1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 pr_err("pin %d already registered on %s\n", number, 235 pctldev->desc->name); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (pindesc == NULL) { 241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 242 return -ENOMEM; 243 } 244 245 /* Set owner */ 246 pindesc->pctldev = pctldev; 247 248 /* Copy basic pin info */ 249 if (name) { 250 pindesc->name = name; 251 } else { 252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 253 if (pindesc->name == NULL) { 254 kfree(pindesc); 255 return -ENOMEM; 256 } 257 pindesc->dynamic_name = true; 258 } 259 260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 struct pinctrl_pin_desc const *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, 275 pins[i].number, pins[i].name); 276 if (ret) 277 return ret; 278 } 279 280 return 0; 281 } 282 283 /** 284 * gpio_to_pin() - GPIO range GPIO number to pin number translation 285 * @range: GPIO range used for the translation 286 * @gpio: gpio pin to translate to a pin number 287 * 288 * Finds the pin number for a given GPIO using the specified GPIO range 289 * as a base for translation. The distinction between linear GPIO ranges 290 * and pin list based GPIO ranges is managed correctly by this function. 291 * 292 * This function assumes the gpio is part of the specified GPIO range, use 293 * only after making sure this is the case (e.g. by calling it on the 294 * result of successful pinctrl_get_device_gpio_range calls)! 295 */ 296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 297 unsigned int gpio) 298 { 299 unsigned int offset = gpio - range->base; 300 if (range->pins) 301 return range->pins[offset]; 302 else 303 return range->pin_base + offset; 304 } 305 306 /** 307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 308 * @pctldev: pin controller device to check 309 * @gpio: gpio pin to check taken from the global GPIO pin space 310 * 311 * Tries to match a GPIO pin number to the ranges handled by a certain pin 312 * controller, return the range or NULL 313 */ 314 static struct pinctrl_gpio_range * 315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 316 { 317 struct pinctrl_gpio_range *range = NULL; 318 319 mutex_lock(&pctldev->mutex); 320 /* Loop over the ranges */ 321 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 322 /* Check if we're in the valid range */ 323 if (gpio >= range->base && 324 gpio < range->base + range->npins) { 325 mutex_unlock(&pctldev->mutex); 326 return range; 327 } 328 } 329 mutex_unlock(&pctldev->mutex); 330 return NULL; 331 } 332 333 /** 334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 335 * the same GPIO chip are in range 336 * @gpio: gpio pin to check taken from the global GPIO pin space 337 * 338 * This function is complement of pinctrl_match_gpio_range(). If the return 339 * value of pinctrl_match_gpio_range() is NULL, this function could be used 340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 341 * of the same GPIO chip don't have back-end pinctrl interface. 342 * If the return value is true, it means that pinctrl device is ready & the 343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 344 * is false, it means that pinctrl device may not be ready. 345 */ 346 #ifdef CONFIG_GPIOLIB 347 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 348 { 349 struct pinctrl_dev *pctldev; 350 struct pinctrl_gpio_range *range = NULL; 351 struct gpio_chip *chip = gpio_to_chip(gpio); 352 353 mutex_lock(&pinctrldev_list_mutex); 354 355 /* Loop over the pin controllers */ 356 list_for_each_entry(pctldev, &pinctrldev_list, node) { 357 /* Loop over the ranges */ 358 mutex_lock(&pctldev->mutex); 359 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 360 /* Check if any gpio range overlapped with gpio chip */ 361 if (range->base + range->npins - 1 < chip->base || 362 range->base > chip->base + chip->ngpio - 1) 363 continue; 364 mutex_unlock(&pctldev->mutex); 365 mutex_unlock(&pinctrldev_list_mutex); 366 return true; 367 } 368 mutex_unlock(&pctldev->mutex); 369 } 370 371 mutex_unlock(&pinctrldev_list_mutex); 372 373 return false; 374 } 375 #else 376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 377 #endif 378 379 /** 380 * pinctrl_get_device_gpio_range() - find device for GPIO range 381 * @gpio: the pin to locate the pin controller for 382 * @outdev: the pin control device if found 383 * @outrange: the GPIO range if found 384 * 385 * Find the pin controller handling a certain GPIO pin from the pinspace of 386 * the GPIO subsystem, return the device and the matching GPIO range. Returns 387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 388 * may still have not been registered. 389 */ 390 static int pinctrl_get_device_gpio_range(unsigned gpio, 391 struct pinctrl_dev **outdev, 392 struct pinctrl_gpio_range **outrange) 393 { 394 struct pinctrl_dev *pctldev = NULL; 395 396 mutex_lock(&pinctrldev_list_mutex); 397 398 /* Loop over the pin controllers */ 399 list_for_each_entry(pctldev, &pinctrldev_list, node) { 400 struct pinctrl_gpio_range *range; 401 402 range = pinctrl_match_gpio_range(pctldev, gpio); 403 if (range != NULL) { 404 *outdev = pctldev; 405 *outrange = range; 406 mutex_unlock(&pinctrldev_list_mutex); 407 return 0; 408 } 409 } 410 411 mutex_unlock(&pinctrldev_list_mutex); 412 413 return -EPROBE_DEFER; 414 } 415 416 /** 417 * pinctrl_add_gpio_range() - register a GPIO range for a controller 418 * @pctldev: pin controller device to add the range to 419 * @range: the GPIO range to add 420 * 421 * This adds a range of GPIOs to be handled by a certain pin controller. Call 422 * this to register handled ranges after registering your pin controller. 423 */ 424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 425 struct pinctrl_gpio_range *range) 426 { 427 mutex_lock(&pctldev->mutex); 428 list_add_tail(&range->node, &pctldev->gpio_ranges); 429 mutex_unlock(&pctldev->mutex); 430 } 431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 432 433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 434 struct pinctrl_gpio_range *ranges, 435 unsigned nranges) 436 { 437 int i; 438 439 for (i = 0; i < nranges; i++) 440 pinctrl_add_gpio_range(pctldev, &ranges[i]); 441 } 442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 443 444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 445 struct pinctrl_gpio_range *range) 446 { 447 struct pinctrl_dev *pctldev; 448 449 pctldev = get_pinctrl_dev_from_devname(devname); 450 451 /* 452 * If we can't find this device, let's assume that is because 453 * it has not probed yet, so the driver trying to register this 454 * range need to defer probing. 455 */ 456 if (!pctldev) { 457 return ERR_PTR(-EPROBE_DEFER); 458 } 459 pinctrl_add_gpio_range(pctldev, range); 460 461 return pctldev; 462 } 463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 464 465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 466 const unsigned **pins, unsigned *num_pins) 467 { 468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 469 int gs; 470 471 gs = pinctrl_get_group_selector(pctldev, pin_group); 472 if (gs < 0) 473 return gs; 474 475 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 476 } 477 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 478 479 /** 480 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 481 * @pctldev: the pin controller device to look in 482 * @pin: a controller-local number to find the range for 483 */ 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 mutex_lock(&pctldev->mutex); 491 /* Loop over the ranges */ 492 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 493 /* Check if we're in the valid range */ 494 if (range->pins) { 495 int a; 496 for (a = 0; a < range->npins; a++) { 497 if (range->pins[a] == pin) 498 goto out; 499 } 500 } else if (pin >= range->pin_base && 501 pin < range->pin_base + range->npins) 502 goto out; 503 } 504 range = NULL; 505 out: 506 mutex_unlock(&pctldev->mutex); 507 return range; 508 } 509 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 510 511 /** 512 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 513 * @pctldev: pin controller device to remove the range from 514 * @range: the GPIO range to remove 515 */ 516 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 517 struct pinctrl_gpio_range *range) 518 { 519 mutex_lock(&pctldev->mutex); 520 list_del(&range->node); 521 mutex_unlock(&pctldev->mutex); 522 } 523 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 524 525 /** 526 * pinctrl_get_group_selector() - returns the group selector for a group 527 * @pctldev: the pin controller handling the group 528 * @pin_group: the pin group to look up 529 */ 530 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 531 const char *pin_group) 532 { 533 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 534 unsigned ngroups = pctlops->get_groups_count(pctldev); 535 unsigned group_selector = 0; 536 537 while (group_selector < ngroups) { 538 const char *gname = pctlops->get_group_name(pctldev, 539 group_selector); 540 if (!strcmp(gname, pin_group)) { 541 dev_dbg(pctldev->dev, 542 "found group selector %u for %s\n", 543 group_selector, 544 pin_group); 545 return group_selector; 546 } 547 548 group_selector++; 549 } 550 551 dev_err(pctldev->dev, "does not have pin group %s\n", 552 pin_group); 553 554 return -EINVAL; 555 } 556 557 /** 558 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 559 * @gpio: the GPIO pin number from the GPIO subsystem number space 560 * 561 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 562 * as part of their gpio_request() semantics, platforms and individual drivers 563 * shall *NOT* request GPIO pins to be muxed in. 564 */ 565 int pinctrl_request_gpio(unsigned gpio) 566 { 567 struct pinctrl_dev *pctldev; 568 struct pinctrl_gpio_range *range; 569 int ret; 570 int pin; 571 572 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 573 if (ret) { 574 if (pinctrl_ready_for_gpio_range(gpio)) 575 ret = 0; 576 return ret; 577 } 578 579 mutex_lock(&pctldev->mutex); 580 581 /* Convert to the pin controllers number space */ 582 pin = gpio_to_pin(range, gpio); 583 584 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 585 586 mutex_unlock(&pctldev->mutex); 587 588 return ret; 589 } 590 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 591 592 /** 593 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 594 * @gpio: the GPIO pin number from the GPIO subsystem number space 595 * 596 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 597 * as part of their gpio_free() semantics, platforms and individual drivers 598 * shall *NOT* request GPIO pins to be muxed out. 599 */ 600 void pinctrl_free_gpio(unsigned gpio) 601 { 602 struct pinctrl_dev *pctldev; 603 struct pinctrl_gpio_range *range; 604 int ret; 605 int pin; 606 607 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 608 if (ret) { 609 return; 610 } 611 mutex_lock(&pctldev->mutex); 612 613 /* Convert to the pin controllers number space */ 614 pin = gpio_to_pin(range, gpio); 615 616 pinmux_free_gpio(pctldev, pin, range); 617 618 mutex_unlock(&pctldev->mutex); 619 } 620 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 621 622 static int pinctrl_gpio_direction(unsigned gpio, bool input) 623 { 624 struct pinctrl_dev *pctldev; 625 struct pinctrl_gpio_range *range; 626 int ret; 627 int pin; 628 629 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 630 if (ret) { 631 return ret; 632 } 633 634 mutex_lock(&pctldev->mutex); 635 636 /* Convert to the pin controllers number space */ 637 pin = gpio_to_pin(range, gpio); 638 ret = pinmux_gpio_direction(pctldev, range, pin, input); 639 640 mutex_unlock(&pctldev->mutex); 641 642 return ret; 643 } 644 645 /** 646 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 647 * @gpio: the GPIO pin number from the GPIO subsystem number space 648 * 649 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 650 * as part of their gpio_direction_input() semantics, platforms and individual 651 * drivers shall *NOT* touch pin control GPIO calls. 652 */ 653 int pinctrl_gpio_direction_input(unsigned gpio) 654 { 655 return pinctrl_gpio_direction(gpio, true); 656 } 657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 658 659 /** 660 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 661 * @gpio: the GPIO pin number from the GPIO subsystem number space 662 * 663 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 664 * as part of their gpio_direction_output() semantics, platforms and individual 665 * drivers shall *NOT* touch pin control GPIO calls. 666 */ 667 int pinctrl_gpio_direction_output(unsigned gpio) 668 { 669 return pinctrl_gpio_direction(gpio, false); 670 } 671 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 672 673 static struct pinctrl_state *find_state(struct pinctrl *p, 674 const char *name) 675 { 676 struct pinctrl_state *state; 677 678 list_for_each_entry(state, &p->states, node) 679 if (!strcmp(state->name, name)) 680 return state; 681 682 return NULL; 683 } 684 685 static struct pinctrl_state *create_state(struct pinctrl *p, 686 const char *name) 687 { 688 struct pinctrl_state *state; 689 690 state = kzalloc(sizeof(*state), GFP_KERNEL); 691 if (state == NULL) { 692 dev_err(p->dev, 693 "failed to alloc struct pinctrl_state\n"); 694 return ERR_PTR(-ENOMEM); 695 } 696 697 state->name = name; 698 INIT_LIST_HEAD(&state->settings); 699 700 list_add_tail(&state->node, &p->states); 701 702 return state; 703 } 704 705 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 706 { 707 struct pinctrl_state *state; 708 struct pinctrl_setting *setting; 709 int ret; 710 711 state = find_state(p, map->name); 712 if (!state) 713 state = create_state(p, map->name); 714 if (IS_ERR(state)) 715 return PTR_ERR(state); 716 717 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 718 return 0; 719 720 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 721 if (setting == NULL) { 722 dev_err(p->dev, 723 "failed to alloc struct pinctrl_setting\n"); 724 return -ENOMEM; 725 } 726 727 setting->type = map->type; 728 729 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 730 if (setting->pctldev == NULL) { 731 kfree(setting); 732 /* Do not defer probing of hogs (circular loop) */ 733 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 734 return -ENODEV; 735 /* 736 * OK let us guess that the driver is not there yet, and 737 * let's defer obtaining this pinctrl handle to later... 738 */ 739 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 740 map->ctrl_dev_name); 741 return -EPROBE_DEFER; 742 } 743 744 setting->dev_name = map->dev_name; 745 746 switch (map->type) { 747 case PIN_MAP_TYPE_MUX_GROUP: 748 ret = pinmux_map_to_setting(map, setting); 749 break; 750 case PIN_MAP_TYPE_CONFIGS_PIN: 751 case PIN_MAP_TYPE_CONFIGS_GROUP: 752 ret = pinconf_map_to_setting(map, setting); 753 break; 754 default: 755 ret = -EINVAL; 756 break; 757 } 758 if (ret < 0) { 759 kfree(setting); 760 return ret; 761 } 762 763 list_add_tail(&setting->node, &state->settings); 764 765 return 0; 766 } 767 768 static struct pinctrl *find_pinctrl(struct device *dev) 769 { 770 struct pinctrl *p; 771 772 mutex_lock(&pinctrl_list_mutex); 773 list_for_each_entry(p, &pinctrl_list, node) 774 if (p->dev == dev) { 775 mutex_unlock(&pinctrl_list_mutex); 776 return p; 777 } 778 779 mutex_unlock(&pinctrl_list_mutex); 780 return NULL; 781 } 782 783 static void pinctrl_free(struct pinctrl *p, bool inlist); 784 785 static struct pinctrl *create_pinctrl(struct device *dev) 786 { 787 struct pinctrl *p; 788 const char *devname; 789 struct pinctrl_maps *maps_node; 790 int i; 791 struct pinctrl_map const *map; 792 int ret; 793 794 /* 795 * create the state cookie holder struct pinctrl for each 796 * mapping, this is what consumers will get when requesting 797 * a pin control handle with pinctrl_get() 798 */ 799 p = kzalloc(sizeof(*p), GFP_KERNEL); 800 if (p == NULL) { 801 dev_err(dev, "failed to alloc struct pinctrl\n"); 802 return ERR_PTR(-ENOMEM); 803 } 804 p->dev = dev; 805 INIT_LIST_HEAD(&p->states); 806 INIT_LIST_HEAD(&p->dt_maps); 807 808 ret = pinctrl_dt_to_map(p); 809 if (ret < 0) { 810 kfree(p); 811 return ERR_PTR(ret); 812 } 813 814 devname = dev_name(dev); 815 816 mutex_lock(&pinctrl_maps_mutex); 817 /* Iterate over the pin control maps to locate the right ones */ 818 for_each_maps(maps_node, i, map) { 819 /* Map must be for this device */ 820 if (strcmp(map->dev_name, devname)) 821 continue; 822 823 ret = add_setting(p, map); 824 /* 825 * At this point the adding of a setting may: 826 * 827 * - Defer, if the pinctrl device is not yet available 828 * - Fail, if the pinctrl device is not yet available, 829 * AND the setting is a hog. We cannot defer that, since 830 * the hog will kick in immediately after the device 831 * is registered. 832 * 833 * If the error returned was not -EPROBE_DEFER then we 834 * accumulate the errors to see if we end up with 835 * an -EPROBE_DEFER later, as that is the worst case. 836 */ 837 if (ret == -EPROBE_DEFER) { 838 pinctrl_free(p, false); 839 mutex_unlock(&pinctrl_maps_mutex); 840 return ERR_PTR(ret); 841 } 842 } 843 mutex_unlock(&pinctrl_maps_mutex); 844 845 if (ret < 0) { 846 /* If some other error than deferral occured, return here */ 847 pinctrl_free(p, false); 848 return ERR_PTR(ret); 849 } 850 851 kref_init(&p->users); 852 853 /* Add the pinctrl handle to the global list */ 854 mutex_lock(&pinctrl_list_mutex); 855 list_add_tail(&p->node, &pinctrl_list); 856 mutex_unlock(&pinctrl_list_mutex); 857 858 return p; 859 } 860 861 /** 862 * pinctrl_get() - retrieves the pinctrl handle for a device 863 * @dev: the device to obtain the handle for 864 */ 865 struct pinctrl *pinctrl_get(struct device *dev) 866 { 867 struct pinctrl *p; 868 869 if (WARN_ON(!dev)) 870 return ERR_PTR(-EINVAL); 871 872 /* 873 * See if somebody else (such as the device core) has already 874 * obtained a handle to the pinctrl for this device. In that case, 875 * return another pointer to it. 876 */ 877 p = find_pinctrl(dev); 878 if (p != NULL) { 879 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 880 kref_get(&p->users); 881 return p; 882 } 883 884 return create_pinctrl(dev); 885 } 886 EXPORT_SYMBOL_GPL(pinctrl_get); 887 888 static void pinctrl_free_setting(bool disable_setting, 889 struct pinctrl_setting *setting) 890 { 891 switch (setting->type) { 892 case PIN_MAP_TYPE_MUX_GROUP: 893 if (disable_setting) 894 pinmux_disable_setting(setting); 895 pinmux_free_setting(setting); 896 break; 897 case PIN_MAP_TYPE_CONFIGS_PIN: 898 case PIN_MAP_TYPE_CONFIGS_GROUP: 899 pinconf_free_setting(setting); 900 break; 901 default: 902 break; 903 } 904 } 905 906 static void pinctrl_free(struct pinctrl *p, bool inlist) 907 { 908 struct pinctrl_state *state, *n1; 909 struct pinctrl_setting *setting, *n2; 910 911 mutex_lock(&pinctrl_list_mutex); 912 list_for_each_entry_safe(state, n1, &p->states, node) { 913 list_for_each_entry_safe(setting, n2, &state->settings, node) { 914 pinctrl_free_setting(state == p->state, setting); 915 list_del(&setting->node); 916 kfree(setting); 917 } 918 list_del(&state->node); 919 kfree(state); 920 } 921 922 pinctrl_dt_free_maps(p); 923 924 if (inlist) 925 list_del(&p->node); 926 kfree(p); 927 mutex_unlock(&pinctrl_list_mutex); 928 } 929 930 /** 931 * pinctrl_release() - release the pinctrl handle 932 * @kref: the kref in the pinctrl being released 933 */ 934 static void pinctrl_release(struct kref *kref) 935 { 936 struct pinctrl *p = container_of(kref, struct pinctrl, users); 937 938 pinctrl_free(p, true); 939 } 940 941 /** 942 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 943 * @p: the pinctrl handle to release 944 */ 945 void pinctrl_put(struct pinctrl *p) 946 { 947 kref_put(&p->users, pinctrl_release); 948 } 949 EXPORT_SYMBOL_GPL(pinctrl_put); 950 951 /** 952 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 953 * @p: the pinctrl handle to retrieve the state from 954 * @name: the state name to retrieve 955 */ 956 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 957 const char *name) 958 { 959 struct pinctrl_state *state; 960 961 state = find_state(p, name); 962 if (!state) { 963 if (pinctrl_dummy_state) { 964 /* create dummy state */ 965 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 966 name); 967 state = create_state(p, name); 968 } else 969 state = ERR_PTR(-ENODEV); 970 } 971 972 return state; 973 } 974 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 975 976 /** 977 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 978 * @p: the pinctrl handle for the device that requests configuration 979 * @state: the state handle to select/activate/program 980 */ 981 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 982 { 983 struct pinctrl_setting *setting, *setting2; 984 struct pinctrl_state *old_state = p->state; 985 int ret; 986 987 if (p->state == state) 988 return 0; 989 990 if (p->state) { 991 /* 992 * The set of groups with a mux configuration in the old state 993 * may not be identical to the set of groups with a mux setting 994 * in the new state. While this might be unusual, it's entirely 995 * possible for the "user"-supplied mapping table to be written 996 * that way. For each group that was configured in the old state 997 * but not in the new state, this code puts that group into a 998 * safe/disabled state. 999 */ 1000 list_for_each_entry(setting, &p->state->settings, node) { 1001 bool found = false; 1002 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1003 continue; 1004 list_for_each_entry(setting2, &state->settings, node) { 1005 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 1006 continue; 1007 if (setting2->data.mux.group == 1008 setting->data.mux.group) { 1009 found = true; 1010 break; 1011 } 1012 } 1013 if (!found) 1014 pinmux_disable_setting(setting); 1015 } 1016 } 1017 1018 p->state = NULL; 1019 1020 /* Apply all the settings for the new state */ 1021 list_for_each_entry(setting, &state->settings, node) { 1022 switch (setting->type) { 1023 case PIN_MAP_TYPE_MUX_GROUP: 1024 ret = pinmux_enable_setting(setting); 1025 break; 1026 case PIN_MAP_TYPE_CONFIGS_PIN: 1027 case PIN_MAP_TYPE_CONFIGS_GROUP: 1028 ret = pinconf_apply_setting(setting); 1029 break; 1030 default: 1031 ret = -EINVAL; 1032 break; 1033 } 1034 1035 if (ret < 0) { 1036 goto unapply_new_state; 1037 } 1038 } 1039 1040 p->state = state; 1041 1042 return 0; 1043 1044 unapply_new_state: 1045 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1046 1047 list_for_each_entry(setting2, &state->settings, node) { 1048 if (&setting2->node == &setting->node) 1049 break; 1050 /* 1051 * All we can do here is pinmux_disable_setting. 1052 * That means that some pins are muxed differently now 1053 * than they were before applying the setting (We can't 1054 * "unmux a pin"!), but it's not a big deal since the pins 1055 * are free to be muxed by another apply_setting. 1056 */ 1057 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1058 pinmux_disable_setting(setting2); 1059 } 1060 1061 /* There's no infinite recursive loop here because p->state is NULL */ 1062 if (old_state) 1063 pinctrl_select_state(p, old_state); 1064 1065 return ret; 1066 } 1067 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1068 1069 static void devm_pinctrl_release(struct device *dev, void *res) 1070 { 1071 pinctrl_put(*(struct pinctrl **)res); 1072 } 1073 1074 /** 1075 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1076 * @dev: the device to obtain the handle for 1077 * 1078 * If there is a need to explicitly destroy the returned struct pinctrl, 1079 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1080 */ 1081 struct pinctrl *devm_pinctrl_get(struct device *dev) 1082 { 1083 struct pinctrl **ptr, *p; 1084 1085 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1086 if (!ptr) 1087 return ERR_PTR(-ENOMEM); 1088 1089 p = pinctrl_get(dev); 1090 if (!IS_ERR(p)) { 1091 *ptr = p; 1092 devres_add(dev, ptr); 1093 } else { 1094 devres_free(ptr); 1095 } 1096 1097 return p; 1098 } 1099 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1100 1101 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1102 { 1103 struct pinctrl **p = res; 1104 1105 return *p == data; 1106 } 1107 1108 /** 1109 * devm_pinctrl_put() - Resource managed pinctrl_put() 1110 * @p: the pinctrl handle to release 1111 * 1112 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1113 * this function will not need to be called and the resource management 1114 * code will ensure that the resource is freed. 1115 */ 1116 void devm_pinctrl_put(struct pinctrl *p) 1117 { 1118 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1119 devm_pinctrl_match, p)); 1120 } 1121 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1122 1123 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1124 bool dup, bool locked) 1125 { 1126 int i, ret; 1127 struct pinctrl_maps *maps_node; 1128 1129 pr_debug("add %d pinmux maps\n", num_maps); 1130 1131 /* First sanity check the new mapping */ 1132 for (i = 0; i < num_maps; i++) { 1133 if (!maps[i].dev_name) { 1134 pr_err("failed to register map %s (%d): no device given\n", 1135 maps[i].name, i); 1136 return -EINVAL; 1137 } 1138 1139 if (!maps[i].name) { 1140 pr_err("failed to register map %d: no map name given\n", 1141 i); 1142 return -EINVAL; 1143 } 1144 1145 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1146 !maps[i].ctrl_dev_name) { 1147 pr_err("failed to register map %s (%d): no pin control device given\n", 1148 maps[i].name, i); 1149 return -EINVAL; 1150 } 1151 1152 switch (maps[i].type) { 1153 case PIN_MAP_TYPE_DUMMY_STATE: 1154 break; 1155 case PIN_MAP_TYPE_MUX_GROUP: 1156 ret = pinmux_validate_map(&maps[i], i); 1157 if (ret < 0) 1158 return ret; 1159 break; 1160 case PIN_MAP_TYPE_CONFIGS_PIN: 1161 case PIN_MAP_TYPE_CONFIGS_GROUP: 1162 ret = pinconf_validate_map(&maps[i], i); 1163 if (ret < 0) 1164 return ret; 1165 break; 1166 default: 1167 pr_err("failed to register map %s (%d): invalid type given\n", 1168 maps[i].name, i); 1169 return -EINVAL; 1170 } 1171 } 1172 1173 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1174 if (!maps_node) { 1175 pr_err("failed to alloc struct pinctrl_maps\n"); 1176 return -ENOMEM; 1177 } 1178 1179 maps_node->num_maps = num_maps; 1180 if (dup) { 1181 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1182 GFP_KERNEL); 1183 if (!maps_node->maps) { 1184 pr_err("failed to duplicate mapping table\n"); 1185 kfree(maps_node); 1186 return -ENOMEM; 1187 } 1188 } else { 1189 maps_node->maps = maps; 1190 } 1191 1192 if (!locked) 1193 mutex_lock(&pinctrl_maps_mutex); 1194 list_add_tail(&maps_node->node, &pinctrl_maps); 1195 if (!locked) 1196 mutex_unlock(&pinctrl_maps_mutex); 1197 1198 return 0; 1199 } 1200 1201 /** 1202 * pinctrl_register_mappings() - register a set of pin controller mappings 1203 * @maps: the pincontrol mappings table to register. This should probably be 1204 * marked with __initdata so it can be discarded after boot. This 1205 * function will perform a shallow copy for the mapping entries. 1206 * @num_maps: the number of maps in the mapping table 1207 */ 1208 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1209 unsigned num_maps) 1210 { 1211 return pinctrl_register_map(maps, num_maps, true, false); 1212 } 1213 1214 void pinctrl_unregister_map(struct pinctrl_map const *map) 1215 { 1216 struct pinctrl_maps *maps_node; 1217 1218 mutex_lock(&pinctrl_maps_mutex); 1219 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1220 if (maps_node->maps == map) { 1221 list_del(&maps_node->node); 1222 kfree(maps_node); 1223 mutex_unlock(&pinctrl_maps_mutex); 1224 return; 1225 } 1226 } 1227 mutex_unlock(&pinctrl_maps_mutex); 1228 } 1229 1230 /** 1231 * pinctrl_force_sleep() - turn a given controller device into sleep state 1232 * @pctldev: pin controller device 1233 */ 1234 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1235 { 1236 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1237 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1238 return 0; 1239 } 1240 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1241 1242 /** 1243 * pinctrl_force_default() - turn a given controller device into default state 1244 * @pctldev: pin controller device 1245 */ 1246 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1247 { 1248 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1249 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1250 return 0; 1251 } 1252 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1253 1254 #ifdef CONFIG_PM 1255 1256 /** 1257 * pinctrl_pm_select_state() - select pinctrl state for PM 1258 * @dev: device to select default state for 1259 * @state: state to set 1260 */ 1261 static int pinctrl_pm_select_state(struct device *dev, 1262 struct pinctrl_state *state) 1263 { 1264 struct dev_pin_info *pins = dev->pins; 1265 int ret; 1266 1267 if (IS_ERR(state)) 1268 return 0; /* No such state */ 1269 ret = pinctrl_select_state(pins->p, state); 1270 if (ret) 1271 dev_err(dev, "failed to activate pinctrl state %s\n", 1272 state->name); 1273 return ret; 1274 } 1275 1276 /** 1277 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1278 * @dev: device to select default state for 1279 */ 1280 int pinctrl_pm_select_default_state(struct device *dev) 1281 { 1282 if (!dev->pins) 1283 return 0; 1284 1285 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1286 } 1287 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1288 1289 /** 1290 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1291 * @dev: device to select sleep state for 1292 */ 1293 int pinctrl_pm_select_sleep_state(struct device *dev) 1294 { 1295 if (!dev->pins) 1296 return 0; 1297 1298 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1299 } 1300 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1301 1302 /** 1303 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1304 * @dev: device to select idle state for 1305 */ 1306 int pinctrl_pm_select_idle_state(struct device *dev) 1307 { 1308 if (!dev->pins) 1309 return 0; 1310 1311 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1312 } 1313 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1314 #endif 1315 1316 #ifdef CONFIG_DEBUG_FS 1317 1318 static int pinctrl_pins_show(struct seq_file *s, void *what) 1319 { 1320 struct pinctrl_dev *pctldev = s->private; 1321 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1322 unsigned i, pin; 1323 1324 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1325 1326 mutex_lock(&pctldev->mutex); 1327 1328 /* The pin number can be retrived from the pin controller descriptor */ 1329 for (i = 0; i < pctldev->desc->npins; i++) { 1330 struct pin_desc *desc; 1331 1332 pin = pctldev->desc->pins[i].number; 1333 desc = pin_desc_get(pctldev, pin); 1334 /* Pin space may be sparse */ 1335 if (desc == NULL) 1336 continue; 1337 1338 seq_printf(s, "pin %d (%s) ", pin, 1339 desc->name ? desc->name : "unnamed"); 1340 1341 /* Driver-specific info per pin */ 1342 if (ops->pin_dbg_show) 1343 ops->pin_dbg_show(pctldev, s, pin); 1344 1345 seq_puts(s, "\n"); 1346 } 1347 1348 mutex_unlock(&pctldev->mutex); 1349 1350 return 0; 1351 } 1352 1353 static int pinctrl_groups_show(struct seq_file *s, void *what) 1354 { 1355 struct pinctrl_dev *pctldev = s->private; 1356 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1357 unsigned ngroups, selector = 0; 1358 1359 mutex_lock(&pctldev->mutex); 1360 1361 ngroups = ops->get_groups_count(pctldev); 1362 1363 seq_puts(s, "registered pin groups:\n"); 1364 while (selector < ngroups) { 1365 const unsigned *pins; 1366 unsigned num_pins; 1367 const char *gname = ops->get_group_name(pctldev, selector); 1368 const char *pname; 1369 int ret; 1370 int i; 1371 1372 ret = ops->get_group_pins(pctldev, selector, 1373 &pins, &num_pins); 1374 if (ret) 1375 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1376 gname); 1377 else { 1378 seq_printf(s, "group: %s\n", gname); 1379 for (i = 0; i < num_pins; i++) { 1380 pname = pin_get_name(pctldev, pins[i]); 1381 if (WARN_ON(!pname)) { 1382 mutex_unlock(&pctldev->mutex); 1383 return -EINVAL; 1384 } 1385 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1386 } 1387 seq_puts(s, "\n"); 1388 } 1389 selector++; 1390 } 1391 1392 mutex_unlock(&pctldev->mutex); 1393 1394 return 0; 1395 } 1396 1397 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1398 { 1399 struct pinctrl_dev *pctldev = s->private; 1400 struct pinctrl_gpio_range *range = NULL; 1401 1402 seq_puts(s, "GPIO ranges handled:\n"); 1403 1404 mutex_lock(&pctldev->mutex); 1405 1406 /* Loop over the ranges */ 1407 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1408 if (range->pins) { 1409 int a; 1410 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1411 range->id, range->name, 1412 range->base, (range->base + range->npins - 1)); 1413 for (a = 0; a < range->npins - 1; a++) 1414 seq_printf(s, "%u, ", range->pins[a]); 1415 seq_printf(s, "%u}\n", range->pins[a]); 1416 } 1417 else 1418 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1419 range->id, range->name, 1420 range->base, (range->base + range->npins - 1), 1421 range->pin_base, 1422 (range->pin_base + range->npins - 1)); 1423 } 1424 1425 mutex_unlock(&pctldev->mutex); 1426 1427 return 0; 1428 } 1429 1430 static int pinctrl_devices_show(struct seq_file *s, void *what) 1431 { 1432 struct pinctrl_dev *pctldev; 1433 1434 seq_puts(s, "name [pinmux] [pinconf]\n"); 1435 1436 mutex_lock(&pinctrldev_list_mutex); 1437 1438 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1439 seq_printf(s, "%s ", pctldev->desc->name); 1440 if (pctldev->desc->pmxops) 1441 seq_puts(s, "yes "); 1442 else 1443 seq_puts(s, "no "); 1444 if (pctldev->desc->confops) 1445 seq_puts(s, "yes"); 1446 else 1447 seq_puts(s, "no"); 1448 seq_puts(s, "\n"); 1449 } 1450 1451 mutex_unlock(&pinctrldev_list_mutex); 1452 1453 return 0; 1454 } 1455 1456 static inline const char *map_type(enum pinctrl_map_type type) 1457 { 1458 static const char * const names[] = { 1459 "INVALID", 1460 "DUMMY_STATE", 1461 "MUX_GROUP", 1462 "CONFIGS_PIN", 1463 "CONFIGS_GROUP", 1464 }; 1465 1466 if (type >= ARRAY_SIZE(names)) 1467 return "UNKNOWN"; 1468 1469 return names[type]; 1470 } 1471 1472 static int pinctrl_maps_show(struct seq_file *s, void *what) 1473 { 1474 struct pinctrl_maps *maps_node; 1475 int i; 1476 struct pinctrl_map const *map; 1477 1478 seq_puts(s, "Pinctrl maps:\n"); 1479 1480 mutex_lock(&pinctrl_maps_mutex); 1481 for_each_maps(maps_node, i, map) { 1482 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1483 map->dev_name, map->name, map_type(map->type), 1484 map->type); 1485 1486 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1487 seq_printf(s, "controlling device %s\n", 1488 map->ctrl_dev_name); 1489 1490 switch (map->type) { 1491 case PIN_MAP_TYPE_MUX_GROUP: 1492 pinmux_show_map(s, map); 1493 break; 1494 case PIN_MAP_TYPE_CONFIGS_PIN: 1495 case PIN_MAP_TYPE_CONFIGS_GROUP: 1496 pinconf_show_map(s, map); 1497 break; 1498 default: 1499 break; 1500 } 1501 1502 seq_printf(s, "\n"); 1503 } 1504 mutex_unlock(&pinctrl_maps_mutex); 1505 1506 return 0; 1507 } 1508 1509 static int pinctrl_show(struct seq_file *s, void *what) 1510 { 1511 struct pinctrl *p; 1512 struct pinctrl_state *state; 1513 struct pinctrl_setting *setting; 1514 1515 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1516 1517 mutex_lock(&pinctrl_list_mutex); 1518 1519 list_for_each_entry(p, &pinctrl_list, node) { 1520 seq_printf(s, "device: %s current state: %s\n", 1521 dev_name(p->dev), 1522 p->state ? p->state->name : "none"); 1523 1524 list_for_each_entry(state, &p->states, node) { 1525 seq_printf(s, " state: %s\n", state->name); 1526 1527 list_for_each_entry(setting, &state->settings, node) { 1528 struct pinctrl_dev *pctldev = setting->pctldev; 1529 1530 seq_printf(s, " type: %s controller %s ", 1531 map_type(setting->type), 1532 pinctrl_dev_get_name(pctldev)); 1533 1534 switch (setting->type) { 1535 case PIN_MAP_TYPE_MUX_GROUP: 1536 pinmux_show_setting(s, setting); 1537 break; 1538 case PIN_MAP_TYPE_CONFIGS_PIN: 1539 case PIN_MAP_TYPE_CONFIGS_GROUP: 1540 pinconf_show_setting(s, setting); 1541 break; 1542 default: 1543 break; 1544 } 1545 } 1546 } 1547 } 1548 1549 mutex_unlock(&pinctrl_list_mutex); 1550 1551 return 0; 1552 } 1553 1554 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1555 { 1556 return single_open(file, pinctrl_pins_show, inode->i_private); 1557 } 1558 1559 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1560 { 1561 return single_open(file, pinctrl_groups_show, inode->i_private); 1562 } 1563 1564 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1565 { 1566 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1567 } 1568 1569 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1570 { 1571 return single_open(file, pinctrl_devices_show, NULL); 1572 } 1573 1574 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1575 { 1576 return single_open(file, pinctrl_maps_show, NULL); 1577 } 1578 1579 static int pinctrl_open(struct inode *inode, struct file *file) 1580 { 1581 return single_open(file, pinctrl_show, NULL); 1582 } 1583 1584 static const struct file_operations pinctrl_pins_ops = { 1585 .open = pinctrl_pins_open, 1586 .read = seq_read, 1587 .llseek = seq_lseek, 1588 .release = single_release, 1589 }; 1590 1591 static const struct file_operations pinctrl_groups_ops = { 1592 .open = pinctrl_groups_open, 1593 .read = seq_read, 1594 .llseek = seq_lseek, 1595 .release = single_release, 1596 }; 1597 1598 static const struct file_operations pinctrl_gpioranges_ops = { 1599 .open = pinctrl_gpioranges_open, 1600 .read = seq_read, 1601 .llseek = seq_lseek, 1602 .release = single_release, 1603 }; 1604 1605 static const struct file_operations pinctrl_devices_ops = { 1606 .open = pinctrl_devices_open, 1607 .read = seq_read, 1608 .llseek = seq_lseek, 1609 .release = single_release, 1610 }; 1611 1612 static const struct file_operations pinctrl_maps_ops = { 1613 .open = pinctrl_maps_open, 1614 .read = seq_read, 1615 .llseek = seq_lseek, 1616 .release = single_release, 1617 }; 1618 1619 static const struct file_operations pinctrl_ops = { 1620 .open = pinctrl_open, 1621 .read = seq_read, 1622 .llseek = seq_lseek, 1623 .release = single_release, 1624 }; 1625 1626 static struct dentry *debugfs_root; 1627 1628 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1629 { 1630 struct dentry *device_root; 1631 1632 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1633 debugfs_root); 1634 pctldev->device_root = device_root; 1635 1636 if (IS_ERR(device_root) || !device_root) { 1637 pr_warn("failed to create debugfs directory for %s\n", 1638 dev_name(pctldev->dev)); 1639 return; 1640 } 1641 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1642 device_root, pctldev, &pinctrl_pins_ops); 1643 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1644 device_root, pctldev, &pinctrl_groups_ops); 1645 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1646 device_root, pctldev, &pinctrl_gpioranges_ops); 1647 if (pctldev->desc->pmxops) 1648 pinmux_init_device_debugfs(device_root, pctldev); 1649 if (pctldev->desc->confops) 1650 pinconf_init_device_debugfs(device_root, pctldev); 1651 } 1652 1653 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1654 { 1655 debugfs_remove_recursive(pctldev->device_root); 1656 } 1657 1658 static void pinctrl_init_debugfs(void) 1659 { 1660 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1661 if (IS_ERR(debugfs_root) || !debugfs_root) { 1662 pr_warn("failed to create debugfs directory\n"); 1663 debugfs_root = NULL; 1664 return; 1665 } 1666 1667 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1668 debugfs_root, NULL, &pinctrl_devices_ops); 1669 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1670 debugfs_root, NULL, &pinctrl_maps_ops); 1671 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1672 debugfs_root, NULL, &pinctrl_ops); 1673 } 1674 1675 #else /* CONFIG_DEBUG_FS */ 1676 1677 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1678 { 1679 } 1680 1681 static void pinctrl_init_debugfs(void) 1682 { 1683 } 1684 1685 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1686 { 1687 } 1688 1689 #endif 1690 1691 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1692 { 1693 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1694 1695 if (!ops || 1696 !ops->get_groups_count || 1697 !ops->get_group_name || 1698 !ops->get_group_pins) 1699 return -EINVAL; 1700 1701 if (ops->dt_node_to_map && !ops->dt_free_map) 1702 return -EINVAL; 1703 1704 return 0; 1705 } 1706 1707 /** 1708 * pinctrl_register() - register a pin controller device 1709 * @pctldesc: descriptor for this pin controller 1710 * @dev: parent device for this pin controller 1711 * @driver_data: private pin controller data for this pin controller 1712 */ 1713 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1714 struct device *dev, void *driver_data) 1715 { 1716 struct pinctrl_dev *pctldev; 1717 int ret; 1718 1719 if (!pctldesc) 1720 return NULL; 1721 if (!pctldesc->name) 1722 return NULL; 1723 1724 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1725 if (pctldev == NULL) { 1726 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1727 return NULL; 1728 } 1729 1730 /* Initialize pin control device struct */ 1731 pctldev->owner = pctldesc->owner; 1732 pctldev->desc = pctldesc; 1733 pctldev->driver_data = driver_data; 1734 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1735 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1736 pctldev->dev = dev; 1737 mutex_init(&pctldev->mutex); 1738 1739 /* check core ops for sanity */ 1740 if (pinctrl_check_ops(pctldev)) { 1741 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1742 goto out_err; 1743 } 1744 1745 /* If we're implementing pinmuxing, check the ops for sanity */ 1746 if (pctldesc->pmxops) { 1747 if (pinmux_check_ops(pctldev)) 1748 goto out_err; 1749 } 1750 1751 /* If we're implementing pinconfig, check the ops for sanity */ 1752 if (pctldesc->confops) { 1753 if (pinconf_check_ops(pctldev)) 1754 goto out_err; 1755 } 1756 1757 /* Register all the pins */ 1758 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1759 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1760 if (ret) { 1761 dev_err(dev, "error during pin registration\n"); 1762 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1763 pctldesc->npins); 1764 goto out_err; 1765 } 1766 1767 mutex_lock(&pinctrldev_list_mutex); 1768 list_add_tail(&pctldev->node, &pinctrldev_list); 1769 mutex_unlock(&pinctrldev_list_mutex); 1770 1771 pctldev->p = pinctrl_get(pctldev->dev); 1772 1773 if (!IS_ERR(pctldev->p)) { 1774 pctldev->hog_default = 1775 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1776 if (IS_ERR(pctldev->hog_default)) { 1777 dev_dbg(dev, "failed to lookup the default state\n"); 1778 } else { 1779 if (pinctrl_select_state(pctldev->p, 1780 pctldev->hog_default)) 1781 dev_err(dev, 1782 "failed to select default state\n"); 1783 } 1784 1785 pctldev->hog_sleep = 1786 pinctrl_lookup_state(pctldev->p, 1787 PINCTRL_STATE_SLEEP); 1788 if (IS_ERR(pctldev->hog_sleep)) 1789 dev_dbg(dev, "failed to lookup the sleep state\n"); 1790 } 1791 1792 pinctrl_init_device_debugfs(pctldev); 1793 1794 return pctldev; 1795 1796 out_err: 1797 mutex_destroy(&pctldev->mutex); 1798 kfree(pctldev); 1799 return NULL; 1800 } 1801 EXPORT_SYMBOL_GPL(pinctrl_register); 1802 1803 /** 1804 * pinctrl_unregister() - unregister pinmux 1805 * @pctldev: pin controller to unregister 1806 * 1807 * Called by pinmux drivers to unregister a pinmux. 1808 */ 1809 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1810 { 1811 struct pinctrl_gpio_range *range, *n; 1812 if (pctldev == NULL) 1813 return; 1814 1815 mutex_lock(&pinctrldev_list_mutex); 1816 mutex_lock(&pctldev->mutex); 1817 1818 pinctrl_remove_device_debugfs(pctldev); 1819 1820 if (!IS_ERR(pctldev->p)) 1821 pinctrl_put(pctldev->p); 1822 1823 /* TODO: check that no pinmuxes are still active? */ 1824 list_del(&pctldev->node); 1825 /* Destroy descriptor tree */ 1826 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1827 pctldev->desc->npins); 1828 /* remove gpio ranges map */ 1829 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1830 list_del(&range->node); 1831 1832 mutex_unlock(&pctldev->mutex); 1833 mutex_destroy(&pctldev->mutex); 1834 kfree(pctldev); 1835 mutex_unlock(&pinctrldev_list_mutex); 1836 } 1837 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1838 1839 static int __init pinctrl_init(void) 1840 { 1841 pr_info("initialized pinctrl subsystem\n"); 1842 pinctrl_init_debugfs(); 1843 return 0; 1844 } 1845 1846 /* init early since many drivers really need to initialized pinmux early */ 1847 core_initcall(pinctrl_init); 1848