1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/debugfs.h> 16 #include <linux/device.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/kref.h> 22 #include <linux/list.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/pinctrl/devinfo.h> 28 #include <linux/pinctrl/machine.h> 29 #include <linux/pinctrl/pinctrl.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include "../gpio/gpiolib.h" 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 int error; 209 210 pindesc = pin_desc_get(pctldev, pin->number); 211 if (pindesc) { 212 dev_err(pctldev->dev, "pin %d already registered\n", 213 pin->number); 214 return -EINVAL; 215 } 216 217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 218 if (!pindesc) 219 return -ENOMEM; 220 221 /* Set owner */ 222 pindesc->pctldev = pctldev; 223 224 /* Copy basic pin info */ 225 if (pin->name) { 226 pindesc->name = pin->name; 227 } else { 228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 229 if (!pindesc->name) { 230 error = -ENOMEM; 231 goto failed; 232 } 233 pindesc->dynamic_name = true; 234 } 235 236 pindesc->drv_data = pin->drv_data; 237 238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 239 if (error) 240 goto failed; 241 242 pr_debug("registered pin %d (%s) on %s\n", 243 pin->number, pindesc->name, pctldev->desc->name); 244 return 0; 245 246 failed: 247 kfree(pindesc); 248 return error; 249 } 250 251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 252 const struct pinctrl_pin_desc *pins, 253 unsigned num_descs) 254 { 255 unsigned i; 256 int ret = 0; 257 258 for (i = 0; i < num_descs; i++) { 259 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 260 if (ret) 261 return ret; 262 } 263 264 return 0; 265 } 266 267 /** 268 * gpio_to_pin() - GPIO range GPIO number to pin number translation 269 * @range: GPIO range used for the translation 270 * @gpio: gpio pin to translate to a pin number 271 * 272 * Finds the pin number for a given GPIO using the specified GPIO range 273 * as a base for translation. The distinction between linear GPIO ranges 274 * and pin list based GPIO ranges is managed correctly by this function. 275 * 276 * This function assumes the gpio is part of the specified GPIO range, use 277 * only after making sure this is the case (e.g. by calling it on the 278 * result of successful pinctrl_get_device_gpio_range calls)! 279 */ 280 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 281 unsigned int gpio) 282 { 283 unsigned int offset = gpio - range->base; 284 if (range->pins) 285 return range->pins[offset]; 286 else 287 return range->pin_base + offset; 288 } 289 290 /** 291 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 292 * @pctldev: pin controller device to check 293 * @gpio: gpio pin to check taken from the global GPIO pin space 294 * 295 * Tries to match a GPIO pin number to the ranges handled by a certain pin 296 * controller, return the range or NULL 297 */ 298 static struct pinctrl_gpio_range * 299 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 300 { 301 struct pinctrl_gpio_range *range; 302 303 mutex_lock(&pctldev->mutex); 304 /* Loop over the ranges */ 305 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 306 /* Check if we're in the valid range */ 307 if (gpio >= range->base && 308 gpio < range->base + range->npins) { 309 mutex_unlock(&pctldev->mutex); 310 return range; 311 } 312 } 313 mutex_unlock(&pctldev->mutex); 314 return NULL; 315 } 316 317 /** 318 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 319 * the same GPIO chip are in range 320 * @gpio: gpio pin to check taken from the global GPIO pin space 321 * 322 * This function is complement of pinctrl_match_gpio_range(). If the return 323 * value of pinctrl_match_gpio_range() is NULL, this function could be used 324 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 325 * of the same GPIO chip don't have back-end pinctrl interface. 326 * If the return value is true, it means that pinctrl device is ready & the 327 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 328 * is false, it means that pinctrl device may not be ready. 329 */ 330 #ifdef CONFIG_GPIOLIB 331 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 332 { 333 struct pinctrl_dev *pctldev; 334 struct pinctrl_gpio_range *range = NULL; 335 /* 336 * FIXME: "gpio" here is a number in the global GPIO numberspace. 337 * get rid of this from the ranges eventually and get the GPIO 338 * descriptor from the gpio_chip. 339 */ 340 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio)); 341 342 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 343 return false; 344 345 mutex_lock(&pinctrldev_list_mutex); 346 347 /* Loop over the pin controllers */ 348 list_for_each_entry(pctldev, &pinctrldev_list, node) { 349 /* Loop over the ranges */ 350 mutex_lock(&pctldev->mutex); 351 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 352 /* Check if any gpio range overlapped with gpio chip */ 353 if (range->base + range->npins - 1 < chip->base || 354 range->base > chip->base + chip->ngpio - 1) 355 continue; 356 mutex_unlock(&pctldev->mutex); 357 mutex_unlock(&pinctrldev_list_mutex); 358 return true; 359 } 360 mutex_unlock(&pctldev->mutex); 361 } 362 363 mutex_unlock(&pinctrldev_list_mutex); 364 365 return false; 366 } 367 #else 368 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 369 #endif 370 371 /** 372 * pinctrl_get_device_gpio_range() - find device for GPIO range 373 * @gpio: the pin to locate the pin controller for 374 * @outdev: the pin control device if found 375 * @outrange: the GPIO range if found 376 * 377 * Find the pin controller handling a certain GPIO pin from the pinspace of 378 * the GPIO subsystem, return the device and the matching GPIO range. Returns 379 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 380 * may still have not been registered. 381 */ 382 static int pinctrl_get_device_gpio_range(unsigned gpio, 383 struct pinctrl_dev **outdev, 384 struct pinctrl_gpio_range **outrange) 385 { 386 struct pinctrl_dev *pctldev; 387 388 mutex_lock(&pinctrldev_list_mutex); 389 390 /* Loop over the pin controllers */ 391 list_for_each_entry(pctldev, &pinctrldev_list, node) { 392 struct pinctrl_gpio_range *range; 393 394 range = pinctrl_match_gpio_range(pctldev, gpio); 395 if (range) { 396 *outdev = pctldev; 397 *outrange = range; 398 mutex_unlock(&pinctrldev_list_mutex); 399 return 0; 400 } 401 } 402 403 mutex_unlock(&pinctrldev_list_mutex); 404 405 return -EPROBE_DEFER; 406 } 407 408 /** 409 * pinctrl_add_gpio_range() - register a GPIO range for a controller 410 * @pctldev: pin controller device to add the range to 411 * @range: the GPIO range to add 412 * 413 * This adds a range of GPIOs to be handled by a certain pin controller. Call 414 * this to register handled ranges after registering your pin controller. 415 */ 416 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 417 struct pinctrl_gpio_range *range) 418 { 419 mutex_lock(&pctldev->mutex); 420 list_add_tail(&range->node, &pctldev->gpio_ranges); 421 mutex_unlock(&pctldev->mutex); 422 } 423 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 424 425 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 426 struct pinctrl_gpio_range *ranges, 427 unsigned nranges) 428 { 429 int i; 430 431 for (i = 0; i < nranges; i++) 432 pinctrl_add_gpio_range(pctldev, &ranges[i]); 433 } 434 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 435 436 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 437 struct pinctrl_gpio_range *range) 438 { 439 struct pinctrl_dev *pctldev; 440 441 pctldev = get_pinctrl_dev_from_devname(devname); 442 443 /* 444 * If we can't find this device, let's assume that is because 445 * it has not probed yet, so the driver trying to register this 446 * range need to defer probing. 447 */ 448 if (!pctldev) { 449 return ERR_PTR(-EPROBE_DEFER); 450 } 451 pinctrl_add_gpio_range(pctldev, range); 452 453 return pctldev; 454 } 455 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 456 457 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 458 const unsigned **pins, unsigned *num_pins) 459 { 460 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 461 int gs; 462 463 if (!pctlops->get_group_pins) 464 return -EINVAL; 465 466 gs = pinctrl_get_group_selector(pctldev, pin_group); 467 if (gs < 0) 468 return gs; 469 470 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 471 } 472 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 473 474 struct pinctrl_gpio_range * 475 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 476 unsigned int pin) 477 { 478 struct pinctrl_gpio_range *range; 479 480 /* Loop over the ranges */ 481 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 482 /* Check if we're in the valid range */ 483 if (range->pins) { 484 int a; 485 for (a = 0; a < range->npins; a++) { 486 if (range->pins[a] == pin) 487 return range; 488 } 489 } else if (pin >= range->pin_base && 490 pin < range->pin_base + range->npins) 491 return range; 492 } 493 494 return NULL; 495 } 496 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 497 498 /** 499 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 500 * @pctldev: the pin controller device to look in 501 * @pin: a controller-local number to find the range for 502 */ 503 struct pinctrl_gpio_range * 504 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 505 unsigned int pin) 506 { 507 struct pinctrl_gpio_range *range; 508 509 mutex_lock(&pctldev->mutex); 510 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 511 mutex_unlock(&pctldev->mutex); 512 513 return range; 514 } 515 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 516 517 /** 518 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 519 * @pctldev: pin controller device to remove the range from 520 * @range: the GPIO range to remove 521 */ 522 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 523 struct pinctrl_gpio_range *range) 524 { 525 mutex_lock(&pctldev->mutex); 526 list_del(&range->node); 527 mutex_unlock(&pctldev->mutex); 528 } 529 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 530 531 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 532 533 /** 534 * pinctrl_generic_get_group_count() - returns the number of pin groups 535 * @pctldev: pin controller device 536 */ 537 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 538 { 539 return pctldev->num_groups; 540 } 541 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 542 543 /** 544 * pinctrl_generic_get_group_name() - returns the name of a pin group 545 * @pctldev: pin controller device 546 * @selector: group number 547 */ 548 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 549 unsigned int selector) 550 { 551 struct group_desc *group; 552 553 group = radix_tree_lookup(&pctldev->pin_group_tree, 554 selector); 555 if (!group) 556 return NULL; 557 558 return group->name; 559 } 560 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 561 562 /** 563 * pinctrl_generic_get_group_pins() - gets the pin group pins 564 * @pctldev: pin controller device 565 * @selector: group number 566 * @pins: pins in the group 567 * @num_pins: number of pins in the group 568 */ 569 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 570 unsigned int selector, 571 const unsigned int **pins, 572 unsigned int *num_pins) 573 { 574 struct group_desc *group; 575 576 group = radix_tree_lookup(&pctldev->pin_group_tree, 577 selector); 578 if (!group) { 579 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 580 __func__, selector); 581 return -EINVAL; 582 } 583 584 *pins = group->pins; 585 *num_pins = group->num_pins; 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 590 591 /** 592 * pinctrl_generic_get_group() - returns a pin group based on the number 593 * @pctldev: pin controller device 594 * @selector: group number 595 */ 596 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 597 unsigned int selector) 598 { 599 struct group_desc *group; 600 601 group = radix_tree_lookup(&pctldev->pin_group_tree, 602 selector); 603 if (!group) 604 return NULL; 605 606 return group; 607 } 608 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 609 610 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 611 const char *function) 612 { 613 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 614 int ngroups = ops->get_groups_count(pctldev); 615 int selector = 0; 616 617 /* See if this pctldev has this group */ 618 while (selector < ngroups) { 619 const char *gname = ops->get_group_name(pctldev, selector); 620 621 if (gname && !strcmp(function, gname)) 622 return selector; 623 624 selector++; 625 } 626 627 return -EINVAL; 628 } 629 630 /** 631 * pinctrl_generic_add_group() - adds a new pin group 632 * @pctldev: pin controller device 633 * @name: name of the pin group 634 * @pins: pins in the pin group 635 * @num_pins: number of pins in the pin group 636 * @data: pin controller driver specific data 637 * 638 * Note that the caller must take care of locking. 639 */ 640 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 641 int *pins, int num_pins, void *data) 642 { 643 struct group_desc *group; 644 int selector, error; 645 646 if (!name) 647 return -EINVAL; 648 649 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 650 if (selector >= 0) 651 return selector; 652 653 selector = pctldev->num_groups; 654 655 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 656 if (!group) 657 return -ENOMEM; 658 659 group->name = name; 660 group->pins = pins; 661 group->num_pins = num_pins; 662 group->data = data; 663 664 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 665 if (error) 666 return error; 667 668 pctldev->num_groups++; 669 670 return selector; 671 } 672 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 673 674 /** 675 * pinctrl_generic_remove_group() - removes a numbered pin group 676 * @pctldev: pin controller device 677 * @selector: group number 678 * 679 * Note that the caller must take care of locking. 680 */ 681 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 682 unsigned int selector) 683 { 684 struct group_desc *group; 685 686 group = radix_tree_lookup(&pctldev->pin_group_tree, 687 selector); 688 if (!group) 689 return -ENOENT; 690 691 radix_tree_delete(&pctldev->pin_group_tree, selector); 692 devm_kfree(pctldev->dev, group); 693 694 pctldev->num_groups--; 695 696 return 0; 697 } 698 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 699 700 /** 701 * pinctrl_generic_free_groups() - removes all pin groups 702 * @pctldev: pin controller device 703 * 704 * Note that the caller must take care of locking. The pinctrl groups 705 * are allocated with devm_kzalloc() so no need to free them here. 706 */ 707 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 708 { 709 struct radix_tree_iter iter; 710 void __rcu **slot; 711 712 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 713 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 714 715 pctldev->num_groups = 0; 716 } 717 718 #else 719 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 720 { 721 } 722 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 723 724 /** 725 * pinctrl_get_group_selector() - returns the group selector for a group 726 * @pctldev: the pin controller handling the group 727 * @pin_group: the pin group to look up 728 */ 729 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 730 const char *pin_group) 731 { 732 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 733 unsigned ngroups = pctlops->get_groups_count(pctldev); 734 unsigned group_selector = 0; 735 736 while (group_selector < ngroups) { 737 const char *gname = pctlops->get_group_name(pctldev, 738 group_selector); 739 if (gname && !strcmp(gname, pin_group)) { 740 dev_dbg(pctldev->dev, 741 "found group selector %u for %s\n", 742 group_selector, 743 pin_group); 744 return group_selector; 745 } 746 747 group_selector++; 748 } 749 750 dev_err(pctldev->dev, "does not have pin group %s\n", 751 pin_group); 752 753 return -EINVAL; 754 } 755 756 bool pinctrl_gpio_can_use_line(unsigned gpio) 757 { 758 struct pinctrl_dev *pctldev; 759 struct pinctrl_gpio_range *range; 760 bool result; 761 int pin; 762 763 /* 764 * Try to obtain GPIO range, if it fails 765 * we're probably dealing with GPIO driver 766 * without a backing pin controller - bail out. 767 */ 768 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 769 return true; 770 771 mutex_lock(&pctldev->mutex); 772 773 /* Convert to the pin controllers number space */ 774 pin = gpio_to_pin(range, gpio); 775 776 result = pinmux_can_be_used_for_gpio(pctldev, pin); 777 778 mutex_unlock(&pctldev->mutex); 779 780 return result; 781 } 782 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 783 784 /** 785 * pinctrl_gpio_request() - request a single pin to be used as GPIO 786 * @gpio: the GPIO pin number from the GPIO subsystem number space 787 * 788 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 789 * as part of their gpio_request() semantics, platforms and individual drivers 790 * shall *NOT* request GPIO pins to be muxed in. 791 */ 792 int pinctrl_gpio_request(unsigned gpio) 793 { 794 struct pinctrl_dev *pctldev; 795 struct pinctrl_gpio_range *range; 796 int ret; 797 int pin; 798 799 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 800 if (ret) { 801 if (pinctrl_ready_for_gpio_range(gpio)) 802 ret = 0; 803 return ret; 804 } 805 806 mutex_lock(&pctldev->mutex); 807 808 /* Convert to the pin controllers number space */ 809 pin = gpio_to_pin(range, gpio); 810 811 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 812 813 mutex_unlock(&pctldev->mutex); 814 815 return ret; 816 } 817 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 818 819 /** 820 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 821 * @gpio: the GPIO pin number from the GPIO subsystem number space 822 * 823 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 824 * as part of their gpio_free() semantics, platforms and individual drivers 825 * shall *NOT* request GPIO pins to be muxed out. 826 */ 827 void pinctrl_gpio_free(unsigned gpio) 828 { 829 struct pinctrl_dev *pctldev; 830 struct pinctrl_gpio_range *range; 831 int ret; 832 int pin; 833 834 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 835 if (ret) { 836 return; 837 } 838 mutex_lock(&pctldev->mutex); 839 840 /* Convert to the pin controllers number space */ 841 pin = gpio_to_pin(range, gpio); 842 843 pinmux_free_gpio(pctldev, pin, range); 844 845 mutex_unlock(&pctldev->mutex); 846 } 847 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 848 849 static int pinctrl_gpio_direction(unsigned gpio, bool input) 850 { 851 struct pinctrl_dev *pctldev; 852 struct pinctrl_gpio_range *range; 853 int ret; 854 int pin; 855 856 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 857 if (ret) { 858 return ret; 859 } 860 861 mutex_lock(&pctldev->mutex); 862 863 /* Convert to the pin controllers number space */ 864 pin = gpio_to_pin(range, gpio); 865 ret = pinmux_gpio_direction(pctldev, range, pin, input); 866 867 mutex_unlock(&pctldev->mutex); 868 869 return ret; 870 } 871 872 /** 873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 874 * @gpio: the GPIO pin number from the GPIO subsystem number space 875 * 876 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 877 * as part of their gpio_direction_input() semantics, platforms and individual 878 * drivers shall *NOT* touch pin control GPIO calls. 879 */ 880 int pinctrl_gpio_direction_input(unsigned gpio) 881 { 882 return pinctrl_gpio_direction(gpio, true); 883 } 884 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 885 886 /** 887 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 888 * @gpio: the GPIO pin number from the GPIO subsystem number space 889 * 890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 891 * as part of their gpio_direction_output() semantics, platforms and individual 892 * drivers shall *NOT* touch pin control GPIO calls. 893 */ 894 int pinctrl_gpio_direction_output(unsigned gpio) 895 { 896 return pinctrl_gpio_direction(gpio, false); 897 } 898 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 899 900 /** 901 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 902 * @gpio: the GPIO pin number from the GPIO subsystem number space 903 * @config: the configuration to apply to the GPIO 904 * 905 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 906 * they need to call the underlying pin controller to change GPIO config 907 * (for example set debounce time). 908 */ 909 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 910 { 911 unsigned long configs[] = { config }; 912 struct pinctrl_gpio_range *range; 913 struct pinctrl_dev *pctldev; 914 int ret, pin; 915 916 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 917 if (ret) 918 return ret; 919 920 mutex_lock(&pctldev->mutex); 921 pin = gpio_to_pin(range, gpio); 922 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 923 mutex_unlock(&pctldev->mutex); 924 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 928 929 static struct pinctrl_state *find_state(struct pinctrl *p, 930 const char *name) 931 { 932 struct pinctrl_state *state; 933 934 list_for_each_entry(state, &p->states, node) 935 if (!strcmp(state->name, name)) 936 return state; 937 938 return NULL; 939 } 940 941 static struct pinctrl_state *create_state(struct pinctrl *p, 942 const char *name) 943 { 944 struct pinctrl_state *state; 945 946 state = kzalloc(sizeof(*state), GFP_KERNEL); 947 if (!state) 948 return ERR_PTR(-ENOMEM); 949 950 state->name = name; 951 INIT_LIST_HEAD(&state->settings); 952 953 list_add_tail(&state->node, &p->states); 954 955 return state; 956 } 957 958 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 959 const struct pinctrl_map *map) 960 { 961 struct pinctrl_state *state; 962 struct pinctrl_setting *setting; 963 int ret; 964 965 state = find_state(p, map->name); 966 if (!state) 967 state = create_state(p, map->name); 968 if (IS_ERR(state)) 969 return PTR_ERR(state); 970 971 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 972 return 0; 973 974 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 975 if (!setting) 976 return -ENOMEM; 977 978 setting->type = map->type; 979 980 if (pctldev) 981 setting->pctldev = pctldev; 982 else 983 setting->pctldev = 984 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 985 if (!setting->pctldev) { 986 kfree(setting); 987 /* Do not defer probing of hogs (circular loop) */ 988 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 989 return -ENODEV; 990 /* 991 * OK let us guess that the driver is not there yet, and 992 * let's defer obtaining this pinctrl handle to later... 993 */ 994 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 995 map->ctrl_dev_name); 996 return -EPROBE_DEFER; 997 } 998 999 setting->dev_name = map->dev_name; 1000 1001 switch (map->type) { 1002 case PIN_MAP_TYPE_MUX_GROUP: 1003 ret = pinmux_map_to_setting(map, setting); 1004 break; 1005 case PIN_MAP_TYPE_CONFIGS_PIN: 1006 case PIN_MAP_TYPE_CONFIGS_GROUP: 1007 ret = pinconf_map_to_setting(map, setting); 1008 break; 1009 default: 1010 ret = -EINVAL; 1011 break; 1012 } 1013 if (ret < 0) { 1014 kfree(setting); 1015 return ret; 1016 } 1017 1018 list_add_tail(&setting->node, &state->settings); 1019 1020 return 0; 1021 } 1022 1023 static struct pinctrl *find_pinctrl(struct device *dev) 1024 { 1025 struct pinctrl *p; 1026 1027 mutex_lock(&pinctrl_list_mutex); 1028 list_for_each_entry(p, &pinctrl_list, node) 1029 if (p->dev == dev) { 1030 mutex_unlock(&pinctrl_list_mutex); 1031 return p; 1032 } 1033 1034 mutex_unlock(&pinctrl_list_mutex); 1035 return NULL; 1036 } 1037 1038 static void pinctrl_free(struct pinctrl *p, bool inlist); 1039 1040 static struct pinctrl *create_pinctrl(struct device *dev, 1041 struct pinctrl_dev *pctldev) 1042 { 1043 struct pinctrl *p; 1044 const char *devname; 1045 struct pinctrl_maps *maps_node; 1046 const struct pinctrl_map *map; 1047 int ret; 1048 1049 /* 1050 * create the state cookie holder struct pinctrl for each 1051 * mapping, this is what consumers will get when requesting 1052 * a pin control handle with pinctrl_get() 1053 */ 1054 p = kzalloc(sizeof(*p), GFP_KERNEL); 1055 if (!p) 1056 return ERR_PTR(-ENOMEM); 1057 p->dev = dev; 1058 INIT_LIST_HEAD(&p->states); 1059 INIT_LIST_HEAD(&p->dt_maps); 1060 1061 ret = pinctrl_dt_to_map(p, pctldev); 1062 if (ret < 0) { 1063 kfree(p); 1064 return ERR_PTR(ret); 1065 } 1066 1067 devname = dev_name(dev); 1068 1069 mutex_lock(&pinctrl_maps_mutex); 1070 /* Iterate over the pin control maps to locate the right ones */ 1071 for_each_pin_map(maps_node, map) { 1072 /* Map must be for this device */ 1073 if (strcmp(map->dev_name, devname)) 1074 continue; 1075 /* 1076 * If pctldev is not null, we are claiming hog for it, 1077 * that means, setting that is served by pctldev by itself. 1078 * 1079 * Thus we must skip map that is for this device but is served 1080 * by other device. 1081 */ 1082 if (pctldev && 1083 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1084 continue; 1085 1086 ret = add_setting(p, pctldev, map); 1087 /* 1088 * At this point the adding of a setting may: 1089 * 1090 * - Defer, if the pinctrl device is not yet available 1091 * - Fail, if the pinctrl device is not yet available, 1092 * AND the setting is a hog. We cannot defer that, since 1093 * the hog will kick in immediately after the device 1094 * is registered. 1095 * 1096 * If the error returned was not -EPROBE_DEFER then we 1097 * accumulate the errors to see if we end up with 1098 * an -EPROBE_DEFER later, as that is the worst case. 1099 */ 1100 if (ret == -EPROBE_DEFER) { 1101 pinctrl_free(p, false); 1102 mutex_unlock(&pinctrl_maps_mutex); 1103 return ERR_PTR(ret); 1104 } 1105 } 1106 mutex_unlock(&pinctrl_maps_mutex); 1107 1108 if (ret < 0) { 1109 /* If some other error than deferral occurred, return here */ 1110 pinctrl_free(p, false); 1111 return ERR_PTR(ret); 1112 } 1113 1114 kref_init(&p->users); 1115 1116 /* Add the pinctrl handle to the global list */ 1117 mutex_lock(&pinctrl_list_mutex); 1118 list_add_tail(&p->node, &pinctrl_list); 1119 mutex_unlock(&pinctrl_list_mutex); 1120 1121 return p; 1122 } 1123 1124 /** 1125 * pinctrl_get() - retrieves the pinctrl handle for a device 1126 * @dev: the device to obtain the handle for 1127 */ 1128 struct pinctrl *pinctrl_get(struct device *dev) 1129 { 1130 struct pinctrl *p; 1131 1132 if (WARN_ON(!dev)) 1133 return ERR_PTR(-EINVAL); 1134 1135 /* 1136 * See if somebody else (such as the device core) has already 1137 * obtained a handle to the pinctrl for this device. In that case, 1138 * return another pointer to it. 1139 */ 1140 p = find_pinctrl(dev); 1141 if (p) { 1142 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1143 kref_get(&p->users); 1144 return p; 1145 } 1146 1147 return create_pinctrl(dev, NULL); 1148 } 1149 EXPORT_SYMBOL_GPL(pinctrl_get); 1150 1151 static void pinctrl_free_setting(bool disable_setting, 1152 struct pinctrl_setting *setting) 1153 { 1154 switch (setting->type) { 1155 case PIN_MAP_TYPE_MUX_GROUP: 1156 if (disable_setting) 1157 pinmux_disable_setting(setting); 1158 pinmux_free_setting(setting); 1159 break; 1160 case PIN_MAP_TYPE_CONFIGS_PIN: 1161 case PIN_MAP_TYPE_CONFIGS_GROUP: 1162 pinconf_free_setting(setting); 1163 break; 1164 default: 1165 break; 1166 } 1167 } 1168 1169 static void pinctrl_free(struct pinctrl *p, bool inlist) 1170 { 1171 struct pinctrl_state *state, *n1; 1172 struct pinctrl_setting *setting, *n2; 1173 1174 mutex_lock(&pinctrl_list_mutex); 1175 list_for_each_entry_safe(state, n1, &p->states, node) { 1176 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1177 pinctrl_free_setting(state == p->state, setting); 1178 list_del(&setting->node); 1179 kfree(setting); 1180 } 1181 list_del(&state->node); 1182 kfree(state); 1183 } 1184 1185 pinctrl_dt_free_maps(p); 1186 1187 if (inlist) 1188 list_del(&p->node); 1189 kfree(p); 1190 mutex_unlock(&pinctrl_list_mutex); 1191 } 1192 1193 /** 1194 * pinctrl_release() - release the pinctrl handle 1195 * @kref: the kref in the pinctrl being released 1196 */ 1197 static void pinctrl_release(struct kref *kref) 1198 { 1199 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1200 1201 pinctrl_free(p, true); 1202 } 1203 1204 /** 1205 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1206 * @p: the pinctrl handle to release 1207 */ 1208 void pinctrl_put(struct pinctrl *p) 1209 { 1210 kref_put(&p->users, pinctrl_release); 1211 } 1212 EXPORT_SYMBOL_GPL(pinctrl_put); 1213 1214 /** 1215 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1216 * @p: the pinctrl handle to retrieve the state from 1217 * @name: the state name to retrieve 1218 */ 1219 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1220 const char *name) 1221 { 1222 struct pinctrl_state *state; 1223 1224 state = find_state(p, name); 1225 if (!state) { 1226 if (pinctrl_dummy_state) { 1227 /* create dummy state */ 1228 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1229 name); 1230 state = create_state(p, name); 1231 } else 1232 state = ERR_PTR(-ENODEV); 1233 } 1234 1235 return state; 1236 } 1237 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1238 1239 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1240 struct device *consumer) 1241 { 1242 if (pctldev->desc->link_consumers) 1243 device_link_add(consumer, pctldev->dev, 1244 DL_FLAG_PM_RUNTIME | 1245 DL_FLAG_AUTOREMOVE_CONSUMER); 1246 } 1247 1248 /** 1249 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1250 * @p: the pinctrl handle for the device that requests configuration 1251 * @state: the state handle to select/activate/program 1252 */ 1253 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1254 { 1255 struct pinctrl_setting *setting, *setting2; 1256 struct pinctrl_state *old_state = READ_ONCE(p->state); 1257 int ret; 1258 1259 if (old_state) { 1260 /* 1261 * For each pinmux setting in the old state, forget SW's record 1262 * of mux owner for that pingroup. Any pingroups which are 1263 * still owned by the new state will be re-acquired by the call 1264 * to pinmux_enable_setting() in the loop below. 1265 */ 1266 list_for_each_entry(setting, &old_state->settings, node) { 1267 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1268 continue; 1269 pinmux_disable_setting(setting); 1270 } 1271 } 1272 1273 p->state = NULL; 1274 1275 /* Apply all the settings for the new state - pinmux first */ 1276 list_for_each_entry(setting, &state->settings, node) { 1277 switch (setting->type) { 1278 case PIN_MAP_TYPE_MUX_GROUP: 1279 ret = pinmux_enable_setting(setting); 1280 break; 1281 case PIN_MAP_TYPE_CONFIGS_PIN: 1282 case PIN_MAP_TYPE_CONFIGS_GROUP: 1283 ret = 0; 1284 break; 1285 default: 1286 ret = -EINVAL; 1287 break; 1288 } 1289 1290 if (ret < 0) 1291 goto unapply_new_state; 1292 1293 /* Do not link hogs (circular dependency) */ 1294 if (p != setting->pctldev->p) 1295 pinctrl_link_add(setting->pctldev, p->dev); 1296 } 1297 1298 /* Apply all the settings for the new state - pinconf after */ 1299 list_for_each_entry(setting, &state->settings, node) { 1300 switch (setting->type) { 1301 case PIN_MAP_TYPE_MUX_GROUP: 1302 ret = 0; 1303 break; 1304 case PIN_MAP_TYPE_CONFIGS_PIN: 1305 case PIN_MAP_TYPE_CONFIGS_GROUP: 1306 ret = pinconf_apply_setting(setting); 1307 break; 1308 default: 1309 ret = -EINVAL; 1310 break; 1311 } 1312 1313 if (ret < 0) { 1314 goto unapply_new_state; 1315 } 1316 1317 /* Do not link hogs (circular dependency) */ 1318 if (p != setting->pctldev->p) 1319 pinctrl_link_add(setting->pctldev, p->dev); 1320 } 1321 1322 p->state = state; 1323 1324 return 0; 1325 1326 unapply_new_state: 1327 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1328 1329 list_for_each_entry(setting2, &state->settings, node) { 1330 if (&setting2->node == &setting->node) 1331 break; 1332 /* 1333 * All we can do here is pinmux_disable_setting. 1334 * That means that some pins are muxed differently now 1335 * than they were before applying the setting (We can't 1336 * "unmux a pin"!), but it's not a big deal since the pins 1337 * are free to be muxed by another apply_setting. 1338 */ 1339 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1340 pinmux_disable_setting(setting2); 1341 } 1342 1343 /* There's no infinite recursive loop here because p->state is NULL */ 1344 if (old_state) 1345 pinctrl_select_state(p, old_state); 1346 1347 return ret; 1348 } 1349 1350 /** 1351 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1352 * @p: the pinctrl handle for the device that requests configuration 1353 * @state: the state handle to select/activate/program 1354 */ 1355 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1356 { 1357 if (p->state == state) 1358 return 0; 1359 1360 return pinctrl_commit_state(p, state); 1361 } 1362 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1363 1364 static void devm_pinctrl_release(struct device *dev, void *res) 1365 { 1366 pinctrl_put(*(struct pinctrl **)res); 1367 } 1368 1369 /** 1370 * devm_pinctrl_get() - Resource managed pinctrl_get() 1371 * @dev: the device to obtain the handle for 1372 * 1373 * If there is a need to explicitly destroy the returned struct pinctrl, 1374 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1375 */ 1376 struct pinctrl *devm_pinctrl_get(struct device *dev) 1377 { 1378 struct pinctrl **ptr, *p; 1379 1380 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1381 if (!ptr) 1382 return ERR_PTR(-ENOMEM); 1383 1384 p = pinctrl_get(dev); 1385 if (!IS_ERR(p)) { 1386 *ptr = p; 1387 devres_add(dev, ptr); 1388 } else { 1389 devres_free(ptr); 1390 } 1391 1392 return p; 1393 } 1394 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1395 1396 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1397 { 1398 struct pinctrl **p = res; 1399 1400 return *p == data; 1401 } 1402 1403 /** 1404 * devm_pinctrl_put() - Resource managed pinctrl_put() 1405 * @p: the pinctrl handle to release 1406 * 1407 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1408 * this function will not need to be called and the resource management 1409 * code will ensure that the resource is freed. 1410 */ 1411 void devm_pinctrl_put(struct pinctrl *p) 1412 { 1413 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1414 devm_pinctrl_match, p)); 1415 } 1416 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1417 1418 /** 1419 * pinctrl_register_mappings() - register a set of pin controller mappings 1420 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1421 * keeps a reference to the passed in maps, so they should _not_ be 1422 * marked with __initdata. 1423 * @num_maps: the number of maps in the mapping table 1424 */ 1425 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1426 unsigned num_maps) 1427 { 1428 int i, ret; 1429 struct pinctrl_maps *maps_node; 1430 1431 pr_debug("add %u pinctrl maps\n", num_maps); 1432 1433 /* First sanity check the new mapping */ 1434 for (i = 0; i < num_maps; i++) { 1435 if (!maps[i].dev_name) { 1436 pr_err("failed to register map %s (%d): no device given\n", 1437 maps[i].name, i); 1438 return -EINVAL; 1439 } 1440 1441 if (!maps[i].name) { 1442 pr_err("failed to register map %d: no map name given\n", 1443 i); 1444 return -EINVAL; 1445 } 1446 1447 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1448 !maps[i].ctrl_dev_name) { 1449 pr_err("failed to register map %s (%d): no pin control device given\n", 1450 maps[i].name, i); 1451 return -EINVAL; 1452 } 1453 1454 switch (maps[i].type) { 1455 case PIN_MAP_TYPE_DUMMY_STATE: 1456 break; 1457 case PIN_MAP_TYPE_MUX_GROUP: 1458 ret = pinmux_validate_map(&maps[i], i); 1459 if (ret < 0) 1460 return ret; 1461 break; 1462 case PIN_MAP_TYPE_CONFIGS_PIN: 1463 case PIN_MAP_TYPE_CONFIGS_GROUP: 1464 ret = pinconf_validate_map(&maps[i], i); 1465 if (ret < 0) 1466 return ret; 1467 break; 1468 default: 1469 pr_err("failed to register map %s (%d): invalid type given\n", 1470 maps[i].name, i); 1471 return -EINVAL; 1472 } 1473 } 1474 1475 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1476 if (!maps_node) 1477 return -ENOMEM; 1478 1479 maps_node->maps = maps; 1480 maps_node->num_maps = num_maps; 1481 1482 mutex_lock(&pinctrl_maps_mutex); 1483 list_add_tail(&maps_node->node, &pinctrl_maps); 1484 mutex_unlock(&pinctrl_maps_mutex); 1485 1486 return 0; 1487 } 1488 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1489 1490 /** 1491 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1492 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1493 * when registering the mappings. 1494 */ 1495 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1496 { 1497 struct pinctrl_maps *maps_node; 1498 1499 mutex_lock(&pinctrl_maps_mutex); 1500 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1501 if (maps_node->maps == map) { 1502 list_del(&maps_node->node); 1503 kfree(maps_node); 1504 mutex_unlock(&pinctrl_maps_mutex); 1505 return; 1506 } 1507 } 1508 mutex_unlock(&pinctrl_maps_mutex); 1509 } 1510 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1511 1512 /** 1513 * pinctrl_force_sleep() - turn a given controller device into sleep state 1514 * @pctldev: pin controller device 1515 */ 1516 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1517 { 1518 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1519 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1520 return 0; 1521 } 1522 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1523 1524 /** 1525 * pinctrl_force_default() - turn a given controller device into default state 1526 * @pctldev: pin controller device 1527 */ 1528 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1529 { 1530 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1531 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1532 return 0; 1533 } 1534 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1535 1536 /** 1537 * pinctrl_init_done() - tell pinctrl probe is done 1538 * 1539 * We'll use this time to switch the pins from "init" to "default" unless the 1540 * driver selected some other state. 1541 * 1542 * @dev: device to that's done probing 1543 */ 1544 int pinctrl_init_done(struct device *dev) 1545 { 1546 struct dev_pin_info *pins = dev->pins; 1547 int ret; 1548 1549 if (!pins) 1550 return 0; 1551 1552 if (IS_ERR(pins->init_state)) 1553 return 0; /* No such state */ 1554 1555 if (pins->p->state != pins->init_state) 1556 return 0; /* Not at init anyway */ 1557 1558 if (IS_ERR(pins->default_state)) 1559 return 0; /* No default state */ 1560 1561 ret = pinctrl_select_state(pins->p, pins->default_state); 1562 if (ret) 1563 dev_err(dev, "failed to activate default pinctrl state\n"); 1564 1565 return ret; 1566 } 1567 1568 static int pinctrl_select_bound_state(struct device *dev, 1569 struct pinctrl_state *state) 1570 { 1571 struct dev_pin_info *pins = dev->pins; 1572 int ret; 1573 1574 if (IS_ERR(state)) 1575 return 0; /* No such state */ 1576 ret = pinctrl_select_state(pins->p, state); 1577 if (ret) 1578 dev_err(dev, "failed to activate pinctrl state %s\n", 1579 state->name); 1580 return ret; 1581 } 1582 1583 /** 1584 * pinctrl_select_default_state() - select default pinctrl state 1585 * @dev: device to select default state for 1586 */ 1587 int pinctrl_select_default_state(struct device *dev) 1588 { 1589 if (!dev->pins) 1590 return 0; 1591 1592 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1593 } 1594 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1595 1596 #ifdef CONFIG_PM 1597 1598 /** 1599 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1600 * @dev: device to select default state for 1601 */ 1602 int pinctrl_pm_select_default_state(struct device *dev) 1603 { 1604 return pinctrl_select_default_state(dev); 1605 } 1606 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1607 1608 /** 1609 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1610 * @dev: device to select sleep state for 1611 */ 1612 int pinctrl_pm_select_sleep_state(struct device *dev) 1613 { 1614 if (!dev->pins) 1615 return 0; 1616 1617 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1618 } 1619 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1620 1621 /** 1622 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1623 * @dev: device to select idle state for 1624 */ 1625 int pinctrl_pm_select_idle_state(struct device *dev) 1626 { 1627 if (!dev->pins) 1628 return 0; 1629 1630 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1631 } 1632 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1633 #endif 1634 1635 #ifdef CONFIG_DEBUG_FS 1636 1637 static int pinctrl_pins_show(struct seq_file *s, void *what) 1638 { 1639 struct pinctrl_dev *pctldev = s->private; 1640 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1641 unsigned i, pin; 1642 #ifdef CONFIG_GPIOLIB 1643 struct pinctrl_gpio_range *range; 1644 struct gpio_chip *chip; 1645 int gpio_num; 1646 #endif 1647 1648 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1649 1650 mutex_lock(&pctldev->mutex); 1651 1652 /* The pin number can be retrived from the pin controller descriptor */ 1653 for (i = 0; i < pctldev->desc->npins; i++) { 1654 struct pin_desc *desc; 1655 1656 pin = pctldev->desc->pins[i].number; 1657 desc = pin_desc_get(pctldev, pin); 1658 /* Pin space may be sparse */ 1659 if (!desc) 1660 continue; 1661 1662 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1663 1664 #ifdef CONFIG_GPIOLIB 1665 gpio_num = -1; 1666 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1667 if ((pin >= range->pin_base) && 1668 (pin < (range->pin_base + range->npins))) { 1669 gpio_num = range->base + (pin - range->pin_base); 1670 break; 1671 } 1672 } 1673 if (gpio_num >= 0) 1674 /* 1675 * FIXME: gpio_num comes from the global GPIO numberspace. 1676 * we need to get rid of the range->base eventually and 1677 * get the descriptor directly from the gpio_chip. 1678 */ 1679 chip = gpiod_to_chip(gpio_to_desc(gpio_num)); 1680 else 1681 chip = NULL; 1682 if (chip) 1683 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1684 else 1685 seq_puts(s, "0:? "); 1686 #endif 1687 1688 /* Driver-specific info per pin */ 1689 if (ops->pin_dbg_show) 1690 ops->pin_dbg_show(pctldev, s, pin); 1691 1692 seq_puts(s, "\n"); 1693 } 1694 1695 mutex_unlock(&pctldev->mutex); 1696 1697 return 0; 1698 } 1699 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1700 1701 static int pinctrl_groups_show(struct seq_file *s, void *what) 1702 { 1703 struct pinctrl_dev *pctldev = s->private; 1704 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1705 unsigned ngroups, selector = 0; 1706 1707 mutex_lock(&pctldev->mutex); 1708 1709 ngroups = ops->get_groups_count(pctldev); 1710 1711 seq_puts(s, "registered pin groups:\n"); 1712 while (selector < ngroups) { 1713 const unsigned *pins = NULL; 1714 unsigned num_pins = 0; 1715 const char *gname = ops->get_group_name(pctldev, selector); 1716 const char *pname; 1717 int ret = 0; 1718 int i; 1719 1720 if (ops->get_group_pins) 1721 ret = ops->get_group_pins(pctldev, selector, 1722 &pins, &num_pins); 1723 if (ret) 1724 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1725 gname); 1726 else { 1727 seq_printf(s, "group: %s\n", gname); 1728 for (i = 0; i < num_pins; i++) { 1729 pname = pin_get_name(pctldev, pins[i]); 1730 if (WARN_ON(!pname)) { 1731 mutex_unlock(&pctldev->mutex); 1732 return -EINVAL; 1733 } 1734 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1735 } 1736 seq_puts(s, "\n"); 1737 } 1738 selector++; 1739 } 1740 1741 mutex_unlock(&pctldev->mutex); 1742 1743 return 0; 1744 } 1745 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1746 1747 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1748 { 1749 struct pinctrl_dev *pctldev = s->private; 1750 struct pinctrl_gpio_range *range; 1751 1752 seq_puts(s, "GPIO ranges handled:\n"); 1753 1754 mutex_lock(&pctldev->mutex); 1755 1756 /* Loop over the ranges */ 1757 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1758 if (range->pins) { 1759 int a; 1760 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1761 range->id, range->name, 1762 range->base, (range->base + range->npins - 1)); 1763 for (a = 0; a < range->npins - 1; a++) 1764 seq_printf(s, "%u, ", range->pins[a]); 1765 seq_printf(s, "%u}\n", range->pins[a]); 1766 } 1767 else 1768 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1769 range->id, range->name, 1770 range->base, (range->base + range->npins - 1), 1771 range->pin_base, 1772 (range->pin_base + range->npins - 1)); 1773 } 1774 1775 mutex_unlock(&pctldev->mutex); 1776 1777 return 0; 1778 } 1779 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1780 1781 static int pinctrl_devices_show(struct seq_file *s, void *what) 1782 { 1783 struct pinctrl_dev *pctldev; 1784 1785 seq_puts(s, "name [pinmux] [pinconf]\n"); 1786 1787 mutex_lock(&pinctrldev_list_mutex); 1788 1789 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1790 seq_printf(s, "%s ", pctldev->desc->name); 1791 if (pctldev->desc->pmxops) 1792 seq_puts(s, "yes "); 1793 else 1794 seq_puts(s, "no "); 1795 if (pctldev->desc->confops) 1796 seq_puts(s, "yes"); 1797 else 1798 seq_puts(s, "no"); 1799 seq_puts(s, "\n"); 1800 } 1801 1802 mutex_unlock(&pinctrldev_list_mutex); 1803 1804 return 0; 1805 } 1806 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1807 1808 static inline const char *map_type(enum pinctrl_map_type type) 1809 { 1810 static const char * const names[] = { 1811 "INVALID", 1812 "DUMMY_STATE", 1813 "MUX_GROUP", 1814 "CONFIGS_PIN", 1815 "CONFIGS_GROUP", 1816 }; 1817 1818 if (type >= ARRAY_SIZE(names)) 1819 return "UNKNOWN"; 1820 1821 return names[type]; 1822 } 1823 1824 static int pinctrl_maps_show(struct seq_file *s, void *what) 1825 { 1826 struct pinctrl_maps *maps_node; 1827 const struct pinctrl_map *map; 1828 1829 seq_puts(s, "Pinctrl maps:\n"); 1830 1831 mutex_lock(&pinctrl_maps_mutex); 1832 for_each_pin_map(maps_node, map) { 1833 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1834 map->dev_name, map->name, map_type(map->type), 1835 map->type); 1836 1837 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1838 seq_printf(s, "controlling device %s\n", 1839 map->ctrl_dev_name); 1840 1841 switch (map->type) { 1842 case PIN_MAP_TYPE_MUX_GROUP: 1843 pinmux_show_map(s, map); 1844 break; 1845 case PIN_MAP_TYPE_CONFIGS_PIN: 1846 case PIN_MAP_TYPE_CONFIGS_GROUP: 1847 pinconf_show_map(s, map); 1848 break; 1849 default: 1850 break; 1851 } 1852 1853 seq_putc(s, '\n'); 1854 } 1855 mutex_unlock(&pinctrl_maps_mutex); 1856 1857 return 0; 1858 } 1859 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1860 1861 static int pinctrl_show(struct seq_file *s, void *what) 1862 { 1863 struct pinctrl *p; 1864 struct pinctrl_state *state; 1865 struct pinctrl_setting *setting; 1866 1867 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1868 1869 mutex_lock(&pinctrl_list_mutex); 1870 1871 list_for_each_entry(p, &pinctrl_list, node) { 1872 seq_printf(s, "device: %s current state: %s\n", 1873 dev_name(p->dev), 1874 p->state ? p->state->name : "none"); 1875 1876 list_for_each_entry(state, &p->states, node) { 1877 seq_printf(s, " state: %s\n", state->name); 1878 1879 list_for_each_entry(setting, &state->settings, node) { 1880 struct pinctrl_dev *pctldev = setting->pctldev; 1881 1882 seq_printf(s, " type: %s controller %s ", 1883 map_type(setting->type), 1884 pinctrl_dev_get_name(pctldev)); 1885 1886 switch (setting->type) { 1887 case PIN_MAP_TYPE_MUX_GROUP: 1888 pinmux_show_setting(s, setting); 1889 break; 1890 case PIN_MAP_TYPE_CONFIGS_PIN: 1891 case PIN_MAP_TYPE_CONFIGS_GROUP: 1892 pinconf_show_setting(s, setting); 1893 break; 1894 default: 1895 break; 1896 } 1897 } 1898 } 1899 } 1900 1901 mutex_unlock(&pinctrl_list_mutex); 1902 1903 return 0; 1904 } 1905 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1906 1907 static struct dentry *debugfs_root; 1908 1909 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1910 { 1911 struct dentry *device_root; 1912 const char *debugfs_name; 1913 1914 if (pctldev->desc->name && 1915 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1916 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1917 "%s-%s", dev_name(pctldev->dev), 1918 pctldev->desc->name); 1919 if (!debugfs_name) { 1920 pr_warn("failed to determine debugfs dir name for %s\n", 1921 dev_name(pctldev->dev)); 1922 return; 1923 } 1924 } else { 1925 debugfs_name = dev_name(pctldev->dev); 1926 } 1927 1928 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1929 pctldev->device_root = device_root; 1930 1931 if (IS_ERR(device_root) || !device_root) { 1932 pr_warn("failed to create debugfs directory for %s\n", 1933 dev_name(pctldev->dev)); 1934 return; 1935 } 1936 debugfs_create_file("pins", 0444, 1937 device_root, pctldev, &pinctrl_pins_fops); 1938 debugfs_create_file("pingroups", 0444, 1939 device_root, pctldev, &pinctrl_groups_fops); 1940 debugfs_create_file("gpio-ranges", 0444, 1941 device_root, pctldev, &pinctrl_gpioranges_fops); 1942 if (pctldev->desc->pmxops) 1943 pinmux_init_device_debugfs(device_root, pctldev); 1944 if (pctldev->desc->confops) 1945 pinconf_init_device_debugfs(device_root, pctldev); 1946 } 1947 1948 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1949 { 1950 debugfs_remove_recursive(pctldev->device_root); 1951 } 1952 1953 static void pinctrl_init_debugfs(void) 1954 { 1955 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1956 if (IS_ERR(debugfs_root) || !debugfs_root) { 1957 pr_warn("failed to create debugfs directory\n"); 1958 debugfs_root = NULL; 1959 return; 1960 } 1961 1962 debugfs_create_file("pinctrl-devices", 0444, 1963 debugfs_root, NULL, &pinctrl_devices_fops); 1964 debugfs_create_file("pinctrl-maps", 0444, 1965 debugfs_root, NULL, &pinctrl_maps_fops); 1966 debugfs_create_file("pinctrl-handles", 0444, 1967 debugfs_root, NULL, &pinctrl_fops); 1968 } 1969 1970 #else /* CONFIG_DEBUG_FS */ 1971 1972 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1973 { 1974 } 1975 1976 static void pinctrl_init_debugfs(void) 1977 { 1978 } 1979 1980 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1981 { 1982 } 1983 1984 #endif 1985 1986 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1987 { 1988 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1989 1990 if (!ops || 1991 !ops->get_groups_count || 1992 !ops->get_group_name) 1993 return -EINVAL; 1994 1995 return 0; 1996 } 1997 1998 /** 1999 * pinctrl_init_controller() - init a pin controller device 2000 * @pctldesc: descriptor for this pin controller 2001 * @dev: parent device for this pin controller 2002 * @driver_data: private pin controller data for this pin controller 2003 */ 2004 static struct pinctrl_dev * 2005 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 2006 void *driver_data) 2007 { 2008 struct pinctrl_dev *pctldev; 2009 int ret; 2010 2011 if (!pctldesc) 2012 return ERR_PTR(-EINVAL); 2013 if (!pctldesc->name) 2014 return ERR_PTR(-EINVAL); 2015 2016 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2017 if (!pctldev) 2018 return ERR_PTR(-ENOMEM); 2019 2020 /* Initialize pin control device struct */ 2021 pctldev->owner = pctldesc->owner; 2022 pctldev->desc = pctldesc; 2023 pctldev->driver_data = driver_data; 2024 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2025 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2026 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2027 #endif 2028 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2029 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2030 #endif 2031 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2032 INIT_LIST_HEAD(&pctldev->node); 2033 pctldev->dev = dev; 2034 mutex_init(&pctldev->mutex); 2035 2036 /* check core ops for sanity */ 2037 ret = pinctrl_check_ops(pctldev); 2038 if (ret) { 2039 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2040 goto out_err; 2041 } 2042 2043 /* If we're implementing pinmuxing, check the ops for sanity */ 2044 if (pctldesc->pmxops) { 2045 ret = pinmux_check_ops(pctldev); 2046 if (ret) 2047 goto out_err; 2048 } 2049 2050 /* If we're implementing pinconfig, check the ops for sanity */ 2051 if (pctldesc->confops) { 2052 ret = pinconf_check_ops(pctldev); 2053 if (ret) 2054 goto out_err; 2055 } 2056 2057 /* Register all the pins */ 2058 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2059 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2060 if (ret) { 2061 dev_err(dev, "error during pin registration\n"); 2062 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2063 pctldesc->npins); 2064 goto out_err; 2065 } 2066 2067 return pctldev; 2068 2069 out_err: 2070 mutex_destroy(&pctldev->mutex); 2071 kfree(pctldev); 2072 return ERR_PTR(ret); 2073 } 2074 2075 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2076 { 2077 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2078 if (PTR_ERR(pctldev->p) == -ENODEV) { 2079 dev_dbg(pctldev->dev, "no hogs found\n"); 2080 2081 return 0; 2082 } 2083 2084 if (IS_ERR(pctldev->p)) { 2085 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2086 PTR_ERR(pctldev->p)); 2087 2088 return PTR_ERR(pctldev->p); 2089 } 2090 2091 pctldev->hog_default = 2092 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2093 if (IS_ERR(pctldev->hog_default)) { 2094 dev_dbg(pctldev->dev, 2095 "failed to lookup the default state\n"); 2096 } else { 2097 if (pinctrl_select_state(pctldev->p, 2098 pctldev->hog_default)) 2099 dev_err(pctldev->dev, 2100 "failed to select default state\n"); 2101 } 2102 2103 pctldev->hog_sleep = 2104 pinctrl_lookup_state(pctldev->p, 2105 PINCTRL_STATE_SLEEP); 2106 if (IS_ERR(pctldev->hog_sleep)) 2107 dev_dbg(pctldev->dev, 2108 "failed to lookup the sleep state\n"); 2109 2110 return 0; 2111 } 2112 2113 int pinctrl_enable(struct pinctrl_dev *pctldev) 2114 { 2115 int error; 2116 2117 error = pinctrl_claim_hogs(pctldev); 2118 if (error) { 2119 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2120 error); 2121 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2122 pctldev->desc->npins); 2123 mutex_destroy(&pctldev->mutex); 2124 kfree(pctldev); 2125 2126 return error; 2127 } 2128 2129 mutex_lock(&pinctrldev_list_mutex); 2130 list_add_tail(&pctldev->node, &pinctrldev_list); 2131 mutex_unlock(&pinctrldev_list_mutex); 2132 2133 pinctrl_init_device_debugfs(pctldev); 2134 2135 return 0; 2136 } 2137 EXPORT_SYMBOL_GPL(pinctrl_enable); 2138 2139 /** 2140 * pinctrl_register() - register a pin controller device 2141 * @pctldesc: descriptor for this pin controller 2142 * @dev: parent device for this pin controller 2143 * @driver_data: private pin controller data for this pin controller 2144 * 2145 * Note that pinctrl_register() is known to have problems as the pin 2146 * controller driver functions are called before the driver has a 2147 * struct pinctrl_dev handle. To avoid issues later on, please use the 2148 * new pinctrl_register_and_init() below instead. 2149 */ 2150 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2151 struct device *dev, void *driver_data) 2152 { 2153 struct pinctrl_dev *pctldev; 2154 int error; 2155 2156 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2157 if (IS_ERR(pctldev)) 2158 return pctldev; 2159 2160 error = pinctrl_enable(pctldev); 2161 if (error) 2162 return ERR_PTR(error); 2163 2164 return pctldev; 2165 } 2166 EXPORT_SYMBOL_GPL(pinctrl_register); 2167 2168 /** 2169 * pinctrl_register_and_init() - register and init pin controller device 2170 * @pctldesc: descriptor for this pin controller 2171 * @dev: parent device for this pin controller 2172 * @driver_data: private pin controller data for this pin controller 2173 * @pctldev: pin controller device 2174 * 2175 * Note that pinctrl_enable() still needs to be manually called after 2176 * this once the driver is ready. 2177 */ 2178 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2179 struct device *dev, void *driver_data, 2180 struct pinctrl_dev **pctldev) 2181 { 2182 struct pinctrl_dev *p; 2183 2184 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2185 if (IS_ERR(p)) 2186 return PTR_ERR(p); 2187 2188 /* 2189 * We have pinctrl_start() call functions in the pin controller 2190 * driver with create_pinctrl() for at least dt_node_to_map(). So 2191 * let's make sure pctldev is properly initialized for the 2192 * pin controller driver before we do anything. 2193 */ 2194 *pctldev = p; 2195 2196 return 0; 2197 } 2198 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2199 2200 /** 2201 * pinctrl_unregister() - unregister pinmux 2202 * @pctldev: pin controller to unregister 2203 * 2204 * Called by pinmux drivers to unregister a pinmux. 2205 */ 2206 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2207 { 2208 struct pinctrl_gpio_range *range, *n; 2209 2210 if (!pctldev) 2211 return; 2212 2213 mutex_lock(&pctldev->mutex); 2214 pinctrl_remove_device_debugfs(pctldev); 2215 mutex_unlock(&pctldev->mutex); 2216 2217 if (!IS_ERR_OR_NULL(pctldev->p)) 2218 pinctrl_put(pctldev->p); 2219 2220 mutex_lock(&pinctrldev_list_mutex); 2221 mutex_lock(&pctldev->mutex); 2222 /* TODO: check that no pinmuxes are still active? */ 2223 list_del(&pctldev->node); 2224 pinmux_generic_free_functions(pctldev); 2225 pinctrl_generic_free_groups(pctldev); 2226 /* Destroy descriptor tree */ 2227 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2228 pctldev->desc->npins); 2229 /* remove gpio ranges map */ 2230 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2231 list_del(&range->node); 2232 2233 mutex_unlock(&pctldev->mutex); 2234 mutex_destroy(&pctldev->mutex); 2235 kfree(pctldev); 2236 mutex_unlock(&pinctrldev_list_mutex); 2237 } 2238 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2239 2240 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2241 { 2242 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2243 2244 pinctrl_unregister(pctldev); 2245 } 2246 2247 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2248 { 2249 struct pctldev **r = res; 2250 2251 if (WARN_ON(!r || !*r)) 2252 return 0; 2253 2254 return *r == data; 2255 } 2256 2257 /** 2258 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2259 * @dev: parent device for this pin controller 2260 * @pctldesc: descriptor for this pin controller 2261 * @driver_data: private pin controller data for this pin controller 2262 * 2263 * Returns an error pointer if pincontrol register failed. Otherwise 2264 * it returns valid pinctrl handle. 2265 * 2266 * The pinctrl device will be automatically released when the device is unbound. 2267 */ 2268 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2269 struct pinctrl_desc *pctldesc, 2270 void *driver_data) 2271 { 2272 struct pinctrl_dev **ptr, *pctldev; 2273 2274 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2275 if (!ptr) 2276 return ERR_PTR(-ENOMEM); 2277 2278 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2279 if (IS_ERR(pctldev)) { 2280 devres_free(ptr); 2281 return pctldev; 2282 } 2283 2284 *ptr = pctldev; 2285 devres_add(dev, ptr); 2286 2287 return pctldev; 2288 } 2289 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2290 2291 /** 2292 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2293 * @dev: parent device for this pin controller 2294 * @pctldesc: descriptor for this pin controller 2295 * @driver_data: private pin controller data for this pin controller 2296 * @pctldev: pin controller device 2297 * 2298 * Returns zero on success or an error number on failure. 2299 * 2300 * The pinctrl device will be automatically released when the device is unbound. 2301 */ 2302 int devm_pinctrl_register_and_init(struct device *dev, 2303 struct pinctrl_desc *pctldesc, 2304 void *driver_data, 2305 struct pinctrl_dev **pctldev) 2306 { 2307 struct pinctrl_dev **ptr; 2308 int error; 2309 2310 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2311 if (!ptr) 2312 return -ENOMEM; 2313 2314 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2315 if (error) { 2316 devres_free(ptr); 2317 return error; 2318 } 2319 2320 *ptr = *pctldev; 2321 devres_add(dev, ptr); 2322 2323 return 0; 2324 } 2325 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2326 2327 /** 2328 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2329 * @dev: device for which resource was allocated 2330 * @pctldev: the pinctrl device to unregister. 2331 */ 2332 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2333 { 2334 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2335 devm_pinctrl_dev_match, pctldev)); 2336 } 2337 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2338 2339 static int __init pinctrl_init(void) 2340 { 2341 pr_info("initialized pinctrl subsystem\n"); 2342 pinctrl_init_debugfs(); 2343 return 0; 2344 } 2345 2346 /* init early since many drivers really need to initialized pinmux early */ 2347 core_initcall(pinctrl_init); 2348