1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", number); 235 return -EINVAL; 236 } 237 238 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 239 if (pindesc == NULL) { 240 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 241 return -ENOMEM; 242 } 243 244 /* Set owner */ 245 pindesc->pctldev = pctldev; 246 247 /* Copy basic pin info */ 248 if (name) { 249 pindesc->name = name; 250 } else { 251 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 252 if (pindesc->name == NULL) { 253 kfree(pindesc); 254 return -ENOMEM; 255 } 256 pindesc->dynamic_name = true; 257 } 258 259 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 260 pr_debug("registered pin %d (%s) on %s\n", 261 number, pindesc->name, pctldev->desc->name); 262 return 0; 263 } 264 265 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 266 struct pinctrl_pin_desc const *pins, 267 unsigned num_descs) 268 { 269 unsigned i; 270 int ret = 0; 271 272 for (i = 0; i < num_descs; i++) { 273 ret = pinctrl_register_one_pin(pctldev, 274 pins[i].number, pins[i].name); 275 if (ret) 276 return ret; 277 } 278 279 return 0; 280 } 281 282 /** 283 * gpio_to_pin() - GPIO range GPIO number to pin number translation 284 * @range: GPIO range used for the translation 285 * @gpio: gpio pin to translate to a pin number 286 * 287 * Finds the pin number for a given GPIO using the specified GPIO range 288 * as a base for translation. The distinction between linear GPIO ranges 289 * and pin list based GPIO ranges is managed correctly by this function. 290 * 291 * This function assumes the gpio is part of the specified GPIO range, use 292 * only after making sure this is the case (e.g. by calling it on the 293 * result of successful pinctrl_get_device_gpio_range calls)! 294 */ 295 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 296 unsigned int gpio) 297 { 298 unsigned int offset = gpio - range->base; 299 if (range->pins) 300 return range->pins[offset]; 301 else 302 return range->pin_base + offset; 303 } 304 305 /** 306 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 307 * @pctldev: pin controller device to check 308 * @gpio: gpio pin to check taken from the global GPIO pin space 309 * 310 * Tries to match a GPIO pin number to the ranges handled by a certain pin 311 * controller, return the range or NULL 312 */ 313 static struct pinctrl_gpio_range * 314 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 315 { 316 struct pinctrl_gpio_range *range = NULL; 317 318 mutex_lock(&pctldev->mutex); 319 /* Loop over the ranges */ 320 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 321 /* Check if we're in the valid range */ 322 if (gpio >= range->base && 323 gpio < range->base + range->npins) { 324 mutex_unlock(&pctldev->mutex); 325 return range; 326 } 327 } 328 mutex_unlock(&pctldev->mutex); 329 return NULL; 330 } 331 332 /** 333 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 334 * the same GPIO chip are in range 335 * @gpio: gpio pin to check taken from the global GPIO pin space 336 * 337 * This function is complement of pinctrl_match_gpio_range(). If the return 338 * value of pinctrl_match_gpio_range() is NULL, this function could be used 339 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 340 * of the same GPIO chip don't have back-end pinctrl interface. 341 * If the return value is true, it means that pinctrl device is ready & the 342 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 343 * is false, it means that pinctrl device may not be ready. 344 */ 345 #ifdef CONFIG_GPIOLIB 346 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 347 { 348 struct pinctrl_dev *pctldev; 349 struct pinctrl_gpio_range *range = NULL; 350 struct gpio_chip *chip = gpio_to_chip(gpio); 351 352 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 353 return false; 354 355 mutex_lock(&pinctrldev_list_mutex); 356 357 /* Loop over the pin controllers */ 358 list_for_each_entry(pctldev, &pinctrldev_list, node) { 359 /* Loop over the ranges */ 360 mutex_lock(&pctldev->mutex); 361 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 362 /* Check if any gpio range overlapped with gpio chip */ 363 if (range->base + range->npins - 1 < chip->base || 364 range->base > chip->base + chip->ngpio - 1) 365 continue; 366 mutex_unlock(&pctldev->mutex); 367 mutex_unlock(&pinctrldev_list_mutex); 368 return true; 369 } 370 mutex_unlock(&pctldev->mutex); 371 } 372 373 mutex_unlock(&pinctrldev_list_mutex); 374 375 return false; 376 } 377 #else 378 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 379 #endif 380 381 /** 382 * pinctrl_get_device_gpio_range() - find device for GPIO range 383 * @gpio: the pin to locate the pin controller for 384 * @outdev: the pin control device if found 385 * @outrange: the GPIO range if found 386 * 387 * Find the pin controller handling a certain GPIO pin from the pinspace of 388 * the GPIO subsystem, return the device and the matching GPIO range. Returns 389 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 390 * may still have not been registered. 391 */ 392 static int pinctrl_get_device_gpio_range(unsigned gpio, 393 struct pinctrl_dev **outdev, 394 struct pinctrl_gpio_range **outrange) 395 { 396 struct pinctrl_dev *pctldev = NULL; 397 398 mutex_lock(&pinctrldev_list_mutex); 399 400 /* Loop over the pin controllers */ 401 list_for_each_entry(pctldev, &pinctrldev_list, node) { 402 struct pinctrl_gpio_range *range; 403 404 range = pinctrl_match_gpio_range(pctldev, gpio); 405 if (range != NULL) { 406 *outdev = pctldev; 407 *outrange = range; 408 mutex_unlock(&pinctrldev_list_mutex); 409 return 0; 410 } 411 } 412 413 mutex_unlock(&pinctrldev_list_mutex); 414 415 return -EPROBE_DEFER; 416 } 417 418 /** 419 * pinctrl_add_gpio_range() - register a GPIO range for a controller 420 * @pctldev: pin controller device to add the range to 421 * @range: the GPIO range to add 422 * 423 * This adds a range of GPIOs to be handled by a certain pin controller. Call 424 * this to register handled ranges after registering your pin controller. 425 */ 426 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 427 struct pinctrl_gpio_range *range) 428 { 429 mutex_lock(&pctldev->mutex); 430 list_add_tail(&range->node, &pctldev->gpio_ranges); 431 mutex_unlock(&pctldev->mutex); 432 } 433 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 434 435 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 436 struct pinctrl_gpio_range *ranges, 437 unsigned nranges) 438 { 439 int i; 440 441 for (i = 0; i < nranges; i++) 442 pinctrl_add_gpio_range(pctldev, &ranges[i]); 443 } 444 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 445 446 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 447 struct pinctrl_gpio_range *range) 448 { 449 struct pinctrl_dev *pctldev; 450 451 pctldev = get_pinctrl_dev_from_devname(devname); 452 453 /* 454 * If we can't find this device, let's assume that is because 455 * it has not probed yet, so the driver trying to register this 456 * range need to defer probing. 457 */ 458 if (!pctldev) { 459 return ERR_PTR(-EPROBE_DEFER); 460 } 461 pinctrl_add_gpio_range(pctldev, range); 462 463 return pctldev; 464 } 465 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 466 467 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 468 const unsigned **pins, unsigned *num_pins) 469 { 470 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 471 int gs; 472 473 if (!pctlops->get_group_pins) 474 return -EINVAL; 475 476 gs = pinctrl_get_group_selector(pctldev, pin_group); 477 if (gs < 0) 478 return gs; 479 480 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 481 } 482 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 483 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 /* Loop over the ranges */ 491 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 492 /* Check if we're in the valid range */ 493 if (range->pins) { 494 int a; 495 for (a = 0; a < range->npins; a++) { 496 if (range->pins[a] == pin) 497 return range; 498 } 499 } else if (pin >= range->pin_base && 500 pin < range->pin_base + range->npins) 501 return range; 502 } 503 504 return NULL; 505 } 506 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 507 508 /** 509 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 510 * @pctldev: the pin controller device to look in 511 * @pin: a controller-local number to find the range for 512 */ 513 struct pinctrl_gpio_range * 514 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 515 unsigned int pin) 516 { 517 struct pinctrl_gpio_range *range; 518 519 mutex_lock(&pctldev->mutex); 520 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 521 mutex_unlock(&pctldev->mutex); 522 523 return range; 524 } 525 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 526 527 /** 528 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 529 * @pctldev: pin controller device to remove the range from 530 * @range: the GPIO range to remove 531 */ 532 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 533 struct pinctrl_gpio_range *range) 534 { 535 mutex_lock(&pctldev->mutex); 536 list_del(&range->node); 537 mutex_unlock(&pctldev->mutex); 538 } 539 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 540 541 /** 542 * pinctrl_get_group_selector() - returns the group selector for a group 543 * @pctldev: the pin controller handling the group 544 * @pin_group: the pin group to look up 545 */ 546 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 547 const char *pin_group) 548 { 549 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 550 unsigned ngroups = pctlops->get_groups_count(pctldev); 551 unsigned group_selector = 0; 552 553 while (group_selector < ngroups) { 554 const char *gname = pctlops->get_group_name(pctldev, 555 group_selector); 556 if (!strcmp(gname, pin_group)) { 557 dev_dbg(pctldev->dev, 558 "found group selector %u for %s\n", 559 group_selector, 560 pin_group); 561 return group_selector; 562 } 563 564 group_selector++; 565 } 566 567 dev_err(pctldev->dev, "does not have pin group %s\n", 568 pin_group); 569 570 return -EINVAL; 571 } 572 573 /** 574 * pinctrl_request_gpio() - request a single pin to be used as GPIO 575 * @gpio: the GPIO pin number from the GPIO subsystem number space 576 * 577 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 578 * as part of their gpio_request() semantics, platforms and individual drivers 579 * shall *NOT* request GPIO pins to be muxed in. 580 */ 581 int pinctrl_request_gpio(unsigned gpio) 582 { 583 struct pinctrl_dev *pctldev; 584 struct pinctrl_gpio_range *range; 585 int ret; 586 int pin; 587 588 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 589 if (ret) { 590 if (pinctrl_ready_for_gpio_range(gpio)) 591 ret = 0; 592 return ret; 593 } 594 595 mutex_lock(&pctldev->mutex); 596 597 /* Convert to the pin controllers number space */ 598 pin = gpio_to_pin(range, gpio); 599 600 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 601 602 mutex_unlock(&pctldev->mutex); 603 604 return ret; 605 } 606 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 607 608 /** 609 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 610 * @gpio: the GPIO pin number from the GPIO subsystem number space 611 * 612 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 613 * as part of their gpio_free() semantics, platforms and individual drivers 614 * shall *NOT* request GPIO pins to be muxed out. 615 */ 616 void pinctrl_free_gpio(unsigned gpio) 617 { 618 struct pinctrl_dev *pctldev; 619 struct pinctrl_gpio_range *range; 620 int ret; 621 int pin; 622 623 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 624 if (ret) { 625 return; 626 } 627 mutex_lock(&pctldev->mutex); 628 629 /* Convert to the pin controllers number space */ 630 pin = gpio_to_pin(range, gpio); 631 632 pinmux_free_gpio(pctldev, pin, range); 633 634 mutex_unlock(&pctldev->mutex); 635 } 636 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 637 638 static int pinctrl_gpio_direction(unsigned gpio, bool input) 639 { 640 struct pinctrl_dev *pctldev; 641 struct pinctrl_gpio_range *range; 642 int ret; 643 int pin; 644 645 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 646 if (ret) { 647 return ret; 648 } 649 650 mutex_lock(&pctldev->mutex); 651 652 /* Convert to the pin controllers number space */ 653 pin = gpio_to_pin(range, gpio); 654 ret = pinmux_gpio_direction(pctldev, range, pin, input); 655 656 mutex_unlock(&pctldev->mutex); 657 658 return ret; 659 } 660 661 /** 662 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 663 * @gpio: the GPIO pin number from the GPIO subsystem number space 664 * 665 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 666 * as part of their gpio_direction_input() semantics, platforms and individual 667 * drivers shall *NOT* touch pin control GPIO calls. 668 */ 669 int pinctrl_gpio_direction_input(unsigned gpio) 670 { 671 return pinctrl_gpio_direction(gpio, true); 672 } 673 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 674 675 /** 676 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 677 * @gpio: the GPIO pin number from the GPIO subsystem number space 678 * 679 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 680 * as part of their gpio_direction_output() semantics, platforms and individual 681 * drivers shall *NOT* touch pin control GPIO calls. 682 */ 683 int pinctrl_gpio_direction_output(unsigned gpio) 684 { 685 return pinctrl_gpio_direction(gpio, false); 686 } 687 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 688 689 static struct pinctrl_state *find_state(struct pinctrl *p, 690 const char *name) 691 { 692 struct pinctrl_state *state; 693 694 list_for_each_entry(state, &p->states, node) 695 if (!strcmp(state->name, name)) 696 return state; 697 698 return NULL; 699 } 700 701 static struct pinctrl_state *create_state(struct pinctrl *p, 702 const char *name) 703 { 704 struct pinctrl_state *state; 705 706 state = kzalloc(sizeof(*state), GFP_KERNEL); 707 if (state == NULL) { 708 dev_err(p->dev, 709 "failed to alloc struct pinctrl_state\n"); 710 return ERR_PTR(-ENOMEM); 711 } 712 713 state->name = name; 714 INIT_LIST_HEAD(&state->settings); 715 716 list_add_tail(&state->node, &p->states); 717 718 return state; 719 } 720 721 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 722 { 723 struct pinctrl_state *state; 724 struct pinctrl_setting *setting; 725 int ret; 726 727 state = find_state(p, map->name); 728 if (!state) 729 state = create_state(p, map->name); 730 if (IS_ERR(state)) 731 return PTR_ERR(state); 732 733 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 734 return 0; 735 736 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 737 if (setting == NULL) { 738 dev_err(p->dev, 739 "failed to alloc struct pinctrl_setting\n"); 740 return -ENOMEM; 741 } 742 743 setting->type = map->type; 744 745 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 746 if (setting->pctldev == NULL) { 747 kfree(setting); 748 /* Do not defer probing of hogs (circular loop) */ 749 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 750 return -ENODEV; 751 /* 752 * OK let us guess that the driver is not there yet, and 753 * let's defer obtaining this pinctrl handle to later... 754 */ 755 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 756 map->ctrl_dev_name); 757 return -EPROBE_DEFER; 758 } 759 760 setting->dev_name = map->dev_name; 761 762 switch (map->type) { 763 case PIN_MAP_TYPE_MUX_GROUP: 764 ret = pinmux_map_to_setting(map, setting); 765 break; 766 case PIN_MAP_TYPE_CONFIGS_PIN: 767 case PIN_MAP_TYPE_CONFIGS_GROUP: 768 ret = pinconf_map_to_setting(map, setting); 769 break; 770 default: 771 ret = -EINVAL; 772 break; 773 } 774 if (ret < 0) { 775 kfree(setting); 776 return ret; 777 } 778 779 list_add_tail(&setting->node, &state->settings); 780 781 return 0; 782 } 783 784 static struct pinctrl *find_pinctrl(struct device *dev) 785 { 786 struct pinctrl *p; 787 788 mutex_lock(&pinctrl_list_mutex); 789 list_for_each_entry(p, &pinctrl_list, node) 790 if (p->dev == dev) { 791 mutex_unlock(&pinctrl_list_mutex); 792 return p; 793 } 794 795 mutex_unlock(&pinctrl_list_mutex); 796 return NULL; 797 } 798 799 static void pinctrl_free(struct pinctrl *p, bool inlist); 800 801 static struct pinctrl *create_pinctrl(struct device *dev) 802 { 803 struct pinctrl *p; 804 const char *devname; 805 struct pinctrl_maps *maps_node; 806 int i; 807 struct pinctrl_map const *map; 808 int ret; 809 810 /* 811 * create the state cookie holder struct pinctrl for each 812 * mapping, this is what consumers will get when requesting 813 * a pin control handle with pinctrl_get() 814 */ 815 p = kzalloc(sizeof(*p), GFP_KERNEL); 816 if (p == NULL) { 817 dev_err(dev, "failed to alloc struct pinctrl\n"); 818 return ERR_PTR(-ENOMEM); 819 } 820 p->dev = dev; 821 INIT_LIST_HEAD(&p->states); 822 INIT_LIST_HEAD(&p->dt_maps); 823 824 ret = pinctrl_dt_to_map(p); 825 if (ret < 0) { 826 kfree(p); 827 return ERR_PTR(ret); 828 } 829 830 devname = dev_name(dev); 831 832 mutex_lock(&pinctrl_maps_mutex); 833 /* Iterate over the pin control maps to locate the right ones */ 834 for_each_maps(maps_node, i, map) { 835 /* Map must be for this device */ 836 if (strcmp(map->dev_name, devname)) 837 continue; 838 839 ret = add_setting(p, map); 840 /* 841 * At this point the adding of a setting may: 842 * 843 * - Defer, if the pinctrl device is not yet available 844 * - Fail, if the pinctrl device is not yet available, 845 * AND the setting is a hog. We cannot defer that, since 846 * the hog will kick in immediately after the device 847 * is registered. 848 * 849 * If the error returned was not -EPROBE_DEFER then we 850 * accumulate the errors to see if we end up with 851 * an -EPROBE_DEFER later, as that is the worst case. 852 */ 853 if (ret == -EPROBE_DEFER) { 854 pinctrl_free(p, false); 855 mutex_unlock(&pinctrl_maps_mutex); 856 return ERR_PTR(ret); 857 } 858 } 859 mutex_unlock(&pinctrl_maps_mutex); 860 861 if (ret < 0) { 862 /* If some other error than deferral occured, return here */ 863 pinctrl_free(p, false); 864 return ERR_PTR(ret); 865 } 866 867 kref_init(&p->users); 868 869 /* Add the pinctrl handle to the global list */ 870 mutex_lock(&pinctrl_list_mutex); 871 list_add_tail(&p->node, &pinctrl_list); 872 mutex_unlock(&pinctrl_list_mutex); 873 874 return p; 875 } 876 877 /** 878 * pinctrl_get() - retrieves the pinctrl handle for a device 879 * @dev: the device to obtain the handle for 880 */ 881 struct pinctrl *pinctrl_get(struct device *dev) 882 { 883 struct pinctrl *p; 884 885 if (WARN_ON(!dev)) 886 return ERR_PTR(-EINVAL); 887 888 /* 889 * See if somebody else (such as the device core) has already 890 * obtained a handle to the pinctrl for this device. In that case, 891 * return another pointer to it. 892 */ 893 p = find_pinctrl(dev); 894 if (p != NULL) { 895 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 896 kref_get(&p->users); 897 return p; 898 } 899 900 return create_pinctrl(dev); 901 } 902 EXPORT_SYMBOL_GPL(pinctrl_get); 903 904 static void pinctrl_free_setting(bool disable_setting, 905 struct pinctrl_setting *setting) 906 { 907 switch (setting->type) { 908 case PIN_MAP_TYPE_MUX_GROUP: 909 if (disable_setting) 910 pinmux_disable_setting(setting); 911 pinmux_free_setting(setting); 912 break; 913 case PIN_MAP_TYPE_CONFIGS_PIN: 914 case PIN_MAP_TYPE_CONFIGS_GROUP: 915 pinconf_free_setting(setting); 916 break; 917 default: 918 break; 919 } 920 } 921 922 static void pinctrl_free(struct pinctrl *p, bool inlist) 923 { 924 struct pinctrl_state *state, *n1; 925 struct pinctrl_setting *setting, *n2; 926 927 mutex_lock(&pinctrl_list_mutex); 928 list_for_each_entry_safe(state, n1, &p->states, node) { 929 list_for_each_entry_safe(setting, n2, &state->settings, node) { 930 pinctrl_free_setting(state == p->state, setting); 931 list_del(&setting->node); 932 kfree(setting); 933 } 934 list_del(&state->node); 935 kfree(state); 936 } 937 938 pinctrl_dt_free_maps(p); 939 940 if (inlist) 941 list_del(&p->node); 942 kfree(p); 943 mutex_unlock(&pinctrl_list_mutex); 944 } 945 946 /** 947 * pinctrl_release() - release the pinctrl handle 948 * @kref: the kref in the pinctrl being released 949 */ 950 static void pinctrl_release(struct kref *kref) 951 { 952 struct pinctrl *p = container_of(kref, struct pinctrl, users); 953 954 pinctrl_free(p, true); 955 } 956 957 /** 958 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 959 * @p: the pinctrl handle to release 960 */ 961 void pinctrl_put(struct pinctrl *p) 962 { 963 kref_put(&p->users, pinctrl_release); 964 } 965 EXPORT_SYMBOL_GPL(pinctrl_put); 966 967 /** 968 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 969 * @p: the pinctrl handle to retrieve the state from 970 * @name: the state name to retrieve 971 */ 972 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 973 const char *name) 974 { 975 struct pinctrl_state *state; 976 977 state = find_state(p, name); 978 if (!state) { 979 if (pinctrl_dummy_state) { 980 /* create dummy state */ 981 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 982 name); 983 state = create_state(p, name); 984 } else 985 state = ERR_PTR(-ENODEV); 986 } 987 988 return state; 989 } 990 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 991 992 /** 993 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 994 * @p: the pinctrl handle for the device that requests configuration 995 * @state: the state handle to select/activate/program 996 */ 997 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 998 { 999 struct pinctrl_setting *setting, *setting2; 1000 struct pinctrl_state *old_state = p->state; 1001 int ret; 1002 1003 if (p->state == state) 1004 return 0; 1005 1006 if (p->state) { 1007 /* 1008 * For each pinmux setting in the old state, forget SW's record 1009 * of mux owner for that pingroup. Any pingroups which are 1010 * still owned by the new state will be re-acquired by the call 1011 * to pinmux_enable_setting() in the loop below. 1012 */ 1013 list_for_each_entry(setting, &p->state->settings, node) { 1014 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1015 continue; 1016 pinmux_disable_setting(setting); 1017 } 1018 } 1019 1020 p->state = NULL; 1021 1022 /* Apply all the settings for the new state */ 1023 list_for_each_entry(setting, &state->settings, node) { 1024 switch (setting->type) { 1025 case PIN_MAP_TYPE_MUX_GROUP: 1026 ret = pinmux_enable_setting(setting); 1027 break; 1028 case PIN_MAP_TYPE_CONFIGS_PIN: 1029 case PIN_MAP_TYPE_CONFIGS_GROUP: 1030 ret = pinconf_apply_setting(setting); 1031 break; 1032 default: 1033 ret = -EINVAL; 1034 break; 1035 } 1036 1037 if (ret < 0) { 1038 goto unapply_new_state; 1039 } 1040 } 1041 1042 p->state = state; 1043 1044 return 0; 1045 1046 unapply_new_state: 1047 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1048 1049 list_for_each_entry(setting2, &state->settings, node) { 1050 if (&setting2->node == &setting->node) 1051 break; 1052 /* 1053 * All we can do here is pinmux_disable_setting. 1054 * That means that some pins are muxed differently now 1055 * than they were before applying the setting (We can't 1056 * "unmux a pin"!), but it's not a big deal since the pins 1057 * are free to be muxed by another apply_setting. 1058 */ 1059 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1060 pinmux_disable_setting(setting2); 1061 } 1062 1063 /* There's no infinite recursive loop here because p->state is NULL */ 1064 if (old_state) 1065 pinctrl_select_state(p, old_state); 1066 1067 return ret; 1068 } 1069 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1070 1071 static void devm_pinctrl_release(struct device *dev, void *res) 1072 { 1073 pinctrl_put(*(struct pinctrl **)res); 1074 } 1075 1076 /** 1077 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1078 * @dev: the device to obtain the handle for 1079 * 1080 * If there is a need to explicitly destroy the returned struct pinctrl, 1081 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1082 */ 1083 struct pinctrl *devm_pinctrl_get(struct device *dev) 1084 { 1085 struct pinctrl **ptr, *p; 1086 1087 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1088 if (!ptr) 1089 return ERR_PTR(-ENOMEM); 1090 1091 p = pinctrl_get(dev); 1092 if (!IS_ERR(p)) { 1093 *ptr = p; 1094 devres_add(dev, ptr); 1095 } else { 1096 devres_free(ptr); 1097 } 1098 1099 return p; 1100 } 1101 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1102 1103 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1104 { 1105 struct pinctrl **p = res; 1106 1107 return *p == data; 1108 } 1109 1110 /** 1111 * devm_pinctrl_put() - Resource managed pinctrl_put() 1112 * @p: the pinctrl handle to release 1113 * 1114 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1115 * this function will not need to be called and the resource management 1116 * code will ensure that the resource is freed. 1117 */ 1118 void devm_pinctrl_put(struct pinctrl *p) 1119 { 1120 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1121 devm_pinctrl_match, p)); 1122 } 1123 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1124 1125 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1126 bool dup) 1127 { 1128 int i, ret; 1129 struct pinctrl_maps *maps_node; 1130 1131 pr_debug("add %u pinctrl maps\n", num_maps); 1132 1133 /* First sanity check the new mapping */ 1134 for (i = 0; i < num_maps; i++) { 1135 if (!maps[i].dev_name) { 1136 pr_err("failed to register map %s (%d): no device given\n", 1137 maps[i].name, i); 1138 return -EINVAL; 1139 } 1140 1141 if (!maps[i].name) { 1142 pr_err("failed to register map %d: no map name given\n", 1143 i); 1144 return -EINVAL; 1145 } 1146 1147 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1148 !maps[i].ctrl_dev_name) { 1149 pr_err("failed to register map %s (%d): no pin control device given\n", 1150 maps[i].name, i); 1151 return -EINVAL; 1152 } 1153 1154 switch (maps[i].type) { 1155 case PIN_MAP_TYPE_DUMMY_STATE: 1156 break; 1157 case PIN_MAP_TYPE_MUX_GROUP: 1158 ret = pinmux_validate_map(&maps[i], i); 1159 if (ret < 0) 1160 return ret; 1161 break; 1162 case PIN_MAP_TYPE_CONFIGS_PIN: 1163 case PIN_MAP_TYPE_CONFIGS_GROUP: 1164 ret = pinconf_validate_map(&maps[i], i); 1165 if (ret < 0) 1166 return ret; 1167 break; 1168 default: 1169 pr_err("failed to register map %s (%d): invalid type given\n", 1170 maps[i].name, i); 1171 return -EINVAL; 1172 } 1173 } 1174 1175 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1176 if (!maps_node) { 1177 pr_err("failed to alloc struct pinctrl_maps\n"); 1178 return -ENOMEM; 1179 } 1180 1181 maps_node->num_maps = num_maps; 1182 if (dup) { 1183 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1184 GFP_KERNEL); 1185 if (!maps_node->maps) { 1186 pr_err("failed to duplicate mapping table\n"); 1187 kfree(maps_node); 1188 return -ENOMEM; 1189 } 1190 } else { 1191 maps_node->maps = maps; 1192 } 1193 1194 mutex_lock(&pinctrl_maps_mutex); 1195 list_add_tail(&maps_node->node, &pinctrl_maps); 1196 mutex_unlock(&pinctrl_maps_mutex); 1197 1198 return 0; 1199 } 1200 1201 /** 1202 * pinctrl_register_mappings() - register a set of pin controller mappings 1203 * @maps: the pincontrol mappings table to register. This should probably be 1204 * marked with __initdata so it can be discarded after boot. This 1205 * function will perform a shallow copy for the mapping entries. 1206 * @num_maps: the number of maps in the mapping table 1207 */ 1208 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1209 unsigned num_maps) 1210 { 1211 return pinctrl_register_map(maps, num_maps, true); 1212 } 1213 1214 void pinctrl_unregister_map(struct pinctrl_map const *map) 1215 { 1216 struct pinctrl_maps *maps_node; 1217 1218 mutex_lock(&pinctrl_maps_mutex); 1219 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1220 if (maps_node->maps == map) { 1221 list_del(&maps_node->node); 1222 kfree(maps_node); 1223 mutex_unlock(&pinctrl_maps_mutex); 1224 return; 1225 } 1226 } 1227 mutex_unlock(&pinctrl_maps_mutex); 1228 } 1229 1230 /** 1231 * pinctrl_force_sleep() - turn a given controller device into sleep state 1232 * @pctldev: pin controller device 1233 */ 1234 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1235 { 1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1238 return 0; 1239 } 1240 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1241 1242 /** 1243 * pinctrl_force_default() - turn a given controller device into default state 1244 * @pctldev: pin controller device 1245 */ 1246 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1247 { 1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1250 return 0; 1251 } 1252 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1253 1254 /** 1255 * pinctrl_init_done() - tell pinctrl probe is done 1256 * 1257 * We'll use this time to switch the pins from "init" to "default" unless the 1258 * driver selected some other state. 1259 * 1260 * @dev: device to that's done probing 1261 */ 1262 int pinctrl_init_done(struct device *dev) 1263 { 1264 struct dev_pin_info *pins = dev->pins; 1265 int ret; 1266 1267 if (!pins) 1268 return 0; 1269 1270 if (IS_ERR(pins->init_state)) 1271 return 0; /* No such state */ 1272 1273 if (pins->p->state != pins->init_state) 1274 return 0; /* Not at init anyway */ 1275 1276 if (IS_ERR(pins->default_state)) 1277 return 0; /* No default state */ 1278 1279 ret = pinctrl_select_state(pins->p, pins->default_state); 1280 if (ret) 1281 dev_err(dev, "failed to activate default pinctrl state\n"); 1282 1283 return ret; 1284 } 1285 1286 #ifdef CONFIG_PM 1287 1288 /** 1289 * pinctrl_pm_select_state() - select pinctrl state for PM 1290 * @dev: device to select default state for 1291 * @state: state to set 1292 */ 1293 static int pinctrl_pm_select_state(struct device *dev, 1294 struct pinctrl_state *state) 1295 { 1296 struct dev_pin_info *pins = dev->pins; 1297 int ret; 1298 1299 if (IS_ERR(state)) 1300 return 0; /* No such state */ 1301 ret = pinctrl_select_state(pins->p, state); 1302 if (ret) 1303 dev_err(dev, "failed to activate pinctrl state %s\n", 1304 state->name); 1305 return ret; 1306 } 1307 1308 /** 1309 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1310 * @dev: device to select default state for 1311 */ 1312 int pinctrl_pm_select_default_state(struct device *dev) 1313 { 1314 if (!dev->pins) 1315 return 0; 1316 1317 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1318 } 1319 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1320 1321 /** 1322 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1323 * @dev: device to select sleep state for 1324 */ 1325 int pinctrl_pm_select_sleep_state(struct device *dev) 1326 { 1327 if (!dev->pins) 1328 return 0; 1329 1330 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1331 } 1332 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1333 1334 /** 1335 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1336 * @dev: device to select idle state for 1337 */ 1338 int pinctrl_pm_select_idle_state(struct device *dev) 1339 { 1340 if (!dev->pins) 1341 return 0; 1342 1343 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1344 } 1345 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1346 #endif 1347 1348 #ifdef CONFIG_DEBUG_FS 1349 1350 static int pinctrl_pins_show(struct seq_file *s, void *what) 1351 { 1352 struct pinctrl_dev *pctldev = s->private; 1353 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1354 unsigned i, pin; 1355 1356 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1357 1358 mutex_lock(&pctldev->mutex); 1359 1360 /* The pin number can be retrived from the pin controller descriptor */ 1361 for (i = 0; i < pctldev->desc->npins; i++) { 1362 struct pin_desc *desc; 1363 1364 pin = pctldev->desc->pins[i].number; 1365 desc = pin_desc_get(pctldev, pin); 1366 /* Pin space may be sparse */ 1367 if (desc == NULL) 1368 continue; 1369 1370 seq_printf(s, "pin %d (%s) ", pin, 1371 desc->name ? desc->name : "unnamed"); 1372 1373 /* Driver-specific info per pin */ 1374 if (ops->pin_dbg_show) 1375 ops->pin_dbg_show(pctldev, s, pin); 1376 1377 seq_puts(s, "\n"); 1378 } 1379 1380 mutex_unlock(&pctldev->mutex); 1381 1382 return 0; 1383 } 1384 1385 static int pinctrl_groups_show(struct seq_file *s, void *what) 1386 { 1387 struct pinctrl_dev *pctldev = s->private; 1388 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1389 unsigned ngroups, selector = 0; 1390 1391 mutex_lock(&pctldev->mutex); 1392 1393 ngroups = ops->get_groups_count(pctldev); 1394 1395 seq_puts(s, "registered pin groups:\n"); 1396 while (selector < ngroups) { 1397 const unsigned *pins = NULL; 1398 unsigned num_pins = 0; 1399 const char *gname = ops->get_group_name(pctldev, selector); 1400 const char *pname; 1401 int ret = 0; 1402 int i; 1403 1404 if (ops->get_group_pins) 1405 ret = ops->get_group_pins(pctldev, selector, 1406 &pins, &num_pins); 1407 if (ret) 1408 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1409 gname); 1410 else { 1411 seq_printf(s, "group: %s\n", gname); 1412 for (i = 0; i < num_pins; i++) { 1413 pname = pin_get_name(pctldev, pins[i]); 1414 if (WARN_ON(!pname)) { 1415 mutex_unlock(&pctldev->mutex); 1416 return -EINVAL; 1417 } 1418 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1419 } 1420 seq_puts(s, "\n"); 1421 } 1422 selector++; 1423 } 1424 1425 mutex_unlock(&pctldev->mutex); 1426 1427 return 0; 1428 } 1429 1430 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1431 { 1432 struct pinctrl_dev *pctldev = s->private; 1433 struct pinctrl_gpio_range *range = NULL; 1434 1435 seq_puts(s, "GPIO ranges handled:\n"); 1436 1437 mutex_lock(&pctldev->mutex); 1438 1439 /* Loop over the ranges */ 1440 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1441 if (range->pins) { 1442 int a; 1443 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1444 range->id, range->name, 1445 range->base, (range->base + range->npins - 1)); 1446 for (a = 0; a < range->npins - 1; a++) 1447 seq_printf(s, "%u, ", range->pins[a]); 1448 seq_printf(s, "%u}\n", range->pins[a]); 1449 } 1450 else 1451 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1452 range->id, range->name, 1453 range->base, (range->base + range->npins - 1), 1454 range->pin_base, 1455 (range->pin_base + range->npins - 1)); 1456 } 1457 1458 mutex_unlock(&pctldev->mutex); 1459 1460 return 0; 1461 } 1462 1463 static int pinctrl_devices_show(struct seq_file *s, void *what) 1464 { 1465 struct pinctrl_dev *pctldev; 1466 1467 seq_puts(s, "name [pinmux] [pinconf]\n"); 1468 1469 mutex_lock(&pinctrldev_list_mutex); 1470 1471 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1472 seq_printf(s, "%s ", pctldev->desc->name); 1473 if (pctldev->desc->pmxops) 1474 seq_puts(s, "yes "); 1475 else 1476 seq_puts(s, "no "); 1477 if (pctldev->desc->confops) 1478 seq_puts(s, "yes"); 1479 else 1480 seq_puts(s, "no"); 1481 seq_puts(s, "\n"); 1482 } 1483 1484 mutex_unlock(&pinctrldev_list_mutex); 1485 1486 return 0; 1487 } 1488 1489 static inline const char *map_type(enum pinctrl_map_type type) 1490 { 1491 static const char * const names[] = { 1492 "INVALID", 1493 "DUMMY_STATE", 1494 "MUX_GROUP", 1495 "CONFIGS_PIN", 1496 "CONFIGS_GROUP", 1497 }; 1498 1499 if (type >= ARRAY_SIZE(names)) 1500 return "UNKNOWN"; 1501 1502 return names[type]; 1503 } 1504 1505 static int pinctrl_maps_show(struct seq_file *s, void *what) 1506 { 1507 struct pinctrl_maps *maps_node; 1508 int i; 1509 struct pinctrl_map const *map; 1510 1511 seq_puts(s, "Pinctrl maps:\n"); 1512 1513 mutex_lock(&pinctrl_maps_mutex); 1514 for_each_maps(maps_node, i, map) { 1515 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1516 map->dev_name, map->name, map_type(map->type), 1517 map->type); 1518 1519 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1520 seq_printf(s, "controlling device %s\n", 1521 map->ctrl_dev_name); 1522 1523 switch (map->type) { 1524 case PIN_MAP_TYPE_MUX_GROUP: 1525 pinmux_show_map(s, map); 1526 break; 1527 case PIN_MAP_TYPE_CONFIGS_PIN: 1528 case PIN_MAP_TYPE_CONFIGS_GROUP: 1529 pinconf_show_map(s, map); 1530 break; 1531 default: 1532 break; 1533 } 1534 1535 seq_printf(s, "\n"); 1536 } 1537 mutex_unlock(&pinctrl_maps_mutex); 1538 1539 return 0; 1540 } 1541 1542 static int pinctrl_show(struct seq_file *s, void *what) 1543 { 1544 struct pinctrl *p; 1545 struct pinctrl_state *state; 1546 struct pinctrl_setting *setting; 1547 1548 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1549 1550 mutex_lock(&pinctrl_list_mutex); 1551 1552 list_for_each_entry(p, &pinctrl_list, node) { 1553 seq_printf(s, "device: %s current state: %s\n", 1554 dev_name(p->dev), 1555 p->state ? p->state->name : "none"); 1556 1557 list_for_each_entry(state, &p->states, node) { 1558 seq_printf(s, " state: %s\n", state->name); 1559 1560 list_for_each_entry(setting, &state->settings, node) { 1561 struct pinctrl_dev *pctldev = setting->pctldev; 1562 1563 seq_printf(s, " type: %s controller %s ", 1564 map_type(setting->type), 1565 pinctrl_dev_get_name(pctldev)); 1566 1567 switch (setting->type) { 1568 case PIN_MAP_TYPE_MUX_GROUP: 1569 pinmux_show_setting(s, setting); 1570 break; 1571 case PIN_MAP_TYPE_CONFIGS_PIN: 1572 case PIN_MAP_TYPE_CONFIGS_GROUP: 1573 pinconf_show_setting(s, setting); 1574 break; 1575 default: 1576 break; 1577 } 1578 } 1579 } 1580 } 1581 1582 mutex_unlock(&pinctrl_list_mutex); 1583 1584 return 0; 1585 } 1586 1587 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1588 { 1589 return single_open(file, pinctrl_pins_show, inode->i_private); 1590 } 1591 1592 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1593 { 1594 return single_open(file, pinctrl_groups_show, inode->i_private); 1595 } 1596 1597 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1598 { 1599 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1600 } 1601 1602 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1603 { 1604 return single_open(file, pinctrl_devices_show, NULL); 1605 } 1606 1607 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1608 { 1609 return single_open(file, pinctrl_maps_show, NULL); 1610 } 1611 1612 static int pinctrl_open(struct inode *inode, struct file *file) 1613 { 1614 return single_open(file, pinctrl_show, NULL); 1615 } 1616 1617 static const struct file_operations pinctrl_pins_ops = { 1618 .open = pinctrl_pins_open, 1619 .read = seq_read, 1620 .llseek = seq_lseek, 1621 .release = single_release, 1622 }; 1623 1624 static const struct file_operations pinctrl_groups_ops = { 1625 .open = pinctrl_groups_open, 1626 .read = seq_read, 1627 .llseek = seq_lseek, 1628 .release = single_release, 1629 }; 1630 1631 static const struct file_operations pinctrl_gpioranges_ops = { 1632 .open = pinctrl_gpioranges_open, 1633 .read = seq_read, 1634 .llseek = seq_lseek, 1635 .release = single_release, 1636 }; 1637 1638 static const struct file_operations pinctrl_devices_ops = { 1639 .open = pinctrl_devices_open, 1640 .read = seq_read, 1641 .llseek = seq_lseek, 1642 .release = single_release, 1643 }; 1644 1645 static const struct file_operations pinctrl_maps_ops = { 1646 .open = pinctrl_maps_open, 1647 .read = seq_read, 1648 .llseek = seq_lseek, 1649 .release = single_release, 1650 }; 1651 1652 static const struct file_operations pinctrl_ops = { 1653 .open = pinctrl_open, 1654 .read = seq_read, 1655 .llseek = seq_lseek, 1656 .release = single_release, 1657 }; 1658 1659 static struct dentry *debugfs_root; 1660 1661 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1662 { 1663 struct dentry *device_root; 1664 1665 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1666 debugfs_root); 1667 pctldev->device_root = device_root; 1668 1669 if (IS_ERR(device_root) || !device_root) { 1670 pr_warn("failed to create debugfs directory for %s\n", 1671 dev_name(pctldev->dev)); 1672 return; 1673 } 1674 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1675 device_root, pctldev, &pinctrl_pins_ops); 1676 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1677 device_root, pctldev, &pinctrl_groups_ops); 1678 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1679 device_root, pctldev, &pinctrl_gpioranges_ops); 1680 if (pctldev->desc->pmxops) 1681 pinmux_init_device_debugfs(device_root, pctldev); 1682 if (pctldev->desc->confops) 1683 pinconf_init_device_debugfs(device_root, pctldev); 1684 } 1685 1686 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1687 { 1688 debugfs_remove_recursive(pctldev->device_root); 1689 } 1690 1691 static void pinctrl_init_debugfs(void) 1692 { 1693 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1694 if (IS_ERR(debugfs_root) || !debugfs_root) { 1695 pr_warn("failed to create debugfs directory\n"); 1696 debugfs_root = NULL; 1697 return; 1698 } 1699 1700 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1701 debugfs_root, NULL, &pinctrl_devices_ops); 1702 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1703 debugfs_root, NULL, &pinctrl_maps_ops); 1704 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1705 debugfs_root, NULL, &pinctrl_ops); 1706 } 1707 1708 #else /* CONFIG_DEBUG_FS */ 1709 1710 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1711 { 1712 } 1713 1714 static void pinctrl_init_debugfs(void) 1715 { 1716 } 1717 1718 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1719 { 1720 } 1721 1722 #endif 1723 1724 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1725 { 1726 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1727 1728 if (!ops || 1729 !ops->get_groups_count || 1730 !ops->get_group_name) 1731 return -EINVAL; 1732 1733 if (ops->dt_node_to_map && !ops->dt_free_map) 1734 return -EINVAL; 1735 1736 return 0; 1737 } 1738 1739 /** 1740 * pinctrl_register() - register a pin controller device 1741 * @pctldesc: descriptor for this pin controller 1742 * @dev: parent device for this pin controller 1743 * @driver_data: private pin controller data for this pin controller 1744 */ 1745 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1746 struct device *dev, void *driver_data) 1747 { 1748 struct pinctrl_dev *pctldev; 1749 int ret; 1750 1751 if (!pctldesc) 1752 return ERR_PTR(-EINVAL); 1753 if (!pctldesc->name) 1754 return ERR_PTR(-EINVAL); 1755 1756 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1757 if (pctldev == NULL) { 1758 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1759 return ERR_PTR(-ENOMEM); 1760 } 1761 1762 /* Initialize pin control device struct */ 1763 pctldev->owner = pctldesc->owner; 1764 pctldev->desc = pctldesc; 1765 pctldev->driver_data = driver_data; 1766 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1767 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1768 pctldev->dev = dev; 1769 mutex_init(&pctldev->mutex); 1770 1771 /* check core ops for sanity */ 1772 ret = pinctrl_check_ops(pctldev); 1773 if (ret) { 1774 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1775 goto out_err; 1776 } 1777 1778 /* If we're implementing pinmuxing, check the ops for sanity */ 1779 if (pctldesc->pmxops) { 1780 ret = pinmux_check_ops(pctldev); 1781 if (ret) 1782 goto out_err; 1783 } 1784 1785 /* If we're implementing pinconfig, check the ops for sanity */ 1786 if (pctldesc->confops) { 1787 ret = pinconf_check_ops(pctldev); 1788 if (ret) 1789 goto out_err; 1790 } 1791 1792 /* Register all the pins */ 1793 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1794 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1795 if (ret) { 1796 dev_err(dev, "error during pin registration\n"); 1797 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1798 pctldesc->npins); 1799 goto out_err; 1800 } 1801 1802 mutex_lock(&pinctrldev_list_mutex); 1803 list_add_tail(&pctldev->node, &pinctrldev_list); 1804 mutex_unlock(&pinctrldev_list_mutex); 1805 1806 pctldev->p = pinctrl_get(pctldev->dev); 1807 1808 if (!IS_ERR(pctldev->p)) { 1809 pctldev->hog_default = 1810 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1811 if (IS_ERR(pctldev->hog_default)) { 1812 dev_dbg(dev, "failed to lookup the default state\n"); 1813 } else { 1814 if (pinctrl_select_state(pctldev->p, 1815 pctldev->hog_default)) 1816 dev_err(dev, 1817 "failed to select default state\n"); 1818 } 1819 1820 pctldev->hog_sleep = 1821 pinctrl_lookup_state(pctldev->p, 1822 PINCTRL_STATE_SLEEP); 1823 if (IS_ERR(pctldev->hog_sleep)) 1824 dev_dbg(dev, "failed to lookup the sleep state\n"); 1825 } 1826 1827 pinctrl_init_device_debugfs(pctldev); 1828 1829 return pctldev; 1830 1831 out_err: 1832 mutex_destroy(&pctldev->mutex); 1833 kfree(pctldev); 1834 return ERR_PTR(ret); 1835 } 1836 EXPORT_SYMBOL_GPL(pinctrl_register); 1837 1838 /** 1839 * pinctrl_unregister() - unregister pinmux 1840 * @pctldev: pin controller to unregister 1841 * 1842 * Called by pinmux drivers to unregister a pinmux. 1843 */ 1844 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1845 { 1846 struct pinctrl_gpio_range *range, *n; 1847 if (pctldev == NULL) 1848 return; 1849 1850 mutex_lock(&pctldev->mutex); 1851 pinctrl_remove_device_debugfs(pctldev); 1852 mutex_unlock(&pctldev->mutex); 1853 1854 if (!IS_ERR(pctldev->p)) 1855 pinctrl_put(pctldev->p); 1856 1857 mutex_lock(&pinctrldev_list_mutex); 1858 mutex_lock(&pctldev->mutex); 1859 /* TODO: check that no pinmuxes are still active? */ 1860 list_del(&pctldev->node); 1861 /* Destroy descriptor tree */ 1862 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1863 pctldev->desc->npins); 1864 /* remove gpio ranges map */ 1865 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1866 list_del(&range->node); 1867 1868 mutex_unlock(&pctldev->mutex); 1869 mutex_destroy(&pctldev->mutex); 1870 kfree(pctldev); 1871 mutex_unlock(&pinctrldev_list_mutex); 1872 } 1873 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1874 1875 static void devm_pinctrl_dev_release(struct device *dev, void *res) 1876 { 1877 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 1878 1879 pinctrl_unregister(pctldev); 1880 } 1881 1882 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 1883 { 1884 struct pctldev **r = res; 1885 1886 if (WARN_ON(!r || !*r)) 1887 return 0; 1888 1889 return *r == data; 1890 } 1891 1892 /** 1893 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 1894 * @dev: parent device for this pin controller 1895 * @pctldesc: descriptor for this pin controller 1896 * @driver_data: private pin controller data for this pin controller 1897 * 1898 * Returns an error pointer if pincontrol register failed. Otherwise 1899 * it returns valid pinctrl handle. 1900 * 1901 * The pinctrl device will be automatically released when the device is unbound. 1902 */ 1903 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 1904 struct pinctrl_desc *pctldesc, 1905 void *driver_data) 1906 { 1907 struct pinctrl_dev **ptr, *pctldev; 1908 1909 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 1910 if (!ptr) 1911 return ERR_PTR(-ENOMEM); 1912 1913 pctldev = pinctrl_register(pctldesc, dev, driver_data); 1914 if (IS_ERR(pctldev)) { 1915 devres_free(ptr); 1916 return pctldev; 1917 } 1918 1919 *ptr = pctldev; 1920 devres_add(dev, ptr); 1921 1922 return pctldev; 1923 } 1924 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 1925 1926 /** 1927 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 1928 * @dev: device for which which resource was allocated 1929 * @pctldev: the pinctrl device to unregister. 1930 */ 1931 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 1932 { 1933 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 1934 devm_pinctrl_dev_match, pctldev)); 1935 } 1936 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 1937 1938 static int __init pinctrl_init(void) 1939 { 1940 pr_info("initialized pinctrl subsystem\n"); 1941 pinctrl_init_debugfs(); 1942 return 0; 1943 } 1944 1945 /* init early since many drivers really need to initialized pinmux early */ 1946 core_initcall(pinctrl_init); 1947