1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kref.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 29 #ifdef CONFIG_GPIOLIB 30 #include <asm-generic/gpio.h> 31 #endif 32 33 #include "core.h" 34 #include "devicetree.h" 35 #include "pinmux.h" 36 #include "pinconf.h" 37 38 39 static bool pinctrl_dummy_state; 40 41 /* Mutex taken to protect pinctrl_list */ 42 static DEFINE_MUTEX(pinctrl_list_mutex); 43 44 /* Mutex taken to protect pinctrl_maps */ 45 DEFINE_MUTEX(pinctrl_maps_mutex); 46 47 /* Mutex taken to protect pinctrldev_list */ 48 static DEFINE_MUTEX(pinctrldev_list_mutex); 49 50 /* Global list of pin control devices (struct pinctrl_dev) */ 51 static LIST_HEAD(pinctrldev_list); 52 53 /* List of pin controller handles (struct pinctrl) */ 54 static LIST_HEAD(pinctrl_list); 55 56 /* List of pinctrl maps (struct pinctrl_maps) */ 57 LIST_HEAD(pinctrl_maps); 58 59 60 /** 61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 62 * 63 * Usually this function is called by platforms without pinctrl driver support 64 * but run with some shared drivers using pinctrl APIs. 65 * After calling this function, the pinctrl core will return successfully 66 * with creating a dummy state for the driver to keep going smoothly. 67 */ 68 void pinctrl_provide_dummies(void) 69 { 70 pinctrl_dummy_state = true; 71 } 72 73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 74 { 75 /* We're not allowed to register devices without name */ 76 return pctldev->desc->name; 77 } 78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 79 80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 81 { 82 return dev_name(pctldev->dev); 83 } 84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 85 86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 87 { 88 return pctldev->driver_data; 89 } 90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 91 92 /** 93 * get_pinctrl_dev_from_devname() - look up pin controller device 94 * @devname: the name of a device instance, as returned by dev_name() 95 * 96 * Looks up a pin control device matching a certain device name or pure device 97 * pointer, the pure device pointer will take precedence. 98 */ 99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 100 { 101 struct pinctrl_dev *pctldev; 102 103 if (!devname) 104 return NULL; 105 106 mutex_lock(&pinctrldev_list_mutex); 107 108 list_for_each_entry(pctldev, &pinctrldev_list, node) { 109 if (!strcmp(dev_name(pctldev->dev), devname)) { 110 /* Matched on device name */ 111 mutex_unlock(&pinctrldev_list_mutex); 112 return pctldev; 113 } 114 } 115 116 mutex_unlock(&pinctrldev_list_mutex); 117 118 return NULL; 119 } 120 121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 122 { 123 struct pinctrl_dev *pctldev; 124 125 mutex_lock(&pinctrldev_list_mutex); 126 127 list_for_each_entry(pctldev, &pinctrldev_list, node) 128 if (pctldev->dev->of_node == np) { 129 mutex_unlock(&pinctrldev_list_mutex); 130 return pctldev; 131 } 132 133 mutex_unlock(&pinctrldev_list_mutex); 134 135 return NULL; 136 } 137 138 /** 139 * pin_get_from_name() - look up a pin number from a name 140 * @pctldev: the pin control device to lookup the pin on 141 * @name: the name of the pin to look up 142 */ 143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 144 { 145 unsigned i, pin; 146 147 /* The pin number can be retrived from the pin controller descriptor */ 148 for (i = 0; i < pctldev->desc->npins; i++) { 149 struct pin_desc *desc; 150 151 pin = pctldev->desc->pins[i].number; 152 desc = pin_desc_get(pctldev, pin); 153 /* Pin space may be sparse */ 154 if (desc && !strcmp(name, desc->name)) 155 return pin; 156 } 157 158 return -EINVAL; 159 } 160 161 /** 162 * pin_get_name_from_id() - look up a pin name from a pin id 163 * @pctldev: the pin control device to lookup the pin on 164 * @name: the name of the pin to look up 165 */ 166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 167 { 168 const struct pin_desc *desc; 169 170 desc = pin_desc_get(pctldev, pin); 171 if (!desc) { 172 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 173 pin); 174 return NULL; 175 } 176 177 return desc->name; 178 } 179 180 /* Deletes a range of pin descriptors */ 181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 182 const struct pinctrl_pin_desc *pins, 183 unsigned num_pins) 184 { 185 int i; 186 187 for (i = 0; i < num_pins; i++) { 188 struct pin_desc *pindesc; 189 190 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 191 pins[i].number); 192 if (pindesc) { 193 radix_tree_delete(&pctldev->pin_desc_tree, 194 pins[i].number); 195 if (pindesc->dynamic_name) 196 kfree(pindesc->name); 197 } 198 kfree(pindesc); 199 } 200 } 201 202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 203 const struct pinctrl_pin_desc *pin) 204 { 205 struct pin_desc *pindesc; 206 207 pindesc = pin_desc_get(pctldev, pin->number); 208 if (pindesc) { 209 dev_err(pctldev->dev, "pin %d already registered\n", 210 pin->number); 211 return -EINVAL; 212 } 213 214 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 215 if (!pindesc) 216 return -ENOMEM; 217 218 /* Set owner */ 219 pindesc->pctldev = pctldev; 220 221 /* Copy basic pin info */ 222 if (pin->name) { 223 pindesc->name = pin->name; 224 } else { 225 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 226 if (!pindesc->name) { 227 kfree(pindesc); 228 return -ENOMEM; 229 } 230 pindesc->dynamic_name = true; 231 } 232 233 pindesc->drv_data = pin->drv_data; 234 235 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 236 pr_debug("registered pin %d (%s) on %s\n", 237 pin->number, pindesc->name, pctldev->desc->name); 238 return 0; 239 } 240 241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 242 const struct pinctrl_pin_desc *pins, 243 unsigned num_descs) 244 { 245 unsigned i; 246 int ret = 0; 247 248 for (i = 0; i < num_descs; i++) { 249 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 250 if (ret) 251 return ret; 252 } 253 254 return 0; 255 } 256 257 /** 258 * gpio_to_pin() - GPIO range GPIO number to pin number translation 259 * @range: GPIO range used for the translation 260 * @gpio: gpio pin to translate to a pin number 261 * 262 * Finds the pin number for a given GPIO using the specified GPIO range 263 * as a base for translation. The distinction between linear GPIO ranges 264 * and pin list based GPIO ranges is managed correctly by this function. 265 * 266 * This function assumes the gpio is part of the specified GPIO range, use 267 * only after making sure this is the case (e.g. by calling it on the 268 * result of successful pinctrl_get_device_gpio_range calls)! 269 */ 270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 271 unsigned int gpio) 272 { 273 unsigned int offset = gpio - range->base; 274 if (range->pins) 275 return range->pins[offset]; 276 else 277 return range->pin_base + offset; 278 } 279 280 /** 281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 282 * @pctldev: pin controller device to check 283 * @gpio: gpio pin to check taken from the global GPIO pin space 284 * 285 * Tries to match a GPIO pin number to the ranges handled by a certain pin 286 * controller, return the range or NULL 287 */ 288 static struct pinctrl_gpio_range * 289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 290 { 291 struct pinctrl_gpio_range *range; 292 293 mutex_lock(&pctldev->mutex); 294 /* Loop over the ranges */ 295 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 296 /* Check if we're in the valid range */ 297 if (gpio >= range->base && 298 gpio < range->base + range->npins) { 299 mutex_unlock(&pctldev->mutex); 300 return range; 301 } 302 } 303 mutex_unlock(&pctldev->mutex); 304 return NULL; 305 } 306 307 /** 308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 309 * the same GPIO chip are in range 310 * @gpio: gpio pin to check taken from the global GPIO pin space 311 * 312 * This function is complement of pinctrl_match_gpio_range(). If the return 313 * value of pinctrl_match_gpio_range() is NULL, this function could be used 314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 315 * of the same GPIO chip don't have back-end pinctrl interface. 316 * If the return value is true, it means that pinctrl device is ready & the 317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 318 * is false, it means that pinctrl device may not be ready. 319 */ 320 #ifdef CONFIG_GPIOLIB 321 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 322 { 323 struct pinctrl_dev *pctldev; 324 struct pinctrl_gpio_range *range = NULL; 325 struct gpio_chip *chip = gpio_to_chip(gpio); 326 327 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 328 return false; 329 330 mutex_lock(&pinctrldev_list_mutex); 331 332 /* Loop over the pin controllers */ 333 list_for_each_entry(pctldev, &pinctrldev_list, node) { 334 /* Loop over the ranges */ 335 mutex_lock(&pctldev->mutex); 336 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 337 /* Check if any gpio range overlapped with gpio chip */ 338 if (range->base + range->npins - 1 < chip->base || 339 range->base > chip->base + chip->ngpio - 1) 340 continue; 341 mutex_unlock(&pctldev->mutex); 342 mutex_unlock(&pinctrldev_list_mutex); 343 return true; 344 } 345 mutex_unlock(&pctldev->mutex); 346 } 347 348 mutex_unlock(&pinctrldev_list_mutex); 349 350 return false; 351 } 352 #else 353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 354 #endif 355 356 /** 357 * pinctrl_get_device_gpio_range() - find device for GPIO range 358 * @gpio: the pin to locate the pin controller for 359 * @outdev: the pin control device if found 360 * @outrange: the GPIO range if found 361 * 362 * Find the pin controller handling a certain GPIO pin from the pinspace of 363 * the GPIO subsystem, return the device and the matching GPIO range. Returns 364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 365 * may still have not been registered. 366 */ 367 static int pinctrl_get_device_gpio_range(unsigned gpio, 368 struct pinctrl_dev **outdev, 369 struct pinctrl_gpio_range **outrange) 370 { 371 struct pinctrl_dev *pctldev; 372 373 mutex_lock(&pinctrldev_list_mutex); 374 375 /* Loop over the pin controllers */ 376 list_for_each_entry(pctldev, &pinctrldev_list, node) { 377 struct pinctrl_gpio_range *range; 378 379 range = pinctrl_match_gpio_range(pctldev, gpio); 380 if (range) { 381 *outdev = pctldev; 382 *outrange = range; 383 mutex_unlock(&pinctrldev_list_mutex); 384 return 0; 385 } 386 } 387 388 mutex_unlock(&pinctrldev_list_mutex); 389 390 return -EPROBE_DEFER; 391 } 392 393 /** 394 * pinctrl_add_gpio_range() - register a GPIO range for a controller 395 * @pctldev: pin controller device to add the range to 396 * @range: the GPIO range to add 397 * 398 * This adds a range of GPIOs to be handled by a certain pin controller. Call 399 * this to register handled ranges after registering your pin controller. 400 */ 401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 402 struct pinctrl_gpio_range *range) 403 { 404 mutex_lock(&pctldev->mutex); 405 list_add_tail(&range->node, &pctldev->gpio_ranges); 406 mutex_unlock(&pctldev->mutex); 407 } 408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 409 410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 411 struct pinctrl_gpio_range *ranges, 412 unsigned nranges) 413 { 414 int i; 415 416 for (i = 0; i < nranges; i++) 417 pinctrl_add_gpio_range(pctldev, &ranges[i]); 418 } 419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 420 421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 422 struct pinctrl_gpio_range *range) 423 { 424 struct pinctrl_dev *pctldev; 425 426 pctldev = get_pinctrl_dev_from_devname(devname); 427 428 /* 429 * If we can't find this device, let's assume that is because 430 * it has not probed yet, so the driver trying to register this 431 * range need to defer probing. 432 */ 433 if (!pctldev) { 434 return ERR_PTR(-EPROBE_DEFER); 435 } 436 pinctrl_add_gpio_range(pctldev, range); 437 438 return pctldev; 439 } 440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 441 442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 443 const unsigned **pins, unsigned *num_pins) 444 { 445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 446 int gs; 447 448 if (!pctlops->get_group_pins) 449 return -EINVAL; 450 451 gs = pinctrl_get_group_selector(pctldev, pin_group); 452 if (gs < 0) 453 return gs; 454 455 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 456 } 457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 458 459 struct pinctrl_gpio_range * 460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 461 unsigned int pin) 462 { 463 struct pinctrl_gpio_range *range; 464 465 /* Loop over the ranges */ 466 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 467 /* Check if we're in the valid range */ 468 if (range->pins) { 469 int a; 470 for (a = 0; a < range->npins; a++) { 471 if (range->pins[a] == pin) 472 return range; 473 } 474 } else if (pin >= range->pin_base && 475 pin < range->pin_base + range->npins) 476 return range; 477 } 478 479 return NULL; 480 } 481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 482 483 /** 484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 485 * @pctldev: the pin controller device to look in 486 * @pin: a controller-local number to find the range for 487 */ 488 struct pinctrl_gpio_range * 489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 490 unsigned int pin) 491 { 492 struct pinctrl_gpio_range *range; 493 494 mutex_lock(&pctldev->mutex); 495 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 496 mutex_unlock(&pctldev->mutex); 497 498 return range; 499 } 500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 501 502 /** 503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 504 * @pctldev: pin controller device to remove the range from 505 * @range: the GPIO range to remove 506 */ 507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 508 struct pinctrl_gpio_range *range) 509 { 510 mutex_lock(&pctldev->mutex); 511 list_del(&range->node); 512 mutex_unlock(&pctldev->mutex); 513 } 514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 515 516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 517 518 /** 519 * pinctrl_generic_get_group_count() - returns the number of pin groups 520 * @pctldev: pin controller device 521 */ 522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 523 { 524 return pctldev->num_groups; 525 } 526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 527 528 /** 529 * pinctrl_generic_get_group_name() - returns the name of a pin group 530 * @pctldev: pin controller device 531 * @selector: group number 532 */ 533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 534 unsigned int selector) 535 { 536 struct group_desc *group; 537 538 group = radix_tree_lookup(&pctldev->pin_group_tree, 539 selector); 540 if (!group) 541 return NULL; 542 543 return group->name; 544 } 545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 546 547 /** 548 * pinctrl_generic_get_group_pins() - gets the pin group pins 549 * @pctldev: pin controller device 550 * @selector: group number 551 * @pins: pins in the group 552 * @num_pins: number of pins in the group 553 */ 554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 555 unsigned int selector, 556 const unsigned int **pins, 557 unsigned int *num_pins) 558 { 559 struct group_desc *group; 560 561 group = radix_tree_lookup(&pctldev->pin_group_tree, 562 selector); 563 if (!group) { 564 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 565 __func__, selector); 566 return -EINVAL; 567 } 568 569 *pins = group->pins; 570 *num_pins = group->num_pins; 571 572 return 0; 573 } 574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 575 576 /** 577 * pinctrl_generic_get_group() - returns a pin group based on the number 578 * @pctldev: pin controller device 579 * @gselector: group number 580 */ 581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 582 unsigned int selector) 583 { 584 struct group_desc *group; 585 586 group = radix_tree_lookup(&pctldev->pin_group_tree, 587 selector); 588 if (!group) 589 return NULL; 590 591 return group; 592 } 593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 594 595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 596 const char *function) 597 { 598 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 599 int ngroups = ops->get_groups_count(pctldev); 600 int selector = 0; 601 602 /* See if this pctldev has this group */ 603 while (selector < ngroups) { 604 const char *gname = ops->get_group_name(pctldev, selector); 605 606 if (gname && !strcmp(function, gname)) 607 return selector; 608 609 selector++; 610 } 611 612 return -EINVAL; 613 } 614 615 /** 616 * pinctrl_generic_add_group() - adds a new pin group 617 * @pctldev: pin controller device 618 * @name: name of the pin group 619 * @pins: pins in the pin group 620 * @num_pins: number of pins in the pin group 621 * @data: pin controller driver specific data 622 * 623 * Note that the caller must take care of locking. 624 */ 625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 626 int *pins, int num_pins, void *data) 627 { 628 struct group_desc *group; 629 int selector; 630 631 if (!name) 632 return -EINVAL; 633 634 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 635 if (selector >= 0) 636 return selector; 637 638 selector = pctldev->num_groups; 639 640 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 641 if (!group) 642 return -ENOMEM; 643 644 group->name = name; 645 group->pins = pins; 646 group->num_pins = num_pins; 647 group->data = data; 648 649 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 650 651 pctldev->num_groups++; 652 653 return selector; 654 } 655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 656 657 /** 658 * pinctrl_generic_remove_group() - removes a numbered pin group 659 * @pctldev: pin controller device 660 * @selector: group number 661 * 662 * Note that the caller must take care of locking. 663 */ 664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 665 unsigned int selector) 666 { 667 struct group_desc *group; 668 669 group = radix_tree_lookup(&pctldev->pin_group_tree, 670 selector); 671 if (!group) 672 return -ENOENT; 673 674 radix_tree_delete(&pctldev->pin_group_tree, selector); 675 devm_kfree(pctldev->dev, group); 676 677 pctldev->num_groups--; 678 679 return 0; 680 } 681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 682 683 /** 684 * pinctrl_generic_free_groups() - removes all pin groups 685 * @pctldev: pin controller device 686 * 687 * Note that the caller must take care of locking. The pinctrl groups 688 * are allocated with devm_kzalloc() so no need to free them here. 689 */ 690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 691 { 692 struct radix_tree_iter iter; 693 void __rcu **slot; 694 695 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 696 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 697 698 pctldev->num_groups = 0; 699 } 700 701 #else 702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 703 { 704 } 705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 706 707 /** 708 * pinctrl_get_group_selector() - returns the group selector for a group 709 * @pctldev: the pin controller handling the group 710 * @pin_group: the pin group to look up 711 */ 712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 713 const char *pin_group) 714 { 715 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 716 unsigned ngroups = pctlops->get_groups_count(pctldev); 717 unsigned group_selector = 0; 718 719 while (group_selector < ngroups) { 720 const char *gname = pctlops->get_group_name(pctldev, 721 group_selector); 722 if (gname && !strcmp(gname, pin_group)) { 723 dev_dbg(pctldev->dev, 724 "found group selector %u for %s\n", 725 group_selector, 726 pin_group); 727 return group_selector; 728 } 729 730 group_selector++; 731 } 732 733 dev_err(pctldev->dev, "does not have pin group %s\n", 734 pin_group); 735 736 return -EINVAL; 737 } 738 739 bool pinctrl_gpio_can_use_line(unsigned gpio) 740 { 741 struct pinctrl_dev *pctldev; 742 struct pinctrl_gpio_range *range; 743 bool result; 744 int pin; 745 746 /* 747 * Try to obtain GPIO range, if it fails 748 * we're probably dealing with GPIO driver 749 * without a backing pin controller - bail out. 750 */ 751 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 752 return true; 753 754 mutex_lock(&pctldev->mutex); 755 756 /* Convert to the pin controllers number space */ 757 pin = gpio_to_pin(range, gpio); 758 759 result = pinmux_can_be_used_for_gpio(pctldev, pin); 760 761 mutex_unlock(&pctldev->mutex); 762 763 return result; 764 } 765 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 766 767 /** 768 * pinctrl_gpio_request() - request a single pin to be used as GPIO 769 * @gpio: the GPIO pin number from the GPIO subsystem number space 770 * 771 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 772 * as part of their gpio_request() semantics, platforms and individual drivers 773 * shall *NOT* request GPIO pins to be muxed in. 774 */ 775 int pinctrl_gpio_request(unsigned gpio) 776 { 777 struct pinctrl_dev *pctldev; 778 struct pinctrl_gpio_range *range; 779 int ret; 780 int pin; 781 782 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 783 if (ret) { 784 if (pinctrl_ready_for_gpio_range(gpio)) 785 ret = 0; 786 return ret; 787 } 788 789 mutex_lock(&pctldev->mutex); 790 791 /* Convert to the pin controllers number space */ 792 pin = gpio_to_pin(range, gpio); 793 794 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 795 796 mutex_unlock(&pctldev->mutex); 797 798 return ret; 799 } 800 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 801 802 /** 803 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 804 * @gpio: the GPIO pin number from the GPIO subsystem number space 805 * 806 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 807 * as part of their gpio_free() semantics, platforms and individual drivers 808 * shall *NOT* request GPIO pins to be muxed out. 809 */ 810 void pinctrl_gpio_free(unsigned gpio) 811 { 812 struct pinctrl_dev *pctldev; 813 struct pinctrl_gpio_range *range; 814 int ret; 815 int pin; 816 817 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 818 if (ret) { 819 return; 820 } 821 mutex_lock(&pctldev->mutex); 822 823 /* Convert to the pin controllers number space */ 824 pin = gpio_to_pin(range, gpio); 825 826 pinmux_free_gpio(pctldev, pin, range); 827 828 mutex_unlock(&pctldev->mutex); 829 } 830 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 831 832 static int pinctrl_gpio_direction(unsigned gpio, bool input) 833 { 834 struct pinctrl_dev *pctldev; 835 struct pinctrl_gpio_range *range; 836 int ret; 837 int pin; 838 839 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 840 if (ret) { 841 return ret; 842 } 843 844 mutex_lock(&pctldev->mutex); 845 846 /* Convert to the pin controllers number space */ 847 pin = gpio_to_pin(range, gpio); 848 ret = pinmux_gpio_direction(pctldev, range, pin, input); 849 850 mutex_unlock(&pctldev->mutex); 851 852 return ret; 853 } 854 855 /** 856 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 857 * @gpio: the GPIO pin number from the GPIO subsystem number space 858 * 859 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 860 * as part of their gpio_direction_input() semantics, platforms and individual 861 * drivers shall *NOT* touch pin control GPIO calls. 862 */ 863 int pinctrl_gpio_direction_input(unsigned gpio) 864 { 865 return pinctrl_gpio_direction(gpio, true); 866 } 867 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 868 869 /** 870 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 871 * @gpio: the GPIO pin number from the GPIO subsystem number space 872 * 873 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 874 * as part of their gpio_direction_output() semantics, platforms and individual 875 * drivers shall *NOT* touch pin control GPIO calls. 876 */ 877 int pinctrl_gpio_direction_output(unsigned gpio) 878 { 879 return pinctrl_gpio_direction(gpio, false); 880 } 881 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 882 883 /** 884 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 885 * @gpio: the GPIO pin number from the GPIO subsystem number space 886 * @config: the configuration to apply to the GPIO 887 * 888 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 889 * they need to call the underlying pin controller to change GPIO config 890 * (for example set debounce time). 891 */ 892 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 893 { 894 unsigned long configs[] = { config }; 895 struct pinctrl_gpio_range *range; 896 struct pinctrl_dev *pctldev; 897 int ret, pin; 898 899 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 900 if (ret) 901 return ret; 902 903 mutex_lock(&pctldev->mutex); 904 pin = gpio_to_pin(range, gpio); 905 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 906 mutex_unlock(&pctldev->mutex); 907 908 return ret; 909 } 910 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 911 912 static struct pinctrl_state *find_state(struct pinctrl *p, 913 const char *name) 914 { 915 struct pinctrl_state *state; 916 917 list_for_each_entry(state, &p->states, node) 918 if (!strcmp(state->name, name)) 919 return state; 920 921 return NULL; 922 } 923 924 static struct pinctrl_state *create_state(struct pinctrl *p, 925 const char *name) 926 { 927 struct pinctrl_state *state; 928 929 state = kzalloc(sizeof(*state), GFP_KERNEL); 930 if (!state) 931 return ERR_PTR(-ENOMEM); 932 933 state->name = name; 934 INIT_LIST_HEAD(&state->settings); 935 936 list_add_tail(&state->node, &p->states); 937 938 return state; 939 } 940 941 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 942 const struct pinctrl_map *map) 943 { 944 struct pinctrl_state *state; 945 struct pinctrl_setting *setting; 946 int ret; 947 948 state = find_state(p, map->name); 949 if (!state) 950 state = create_state(p, map->name); 951 if (IS_ERR(state)) 952 return PTR_ERR(state); 953 954 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 955 return 0; 956 957 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 958 if (!setting) 959 return -ENOMEM; 960 961 setting->type = map->type; 962 963 if (pctldev) 964 setting->pctldev = pctldev; 965 else 966 setting->pctldev = 967 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 968 if (!setting->pctldev) { 969 kfree(setting); 970 /* Do not defer probing of hogs (circular loop) */ 971 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 972 return -ENODEV; 973 /* 974 * OK let us guess that the driver is not there yet, and 975 * let's defer obtaining this pinctrl handle to later... 976 */ 977 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 978 map->ctrl_dev_name); 979 return -EPROBE_DEFER; 980 } 981 982 setting->dev_name = map->dev_name; 983 984 switch (map->type) { 985 case PIN_MAP_TYPE_MUX_GROUP: 986 ret = pinmux_map_to_setting(map, setting); 987 break; 988 case PIN_MAP_TYPE_CONFIGS_PIN: 989 case PIN_MAP_TYPE_CONFIGS_GROUP: 990 ret = pinconf_map_to_setting(map, setting); 991 break; 992 default: 993 ret = -EINVAL; 994 break; 995 } 996 if (ret < 0) { 997 kfree(setting); 998 return ret; 999 } 1000 1001 list_add_tail(&setting->node, &state->settings); 1002 1003 return 0; 1004 } 1005 1006 static struct pinctrl *find_pinctrl(struct device *dev) 1007 { 1008 struct pinctrl *p; 1009 1010 mutex_lock(&pinctrl_list_mutex); 1011 list_for_each_entry(p, &pinctrl_list, node) 1012 if (p->dev == dev) { 1013 mutex_unlock(&pinctrl_list_mutex); 1014 return p; 1015 } 1016 1017 mutex_unlock(&pinctrl_list_mutex); 1018 return NULL; 1019 } 1020 1021 static void pinctrl_free(struct pinctrl *p, bool inlist); 1022 1023 static struct pinctrl *create_pinctrl(struct device *dev, 1024 struct pinctrl_dev *pctldev) 1025 { 1026 struct pinctrl *p; 1027 const char *devname; 1028 struct pinctrl_maps *maps_node; 1029 int i; 1030 const struct pinctrl_map *map; 1031 int ret; 1032 1033 /* 1034 * create the state cookie holder struct pinctrl for each 1035 * mapping, this is what consumers will get when requesting 1036 * a pin control handle with pinctrl_get() 1037 */ 1038 p = kzalloc(sizeof(*p), GFP_KERNEL); 1039 if (!p) 1040 return ERR_PTR(-ENOMEM); 1041 p->dev = dev; 1042 INIT_LIST_HEAD(&p->states); 1043 INIT_LIST_HEAD(&p->dt_maps); 1044 1045 ret = pinctrl_dt_to_map(p, pctldev); 1046 if (ret < 0) { 1047 kfree(p); 1048 return ERR_PTR(ret); 1049 } 1050 1051 devname = dev_name(dev); 1052 1053 mutex_lock(&pinctrl_maps_mutex); 1054 /* Iterate over the pin control maps to locate the right ones */ 1055 for_each_maps(maps_node, i, map) { 1056 /* Map must be for this device */ 1057 if (strcmp(map->dev_name, devname)) 1058 continue; 1059 /* 1060 * If pctldev is not null, we are claiming hog for it, 1061 * that means, setting that is served by pctldev by itself. 1062 * 1063 * Thus we must skip map that is for this device but is served 1064 * by other device. 1065 */ 1066 if (pctldev && 1067 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1068 continue; 1069 1070 ret = add_setting(p, pctldev, map); 1071 /* 1072 * At this point the adding of a setting may: 1073 * 1074 * - Defer, if the pinctrl device is not yet available 1075 * - Fail, if the pinctrl device is not yet available, 1076 * AND the setting is a hog. We cannot defer that, since 1077 * the hog will kick in immediately after the device 1078 * is registered. 1079 * 1080 * If the error returned was not -EPROBE_DEFER then we 1081 * accumulate the errors to see if we end up with 1082 * an -EPROBE_DEFER later, as that is the worst case. 1083 */ 1084 if (ret == -EPROBE_DEFER) { 1085 pinctrl_free(p, false); 1086 mutex_unlock(&pinctrl_maps_mutex); 1087 return ERR_PTR(ret); 1088 } 1089 } 1090 mutex_unlock(&pinctrl_maps_mutex); 1091 1092 if (ret < 0) { 1093 /* If some other error than deferral occurred, return here */ 1094 pinctrl_free(p, false); 1095 return ERR_PTR(ret); 1096 } 1097 1098 kref_init(&p->users); 1099 1100 /* Add the pinctrl handle to the global list */ 1101 mutex_lock(&pinctrl_list_mutex); 1102 list_add_tail(&p->node, &pinctrl_list); 1103 mutex_unlock(&pinctrl_list_mutex); 1104 1105 return p; 1106 } 1107 1108 /** 1109 * pinctrl_get() - retrieves the pinctrl handle for a device 1110 * @dev: the device to obtain the handle for 1111 */ 1112 struct pinctrl *pinctrl_get(struct device *dev) 1113 { 1114 struct pinctrl *p; 1115 1116 if (WARN_ON(!dev)) 1117 return ERR_PTR(-EINVAL); 1118 1119 /* 1120 * See if somebody else (such as the device core) has already 1121 * obtained a handle to the pinctrl for this device. In that case, 1122 * return another pointer to it. 1123 */ 1124 p = find_pinctrl(dev); 1125 if (p) { 1126 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1127 kref_get(&p->users); 1128 return p; 1129 } 1130 1131 return create_pinctrl(dev, NULL); 1132 } 1133 EXPORT_SYMBOL_GPL(pinctrl_get); 1134 1135 static void pinctrl_free_setting(bool disable_setting, 1136 struct pinctrl_setting *setting) 1137 { 1138 switch (setting->type) { 1139 case PIN_MAP_TYPE_MUX_GROUP: 1140 if (disable_setting) 1141 pinmux_disable_setting(setting); 1142 pinmux_free_setting(setting); 1143 break; 1144 case PIN_MAP_TYPE_CONFIGS_PIN: 1145 case PIN_MAP_TYPE_CONFIGS_GROUP: 1146 pinconf_free_setting(setting); 1147 break; 1148 default: 1149 break; 1150 } 1151 } 1152 1153 static void pinctrl_free(struct pinctrl *p, bool inlist) 1154 { 1155 struct pinctrl_state *state, *n1; 1156 struct pinctrl_setting *setting, *n2; 1157 1158 mutex_lock(&pinctrl_list_mutex); 1159 list_for_each_entry_safe(state, n1, &p->states, node) { 1160 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1161 pinctrl_free_setting(state == p->state, setting); 1162 list_del(&setting->node); 1163 kfree(setting); 1164 } 1165 list_del(&state->node); 1166 kfree(state); 1167 } 1168 1169 pinctrl_dt_free_maps(p); 1170 1171 if (inlist) 1172 list_del(&p->node); 1173 kfree(p); 1174 mutex_unlock(&pinctrl_list_mutex); 1175 } 1176 1177 /** 1178 * pinctrl_release() - release the pinctrl handle 1179 * @kref: the kref in the pinctrl being released 1180 */ 1181 static void pinctrl_release(struct kref *kref) 1182 { 1183 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1184 1185 pinctrl_free(p, true); 1186 } 1187 1188 /** 1189 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1190 * @p: the pinctrl handle to release 1191 */ 1192 void pinctrl_put(struct pinctrl *p) 1193 { 1194 kref_put(&p->users, pinctrl_release); 1195 } 1196 EXPORT_SYMBOL_GPL(pinctrl_put); 1197 1198 /** 1199 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1200 * @p: the pinctrl handle to retrieve the state from 1201 * @name: the state name to retrieve 1202 */ 1203 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1204 const char *name) 1205 { 1206 struct pinctrl_state *state; 1207 1208 state = find_state(p, name); 1209 if (!state) { 1210 if (pinctrl_dummy_state) { 1211 /* create dummy state */ 1212 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1213 name); 1214 state = create_state(p, name); 1215 } else 1216 state = ERR_PTR(-ENODEV); 1217 } 1218 1219 return state; 1220 } 1221 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1222 1223 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1224 struct device *consumer) 1225 { 1226 if (pctldev->desc->link_consumers) 1227 device_link_add(consumer, pctldev->dev, 1228 DL_FLAG_PM_RUNTIME | 1229 DL_FLAG_AUTOREMOVE_CONSUMER); 1230 } 1231 1232 /** 1233 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1234 * @p: the pinctrl handle for the device that requests configuration 1235 * @state: the state handle to select/activate/program 1236 */ 1237 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1238 { 1239 struct pinctrl_setting *setting, *setting2; 1240 struct pinctrl_state *old_state = p->state; 1241 int ret; 1242 1243 if (p->state) { 1244 /* 1245 * For each pinmux setting in the old state, forget SW's record 1246 * of mux owner for that pingroup. Any pingroups which are 1247 * still owned by the new state will be re-acquired by the call 1248 * to pinmux_enable_setting() in the loop below. 1249 */ 1250 list_for_each_entry(setting, &p->state->settings, node) { 1251 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1252 continue; 1253 pinmux_disable_setting(setting); 1254 } 1255 } 1256 1257 p->state = NULL; 1258 1259 /* Apply all the settings for the new state */ 1260 list_for_each_entry(setting, &state->settings, node) { 1261 switch (setting->type) { 1262 case PIN_MAP_TYPE_MUX_GROUP: 1263 ret = pinmux_enable_setting(setting); 1264 break; 1265 case PIN_MAP_TYPE_CONFIGS_PIN: 1266 case PIN_MAP_TYPE_CONFIGS_GROUP: 1267 ret = pinconf_apply_setting(setting); 1268 break; 1269 default: 1270 ret = -EINVAL; 1271 break; 1272 } 1273 1274 if (ret < 0) { 1275 goto unapply_new_state; 1276 } 1277 1278 /* Do not link hogs (circular dependency) */ 1279 if (p != setting->pctldev->p) 1280 pinctrl_link_add(setting->pctldev, p->dev); 1281 } 1282 1283 p->state = state; 1284 1285 return 0; 1286 1287 unapply_new_state: 1288 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1289 1290 list_for_each_entry(setting2, &state->settings, node) { 1291 if (&setting2->node == &setting->node) 1292 break; 1293 /* 1294 * All we can do here is pinmux_disable_setting. 1295 * That means that some pins are muxed differently now 1296 * than they were before applying the setting (We can't 1297 * "unmux a pin"!), but it's not a big deal since the pins 1298 * are free to be muxed by another apply_setting. 1299 */ 1300 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1301 pinmux_disable_setting(setting2); 1302 } 1303 1304 /* There's no infinite recursive loop here because p->state is NULL */ 1305 if (old_state) 1306 pinctrl_select_state(p, old_state); 1307 1308 return ret; 1309 } 1310 1311 /** 1312 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1313 * @p: the pinctrl handle for the device that requests configuration 1314 * @state: the state handle to select/activate/program 1315 */ 1316 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1317 { 1318 if (p->state == state) 1319 return 0; 1320 1321 return pinctrl_commit_state(p, state); 1322 } 1323 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1324 1325 static void devm_pinctrl_release(struct device *dev, void *res) 1326 { 1327 pinctrl_put(*(struct pinctrl **)res); 1328 } 1329 1330 /** 1331 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1332 * @dev: the device to obtain the handle for 1333 * 1334 * If there is a need to explicitly destroy the returned struct pinctrl, 1335 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1336 */ 1337 struct pinctrl *devm_pinctrl_get(struct device *dev) 1338 { 1339 struct pinctrl **ptr, *p; 1340 1341 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1342 if (!ptr) 1343 return ERR_PTR(-ENOMEM); 1344 1345 p = pinctrl_get(dev); 1346 if (!IS_ERR(p)) { 1347 *ptr = p; 1348 devres_add(dev, ptr); 1349 } else { 1350 devres_free(ptr); 1351 } 1352 1353 return p; 1354 } 1355 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1356 1357 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1358 { 1359 struct pinctrl **p = res; 1360 1361 return *p == data; 1362 } 1363 1364 /** 1365 * devm_pinctrl_put() - Resource managed pinctrl_put() 1366 * @p: the pinctrl handle to release 1367 * 1368 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1369 * this function will not need to be called and the resource management 1370 * code will ensure that the resource is freed. 1371 */ 1372 void devm_pinctrl_put(struct pinctrl *p) 1373 { 1374 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1375 devm_pinctrl_match, p)); 1376 } 1377 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1378 1379 /** 1380 * pinctrl_register_mappings() - register a set of pin controller mappings 1381 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1382 * keeps a reference to the passed in maps, so they should _not_ be 1383 * marked with __initdata. 1384 * @num_maps: the number of maps in the mapping table 1385 */ 1386 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1387 unsigned num_maps) 1388 { 1389 int i, ret; 1390 struct pinctrl_maps *maps_node; 1391 1392 pr_debug("add %u pinctrl maps\n", num_maps); 1393 1394 /* First sanity check the new mapping */ 1395 for (i = 0; i < num_maps; i++) { 1396 if (!maps[i].dev_name) { 1397 pr_err("failed to register map %s (%d): no device given\n", 1398 maps[i].name, i); 1399 return -EINVAL; 1400 } 1401 1402 if (!maps[i].name) { 1403 pr_err("failed to register map %d: no map name given\n", 1404 i); 1405 return -EINVAL; 1406 } 1407 1408 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1409 !maps[i].ctrl_dev_name) { 1410 pr_err("failed to register map %s (%d): no pin control device given\n", 1411 maps[i].name, i); 1412 return -EINVAL; 1413 } 1414 1415 switch (maps[i].type) { 1416 case PIN_MAP_TYPE_DUMMY_STATE: 1417 break; 1418 case PIN_MAP_TYPE_MUX_GROUP: 1419 ret = pinmux_validate_map(&maps[i], i); 1420 if (ret < 0) 1421 return ret; 1422 break; 1423 case PIN_MAP_TYPE_CONFIGS_PIN: 1424 case PIN_MAP_TYPE_CONFIGS_GROUP: 1425 ret = pinconf_validate_map(&maps[i], i); 1426 if (ret < 0) 1427 return ret; 1428 break; 1429 default: 1430 pr_err("failed to register map %s (%d): invalid type given\n", 1431 maps[i].name, i); 1432 return -EINVAL; 1433 } 1434 } 1435 1436 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1437 if (!maps_node) 1438 return -ENOMEM; 1439 1440 maps_node->maps = maps; 1441 maps_node->num_maps = num_maps; 1442 1443 mutex_lock(&pinctrl_maps_mutex); 1444 list_add_tail(&maps_node->node, &pinctrl_maps); 1445 mutex_unlock(&pinctrl_maps_mutex); 1446 1447 return 0; 1448 } 1449 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1450 1451 /** 1452 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1453 * @maps: the pincontrol mappings table passed to pinctrl_register_mappings() 1454 * when registering the mappings. 1455 */ 1456 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1457 { 1458 struct pinctrl_maps *maps_node; 1459 1460 mutex_lock(&pinctrl_maps_mutex); 1461 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1462 if (maps_node->maps == map) { 1463 list_del(&maps_node->node); 1464 kfree(maps_node); 1465 mutex_unlock(&pinctrl_maps_mutex); 1466 return; 1467 } 1468 } 1469 mutex_unlock(&pinctrl_maps_mutex); 1470 } 1471 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1472 1473 /** 1474 * pinctrl_force_sleep() - turn a given controller device into sleep state 1475 * @pctldev: pin controller device 1476 */ 1477 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1478 { 1479 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1480 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1481 return 0; 1482 } 1483 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1484 1485 /** 1486 * pinctrl_force_default() - turn a given controller device into default state 1487 * @pctldev: pin controller device 1488 */ 1489 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1490 { 1491 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1492 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1493 return 0; 1494 } 1495 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1496 1497 /** 1498 * pinctrl_init_done() - tell pinctrl probe is done 1499 * 1500 * We'll use this time to switch the pins from "init" to "default" unless the 1501 * driver selected some other state. 1502 * 1503 * @dev: device to that's done probing 1504 */ 1505 int pinctrl_init_done(struct device *dev) 1506 { 1507 struct dev_pin_info *pins = dev->pins; 1508 int ret; 1509 1510 if (!pins) 1511 return 0; 1512 1513 if (IS_ERR(pins->init_state)) 1514 return 0; /* No such state */ 1515 1516 if (pins->p->state != pins->init_state) 1517 return 0; /* Not at init anyway */ 1518 1519 if (IS_ERR(pins->default_state)) 1520 return 0; /* No default state */ 1521 1522 ret = pinctrl_select_state(pins->p, pins->default_state); 1523 if (ret) 1524 dev_err(dev, "failed to activate default pinctrl state\n"); 1525 1526 return ret; 1527 } 1528 1529 static int pinctrl_select_bound_state(struct device *dev, 1530 struct pinctrl_state *state) 1531 { 1532 struct dev_pin_info *pins = dev->pins; 1533 int ret; 1534 1535 if (IS_ERR(state)) 1536 return 0; /* No such state */ 1537 ret = pinctrl_select_state(pins->p, state); 1538 if (ret) 1539 dev_err(dev, "failed to activate pinctrl state %s\n", 1540 state->name); 1541 return ret; 1542 } 1543 1544 /** 1545 * pinctrl_select_default_state() - select default pinctrl state 1546 * @dev: device to select default state for 1547 */ 1548 int pinctrl_select_default_state(struct device *dev) 1549 { 1550 if (!dev->pins) 1551 return 0; 1552 1553 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1554 } 1555 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1556 1557 #ifdef CONFIG_PM 1558 1559 /** 1560 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1561 * @dev: device to select default state for 1562 */ 1563 int pinctrl_pm_select_default_state(struct device *dev) 1564 { 1565 return pinctrl_select_default_state(dev); 1566 } 1567 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1568 1569 /** 1570 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1571 * @dev: device to select sleep state for 1572 */ 1573 int pinctrl_pm_select_sleep_state(struct device *dev) 1574 { 1575 if (!dev->pins) 1576 return 0; 1577 1578 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1579 } 1580 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1581 1582 /** 1583 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1584 * @dev: device to select idle state for 1585 */ 1586 int pinctrl_pm_select_idle_state(struct device *dev) 1587 { 1588 if (!dev->pins) 1589 return 0; 1590 1591 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1592 } 1593 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1594 #endif 1595 1596 #ifdef CONFIG_DEBUG_FS 1597 1598 static int pinctrl_pins_show(struct seq_file *s, void *what) 1599 { 1600 struct pinctrl_dev *pctldev = s->private; 1601 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1602 unsigned i, pin; 1603 1604 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1605 1606 mutex_lock(&pctldev->mutex); 1607 1608 /* The pin number can be retrived from the pin controller descriptor */ 1609 for (i = 0; i < pctldev->desc->npins; i++) { 1610 struct pin_desc *desc; 1611 1612 pin = pctldev->desc->pins[i].number; 1613 desc = pin_desc_get(pctldev, pin); 1614 /* Pin space may be sparse */ 1615 if (!desc) 1616 continue; 1617 1618 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1619 1620 /* Driver-specific info per pin */ 1621 if (ops->pin_dbg_show) 1622 ops->pin_dbg_show(pctldev, s, pin); 1623 1624 seq_puts(s, "\n"); 1625 } 1626 1627 mutex_unlock(&pctldev->mutex); 1628 1629 return 0; 1630 } 1631 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1632 1633 static int pinctrl_groups_show(struct seq_file *s, void *what) 1634 { 1635 struct pinctrl_dev *pctldev = s->private; 1636 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1637 unsigned ngroups, selector = 0; 1638 1639 mutex_lock(&pctldev->mutex); 1640 1641 ngroups = ops->get_groups_count(pctldev); 1642 1643 seq_puts(s, "registered pin groups:\n"); 1644 while (selector < ngroups) { 1645 const unsigned *pins = NULL; 1646 unsigned num_pins = 0; 1647 const char *gname = ops->get_group_name(pctldev, selector); 1648 const char *pname; 1649 int ret = 0; 1650 int i; 1651 1652 if (ops->get_group_pins) 1653 ret = ops->get_group_pins(pctldev, selector, 1654 &pins, &num_pins); 1655 if (ret) 1656 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1657 gname); 1658 else { 1659 seq_printf(s, "group: %s\n", gname); 1660 for (i = 0; i < num_pins; i++) { 1661 pname = pin_get_name(pctldev, pins[i]); 1662 if (WARN_ON(!pname)) { 1663 mutex_unlock(&pctldev->mutex); 1664 return -EINVAL; 1665 } 1666 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1667 } 1668 seq_puts(s, "\n"); 1669 } 1670 selector++; 1671 } 1672 1673 mutex_unlock(&pctldev->mutex); 1674 1675 return 0; 1676 } 1677 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1678 1679 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1680 { 1681 struct pinctrl_dev *pctldev = s->private; 1682 struct pinctrl_gpio_range *range; 1683 1684 seq_puts(s, "GPIO ranges handled:\n"); 1685 1686 mutex_lock(&pctldev->mutex); 1687 1688 /* Loop over the ranges */ 1689 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1690 if (range->pins) { 1691 int a; 1692 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1693 range->id, range->name, 1694 range->base, (range->base + range->npins - 1)); 1695 for (a = 0; a < range->npins - 1; a++) 1696 seq_printf(s, "%u, ", range->pins[a]); 1697 seq_printf(s, "%u}\n", range->pins[a]); 1698 } 1699 else 1700 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1701 range->id, range->name, 1702 range->base, (range->base + range->npins - 1), 1703 range->pin_base, 1704 (range->pin_base + range->npins - 1)); 1705 } 1706 1707 mutex_unlock(&pctldev->mutex); 1708 1709 return 0; 1710 } 1711 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1712 1713 static int pinctrl_devices_show(struct seq_file *s, void *what) 1714 { 1715 struct pinctrl_dev *pctldev; 1716 1717 seq_puts(s, "name [pinmux] [pinconf]\n"); 1718 1719 mutex_lock(&pinctrldev_list_mutex); 1720 1721 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1722 seq_printf(s, "%s ", pctldev->desc->name); 1723 if (pctldev->desc->pmxops) 1724 seq_puts(s, "yes "); 1725 else 1726 seq_puts(s, "no "); 1727 if (pctldev->desc->confops) 1728 seq_puts(s, "yes"); 1729 else 1730 seq_puts(s, "no"); 1731 seq_puts(s, "\n"); 1732 } 1733 1734 mutex_unlock(&pinctrldev_list_mutex); 1735 1736 return 0; 1737 } 1738 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1739 1740 static inline const char *map_type(enum pinctrl_map_type type) 1741 { 1742 static const char * const names[] = { 1743 "INVALID", 1744 "DUMMY_STATE", 1745 "MUX_GROUP", 1746 "CONFIGS_PIN", 1747 "CONFIGS_GROUP", 1748 }; 1749 1750 if (type >= ARRAY_SIZE(names)) 1751 return "UNKNOWN"; 1752 1753 return names[type]; 1754 } 1755 1756 static int pinctrl_maps_show(struct seq_file *s, void *what) 1757 { 1758 struct pinctrl_maps *maps_node; 1759 int i; 1760 const struct pinctrl_map *map; 1761 1762 seq_puts(s, "Pinctrl maps:\n"); 1763 1764 mutex_lock(&pinctrl_maps_mutex); 1765 for_each_maps(maps_node, i, map) { 1766 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1767 map->dev_name, map->name, map_type(map->type), 1768 map->type); 1769 1770 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1771 seq_printf(s, "controlling device %s\n", 1772 map->ctrl_dev_name); 1773 1774 switch (map->type) { 1775 case PIN_MAP_TYPE_MUX_GROUP: 1776 pinmux_show_map(s, map); 1777 break; 1778 case PIN_MAP_TYPE_CONFIGS_PIN: 1779 case PIN_MAP_TYPE_CONFIGS_GROUP: 1780 pinconf_show_map(s, map); 1781 break; 1782 default: 1783 break; 1784 } 1785 1786 seq_putc(s, '\n'); 1787 } 1788 mutex_unlock(&pinctrl_maps_mutex); 1789 1790 return 0; 1791 } 1792 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1793 1794 static int pinctrl_show(struct seq_file *s, void *what) 1795 { 1796 struct pinctrl *p; 1797 struct pinctrl_state *state; 1798 struct pinctrl_setting *setting; 1799 1800 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1801 1802 mutex_lock(&pinctrl_list_mutex); 1803 1804 list_for_each_entry(p, &pinctrl_list, node) { 1805 seq_printf(s, "device: %s current state: %s\n", 1806 dev_name(p->dev), 1807 p->state ? p->state->name : "none"); 1808 1809 list_for_each_entry(state, &p->states, node) { 1810 seq_printf(s, " state: %s\n", state->name); 1811 1812 list_for_each_entry(setting, &state->settings, node) { 1813 struct pinctrl_dev *pctldev = setting->pctldev; 1814 1815 seq_printf(s, " type: %s controller %s ", 1816 map_type(setting->type), 1817 pinctrl_dev_get_name(pctldev)); 1818 1819 switch (setting->type) { 1820 case PIN_MAP_TYPE_MUX_GROUP: 1821 pinmux_show_setting(s, setting); 1822 break; 1823 case PIN_MAP_TYPE_CONFIGS_PIN: 1824 case PIN_MAP_TYPE_CONFIGS_GROUP: 1825 pinconf_show_setting(s, setting); 1826 break; 1827 default: 1828 break; 1829 } 1830 } 1831 } 1832 } 1833 1834 mutex_unlock(&pinctrl_list_mutex); 1835 1836 return 0; 1837 } 1838 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1839 1840 static struct dentry *debugfs_root; 1841 1842 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1843 { 1844 struct dentry *device_root; 1845 const char *debugfs_name; 1846 1847 if (pctldev->desc->name && 1848 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1849 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1850 "%s-%s", dev_name(pctldev->dev), 1851 pctldev->desc->name); 1852 if (!debugfs_name) { 1853 pr_warn("failed to determine debugfs dir name for %s\n", 1854 dev_name(pctldev->dev)); 1855 return; 1856 } 1857 } else { 1858 debugfs_name = dev_name(pctldev->dev); 1859 } 1860 1861 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1862 pctldev->device_root = device_root; 1863 1864 if (IS_ERR(device_root) || !device_root) { 1865 pr_warn("failed to create debugfs directory for %s\n", 1866 dev_name(pctldev->dev)); 1867 return; 1868 } 1869 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1870 device_root, pctldev, &pinctrl_pins_fops); 1871 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1872 device_root, pctldev, &pinctrl_groups_fops); 1873 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1874 device_root, pctldev, &pinctrl_gpioranges_fops); 1875 if (pctldev->desc->pmxops) 1876 pinmux_init_device_debugfs(device_root, pctldev); 1877 if (pctldev->desc->confops) 1878 pinconf_init_device_debugfs(device_root, pctldev); 1879 } 1880 1881 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1882 { 1883 debugfs_remove_recursive(pctldev->device_root); 1884 } 1885 1886 static void pinctrl_init_debugfs(void) 1887 { 1888 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1889 if (IS_ERR(debugfs_root) || !debugfs_root) { 1890 pr_warn("failed to create debugfs directory\n"); 1891 debugfs_root = NULL; 1892 return; 1893 } 1894 1895 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1896 debugfs_root, NULL, &pinctrl_devices_fops); 1897 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1898 debugfs_root, NULL, &pinctrl_maps_fops); 1899 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1900 debugfs_root, NULL, &pinctrl_fops); 1901 } 1902 1903 #else /* CONFIG_DEBUG_FS */ 1904 1905 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1906 { 1907 } 1908 1909 static void pinctrl_init_debugfs(void) 1910 { 1911 } 1912 1913 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1914 { 1915 } 1916 1917 #endif 1918 1919 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1920 { 1921 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1922 1923 if (!ops || 1924 !ops->get_groups_count || 1925 !ops->get_group_name) 1926 return -EINVAL; 1927 1928 return 0; 1929 } 1930 1931 /** 1932 * pinctrl_init_controller() - init a pin controller device 1933 * @pctldesc: descriptor for this pin controller 1934 * @dev: parent device for this pin controller 1935 * @driver_data: private pin controller data for this pin controller 1936 */ 1937 static struct pinctrl_dev * 1938 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1939 void *driver_data) 1940 { 1941 struct pinctrl_dev *pctldev; 1942 int ret; 1943 1944 if (!pctldesc) 1945 return ERR_PTR(-EINVAL); 1946 if (!pctldesc->name) 1947 return ERR_PTR(-EINVAL); 1948 1949 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1950 if (!pctldev) 1951 return ERR_PTR(-ENOMEM); 1952 1953 /* Initialize pin control device struct */ 1954 pctldev->owner = pctldesc->owner; 1955 pctldev->desc = pctldesc; 1956 pctldev->driver_data = driver_data; 1957 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1958 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1959 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1960 #endif 1961 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1962 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1963 #endif 1964 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1965 INIT_LIST_HEAD(&pctldev->node); 1966 pctldev->dev = dev; 1967 mutex_init(&pctldev->mutex); 1968 1969 /* check core ops for sanity */ 1970 ret = pinctrl_check_ops(pctldev); 1971 if (ret) { 1972 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1973 goto out_err; 1974 } 1975 1976 /* If we're implementing pinmuxing, check the ops for sanity */ 1977 if (pctldesc->pmxops) { 1978 ret = pinmux_check_ops(pctldev); 1979 if (ret) 1980 goto out_err; 1981 } 1982 1983 /* If we're implementing pinconfig, check the ops for sanity */ 1984 if (pctldesc->confops) { 1985 ret = pinconf_check_ops(pctldev); 1986 if (ret) 1987 goto out_err; 1988 } 1989 1990 /* Register all the pins */ 1991 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1992 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1993 if (ret) { 1994 dev_err(dev, "error during pin registration\n"); 1995 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1996 pctldesc->npins); 1997 goto out_err; 1998 } 1999 2000 return pctldev; 2001 2002 out_err: 2003 mutex_destroy(&pctldev->mutex); 2004 kfree(pctldev); 2005 return ERR_PTR(ret); 2006 } 2007 2008 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2009 { 2010 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2011 if (PTR_ERR(pctldev->p) == -ENODEV) { 2012 dev_dbg(pctldev->dev, "no hogs found\n"); 2013 2014 return 0; 2015 } 2016 2017 if (IS_ERR(pctldev->p)) { 2018 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2019 PTR_ERR(pctldev->p)); 2020 2021 return PTR_ERR(pctldev->p); 2022 } 2023 2024 kref_get(&pctldev->p->users); 2025 pctldev->hog_default = 2026 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2027 if (IS_ERR(pctldev->hog_default)) { 2028 dev_dbg(pctldev->dev, 2029 "failed to lookup the default state\n"); 2030 } else { 2031 if (pinctrl_select_state(pctldev->p, 2032 pctldev->hog_default)) 2033 dev_err(pctldev->dev, 2034 "failed to select default state\n"); 2035 } 2036 2037 pctldev->hog_sleep = 2038 pinctrl_lookup_state(pctldev->p, 2039 PINCTRL_STATE_SLEEP); 2040 if (IS_ERR(pctldev->hog_sleep)) 2041 dev_dbg(pctldev->dev, 2042 "failed to lookup the sleep state\n"); 2043 2044 return 0; 2045 } 2046 2047 int pinctrl_enable(struct pinctrl_dev *pctldev) 2048 { 2049 int error; 2050 2051 error = pinctrl_claim_hogs(pctldev); 2052 if (error) { 2053 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2054 error); 2055 mutex_destroy(&pctldev->mutex); 2056 kfree(pctldev); 2057 2058 return error; 2059 } 2060 2061 mutex_lock(&pinctrldev_list_mutex); 2062 list_add_tail(&pctldev->node, &pinctrldev_list); 2063 mutex_unlock(&pinctrldev_list_mutex); 2064 2065 pinctrl_init_device_debugfs(pctldev); 2066 2067 return 0; 2068 } 2069 EXPORT_SYMBOL_GPL(pinctrl_enable); 2070 2071 /** 2072 * pinctrl_register() - register a pin controller device 2073 * @pctldesc: descriptor for this pin controller 2074 * @dev: parent device for this pin controller 2075 * @driver_data: private pin controller data for this pin controller 2076 * 2077 * Note that pinctrl_register() is known to have problems as the pin 2078 * controller driver functions are called before the driver has a 2079 * struct pinctrl_dev handle. To avoid issues later on, please use the 2080 * new pinctrl_register_and_init() below instead. 2081 */ 2082 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2083 struct device *dev, void *driver_data) 2084 { 2085 struct pinctrl_dev *pctldev; 2086 int error; 2087 2088 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2089 if (IS_ERR(pctldev)) 2090 return pctldev; 2091 2092 error = pinctrl_enable(pctldev); 2093 if (error) 2094 return ERR_PTR(error); 2095 2096 return pctldev; 2097 2098 } 2099 EXPORT_SYMBOL_GPL(pinctrl_register); 2100 2101 /** 2102 * pinctrl_register_and_init() - register and init pin controller device 2103 * @pctldesc: descriptor for this pin controller 2104 * @dev: parent device for this pin controller 2105 * @driver_data: private pin controller data for this pin controller 2106 * @pctldev: pin controller device 2107 * 2108 * Note that pinctrl_enable() still needs to be manually called after 2109 * this once the driver is ready. 2110 */ 2111 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2112 struct device *dev, void *driver_data, 2113 struct pinctrl_dev **pctldev) 2114 { 2115 struct pinctrl_dev *p; 2116 2117 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2118 if (IS_ERR(p)) 2119 return PTR_ERR(p); 2120 2121 /* 2122 * We have pinctrl_start() call functions in the pin controller 2123 * driver with create_pinctrl() for at least dt_node_to_map(). So 2124 * let's make sure pctldev is properly initialized for the 2125 * pin controller driver before we do anything. 2126 */ 2127 *pctldev = p; 2128 2129 return 0; 2130 } 2131 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2132 2133 /** 2134 * pinctrl_unregister() - unregister pinmux 2135 * @pctldev: pin controller to unregister 2136 * 2137 * Called by pinmux drivers to unregister a pinmux. 2138 */ 2139 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2140 { 2141 struct pinctrl_gpio_range *range, *n; 2142 2143 if (!pctldev) 2144 return; 2145 2146 mutex_lock(&pctldev->mutex); 2147 pinctrl_remove_device_debugfs(pctldev); 2148 mutex_unlock(&pctldev->mutex); 2149 2150 if (!IS_ERR_OR_NULL(pctldev->p)) 2151 pinctrl_put(pctldev->p); 2152 2153 mutex_lock(&pinctrldev_list_mutex); 2154 mutex_lock(&pctldev->mutex); 2155 /* TODO: check that no pinmuxes are still active? */ 2156 list_del(&pctldev->node); 2157 pinmux_generic_free_functions(pctldev); 2158 pinctrl_generic_free_groups(pctldev); 2159 /* Destroy descriptor tree */ 2160 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2161 pctldev->desc->npins); 2162 /* remove gpio ranges map */ 2163 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2164 list_del(&range->node); 2165 2166 mutex_unlock(&pctldev->mutex); 2167 mutex_destroy(&pctldev->mutex); 2168 kfree(pctldev); 2169 mutex_unlock(&pinctrldev_list_mutex); 2170 } 2171 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2172 2173 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2174 { 2175 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2176 2177 pinctrl_unregister(pctldev); 2178 } 2179 2180 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2181 { 2182 struct pctldev **r = res; 2183 2184 if (WARN_ON(!r || !*r)) 2185 return 0; 2186 2187 return *r == data; 2188 } 2189 2190 /** 2191 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2192 * @dev: parent device for this pin controller 2193 * @pctldesc: descriptor for this pin controller 2194 * @driver_data: private pin controller data for this pin controller 2195 * 2196 * Returns an error pointer if pincontrol register failed. Otherwise 2197 * it returns valid pinctrl handle. 2198 * 2199 * The pinctrl device will be automatically released when the device is unbound. 2200 */ 2201 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2202 struct pinctrl_desc *pctldesc, 2203 void *driver_data) 2204 { 2205 struct pinctrl_dev **ptr, *pctldev; 2206 2207 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2208 if (!ptr) 2209 return ERR_PTR(-ENOMEM); 2210 2211 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2212 if (IS_ERR(pctldev)) { 2213 devres_free(ptr); 2214 return pctldev; 2215 } 2216 2217 *ptr = pctldev; 2218 devres_add(dev, ptr); 2219 2220 return pctldev; 2221 } 2222 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2223 2224 /** 2225 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2226 * @dev: parent device for this pin controller 2227 * @pctldesc: descriptor for this pin controller 2228 * @driver_data: private pin controller data for this pin controller 2229 * 2230 * Returns an error pointer if pincontrol register failed. Otherwise 2231 * it returns valid pinctrl handle. 2232 * 2233 * The pinctrl device will be automatically released when the device is unbound. 2234 */ 2235 int devm_pinctrl_register_and_init(struct device *dev, 2236 struct pinctrl_desc *pctldesc, 2237 void *driver_data, 2238 struct pinctrl_dev **pctldev) 2239 { 2240 struct pinctrl_dev **ptr; 2241 int error; 2242 2243 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2244 if (!ptr) 2245 return -ENOMEM; 2246 2247 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2248 if (error) { 2249 devres_free(ptr); 2250 return error; 2251 } 2252 2253 *ptr = *pctldev; 2254 devres_add(dev, ptr); 2255 2256 return 0; 2257 } 2258 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2259 2260 /** 2261 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2262 * @dev: device for which which resource was allocated 2263 * @pctldev: the pinctrl device to unregister. 2264 */ 2265 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2266 { 2267 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2268 devm_pinctrl_dev_match, pctldev)); 2269 } 2270 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2271 2272 static int __init pinctrl_init(void) 2273 { 2274 pr_info("initialized pinctrl subsystem\n"); 2275 pinctrl_init_debugfs(); 2276 return 0; 2277 } 2278 2279 /* init early since many drivers really need to initialized pinmux early */ 2280 core_initcall(pinctrl_init); 2281