to_map && !ops->dt_free_map)
1688 		return -EINVAL;
1689 
1690 	return 0;
1691 }
1692 
1693 /**
1694  * pinctrl_register() - register a pin controller device
1695  * @pctldesc: descriptor for this pin controller
1696  * @dev: parent device for this pin controller
1697  * @driver_data: private pin controller data for this pin controller
1698  */
1699 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1700 				    struct device *dev, void *driver_data)
1701 {
1702 	struct pinctrl_dev *pctldev;
1703 	int ret;
1704 
1705 	if (!pctldesc)
1706 		return ERR_PTR(-EINVAL);
1707 	if (!pctldesc->name)
1708 		return ERR_PTR(-EINVAL);
1709 
1710 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1711 	if (pctldev == NULL) {
1712 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1713 		return ERR_PTR(-ENOMEM);
1714 	}
1715 
1716 	/* Initialize pin control device struct */
1717 	pctldev->owner = pctldesc->owner;
1718 	pctldev->desc = pctldesc;
1719 	pctldev->driver_data = driver_data;
1720 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1721 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1722 	pctldev->dev = dev;
1723 	mutex_init(&pctldev->mutex);
1724 
1725 	/* check core ops for sanity */
1726 	ret = pinctrl_check_ops(pctldev);
1727 	if (ret) {
1728 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1729 		goto out_err;
1730 	}
1731 
1732 	/* If we're implementing pinmuxing, check the ops for sanity */
1733 	if (pctldesc->pmxops) {
1734 		ret = pinmux_check_ops(pctldev);
1735 		if (ret)
1736 			goto out_err;
1737 	}
1738 
1739 	/* If we're implementing pinconfig, check the ops for sanity */
1740 	if (pctldesc->confops) {
1741 		ret = pinconf_check_ops(pctldev);
1742 		if (ret)
1743 			goto out_err;
1744 	}
1745 
1746 	/* Register all the pins */
1747 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1748 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1749 	if (ret) {
1750 		dev_err(dev, "error during pin registration\n");
1751 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1752 				      pctldesc->npins);
1753 		goto out_err;
1754 	}
1755 
1756 	mutex_lock(&pinctrldev_list_mutex);
1757 	list_add_tail(&pctldev->node, &pinctrldev_list);
1758 	mutex_unlock(&pinctrldev_list_mutex);
1759 
1760 	pctldev->p = pinctrl_get(pctldev->dev);
1761 
1762 	if (!IS_ERR(pctldev->p)) {
1763 		pctldev->hog_default =
1764 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1765 		if (IS_ERR(pctldev->hog_default)) {
1766 			dev_dbg(dev, "failed to lookup the default state\n");
1767 		} else {
1768 			if (pinctrl_select_state(pctldev->p,
1769 						pctldev->hog_default))
1770 				dev_err(dev,
1771 					"failed to select default state\n");
1772 		}
1773 
1774 		pctldev->hog_sleep =
1775 			pinctrl_lookup_state(pctldev->p,
1776 						    PINCTRL_STATE_SLEEP);
1777 		if (IS_ERR(pctldev->hog_sleep))
1778 			dev_dbg(dev, "failed to lookup the sleep state\n");
1779 	}
1780 
1781 	pinctrl_init_device_debugfs(pctldev);
1782 
1783 	return pctldev;
1784 
1785 out_err:
1786 	mutex_destroy(&pctldev->mutex);
1787 	kfree(pctldev);
1788 	return ERR_PTR(ret);
1789 }
1790 EXPORT_SYMBOL_GPL(pinctrl_register);
1791 
1792 /**
1793  * pinctrl_unregister() - unregister pinmux
1794  * @pctldev: pin controller to unregister
1795  *
1796  * Called by pinmux drivers to unregister a pinmux.
1797  */
1798 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1799 {
1800 	struct pinctrl_gpio_range *range, *n;
1801 	if (pctldev == NULL)
1802 		return;
1803 
1804 	mutex_lock(&pctldev->mutex);
1805 	pinctrl_remove_device_debugfs(pctldev);
1806 	mutex_unlock(&pctldev->mutex);
1807 
1808 	if (!IS_ERR(pctldev->p))
1809 		pinctrl_put(pctldev->p);
1810 
1811 	mutex_lock(&pinctrldev_list_mutex);
1812 	mutex_lock(&pctldev->mutex);
1813 	/* TODO: check that no pinmuxes are still active? */
1814 	list_del(&pctldev->node);
1815 	/* Destroy descriptor tree */
1816 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1817 			      pctldev->desc->npins);
1818 	/* remove gpio ranges map */
1819 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1820 		list_del(&range->node);
1821 
1822 	mutex_unlock(&pctldev->mutex);
1823 	mutex_destroy(&pctldev->mutex);
1824 	kfree(pctldev);
1825 	mutex_unlock(&pinctrldev_list_mutex);
1826 }
1827 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1828 
1829 static int __init pinctrl_init(void)
1830 {
1831 	pr_info("initialized pinctrl subsystem\n");
1832 	pinctrl_init_debugfs();
1833 	return 0;
1834 }
1835 
1836 /* init early since many drivers really need to initialized pinmux early */
1837 core_initcall(pinctrl_init);
1838