xref: /openbmc/linux/drivers/pinctrl/core.c (revision 67bf4745)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Core driver for the pin control subsystem
4  *
5  * Copyright (C) 2011-2012 ST-Ericsson SA
6  * Written on behalf of Linaro for ST-Ericsson
7  * Based on bits of regulator core, gpio core and clk core
8  *
9  * Author: Linus Walleij <linus.walleij@linaro.org>
10  *
11  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12  */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14 
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
28 
29 #ifdef CONFIG_GPIOLIB
30 #include <asm-generic/gpio.h>
31 #endif
32 
33 #include "core.h"
34 #include "devicetree.h"
35 #include "pinmux.h"
36 #include "pinconf.h"
37 
38 
39 static bool pinctrl_dummy_state;
40 
41 /* Mutex taken to protect pinctrl_list */
42 static DEFINE_MUTEX(pinctrl_list_mutex);
43 
44 /* Mutex taken to protect pinctrl_maps */
45 DEFINE_MUTEX(pinctrl_maps_mutex);
46 
47 /* Mutex taken to protect pinctrldev_list */
48 static DEFINE_MUTEX(pinctrldev_list_mutex);
49 
50 /* Global list of pin control devices (struct pinctrl_dev) */
51 static LIST_HEAD(pinctrldev_list);
52 
53 /* List of pin controller handles (struct pinctrl) */
54 static LIST_HEAD(pinctrl_list);
55 
56 /* List of pinctrl maps (struct pinctrl_maps) */
57 LIST_HEAD(pinctrl_maps);
58 
59 
60 /**
61  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
62  *
63  * Usually this function is called by platforms without pinctrl driver support
64  * but run with some shared drivers using pinctrl APIs.
65  * After calling this function, the pinctrl core will return successfully
66  * with creating a dummy state for the driver to keep going smoothly.
67  */
68 void pinctrl_provide_dummies(void)
69 {
70 	pinctrl_dummy_state = true;
71 }
72 
73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
74 {
75 	/* We're not allowed to register devices without name */
76 	return pctldev->desc->name;
77 }
78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
79 
80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
81 {
82 	return dev_name(pctldev->dev);
83 }
84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
85 
86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
87 {
88 	return pctldev->driver_data;
89 }
90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
91 
92 /**
93  * get_pinctrl_dev_from_devname() - look up pin controller device
94  * @devname: the name of a device instance, as returned by dev_name()
95  *
96  * Looks up a pin control device matching a certain device name or pure device
97  * pointer, the pure device pointer will take precedence.
98  */
99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
100 {
101 	struct pinctrl_dev *pctldev;
102 
103 	if (!devname)
104 		return NULL;
105 
106 	mutex_lock(&pinctrldev_list_mutex);
107 
108 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 		if (!strcmp(dev_name(pctldev->dev), devname)) {
110 			/* Matched on device name */
111 			mutex_unlock(&pinctrldev_list_mutex);
112 			return pctldev;
113 		}
114 	}
115 
116 	mutex_unlock(&pinctrldev_list_mutex);
117 
118 	return NULL;
119 }
120 
121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
122 {
123 	struct pinctrl_dev *pctldev;
124 
125 	mutex_lock(&pinctrldev_list_mutex);
126 
127 	list_for_each_entry(pctldev, &pinctrldev_list, node)
128 		if (pctldev->dev->of_node == np) {
129 			mutex_unlock(&pinctrldev_list_mutex);
130 			return pctldev;
131 		}
132 
133 	mutex_unlock(&pinctrldev_list_mutex);
134 
135 	return NULL;
136 }
137 
138 /**
139  * pin_get_from_name() - look up a pin number from a name
140  * @pctldev: the pin control device to lookup the pin on
141  * @name: the name of the pin to look up
142  */
143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
144 {
145 	unsigned i, pin;
146 
147 	/* The pin number can be retrived from the pin controller descriptor */
148 	for (i = 0; i < pctldev->desc->npins; i++) {
149 		struct pin_desc *desc;
150 
151 		pin = pctldev->desc->pins[i].number;
152 		desc = pin_desc_get(pctldev, pin);
153 		/* Pin space may be sparse */
154 		if (desc && !strcmp(name, desc->name))
155 			return pin;
156 	}
157 
158 	return -EINVAL;
159 }
160 
161 /**
162  * pin_get_name_from_id() - look up a pin name from a pin id
163  * @pctldev: the pin control device to lookup the pin on
164  * @name: the name of the pin to look up
165  */
166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
167 {
168 	const struct pin_desc *desc;
169 
170 	desc = pin_desc_get(pctldev, pin);
171 	if (!desc) {
172 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
173 			pin);
174 		return NULL;
175 	}
176 
177 	return desc->name;
178 }
179 
180 /* Deletes a range of pin descriptors */
181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
182 				  const struct pinctrl_pin_desc *pins,
183 				  unsigned num_pins)
184 {
185 	int i;
186 
187 	for (i = 0; i < num_pins; i++) {
188 		struct pin_desc *pindesc;
189 
190 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
191 					    pins[i].number);
192 		if (pindesc) {
193 			radix_tree_delete(&pctldev->pin_desc_tree,
194 					  pins[i].number);
195 			if (pindesc->dynamic_name)
196 				kfree(pindesc->name);
197 		}
198 		kfree(pindesc);
199 	}
200 }
201 
202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
203 				    const struct pinctrl_pin_desc *pin)
204 {
205 	struct pin_desc *pindesc;
206 
207 	pindesc = pin_desc_get(pctldev, pin->number);
208 	if (pindesc) {
209 		dev_err(pctldev->dev, "pin %d already registered\n",
210 			pin->number);
211 		return -EINVAL;
212 	}
213 
214 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
215 	if (!pindesc)
216 		return -ENOMEM;
217 
218 	/* Set owner */
219 	pindesc->pctldev = pctldev;
220 
221 	/* Copy basic pin info */
222 	if (pin->name) {
223 		pindesc->name = pin->name;
224 	} else {
225 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
226 		if (!pindesc->name) {
227 			kfree(pindesc);
228 			return -ENOMEM;
229 		}
230 		pindesc->dynamic_name = true;
231 	}
232 
233 	pindesc->drv_data = pin->drv_data;
234 
235 	radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
236 	pr_debug("registered pin %d (%s) on %s\n",
237 		 pin->number, pindesc->name, pctldev->desc->name);
238 	return 0;
239 }
240 
241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
242 				 const struct pinctrl_pin_desc *pins,
243 				 unsigned num_descs)
244 {
245 	unsigned i;
246 	int ret = 0;
247 
248 	for (i = 0; i < num_descs; i++) {
249 		ret = pinctrl_register_one_pin(pctldev, &pins[i]);
250 		if (ret)
251 			return ret;
252 	}
253 
254 	return 0;
255 }
256 
257 /**
258  * gpio_to_pin() - GPIO range GPIO number to pin number translation
259  * @range: GPIO range used for the translation
260  * @gpio: gpio pin to translate to a pin number
261  *
262  * Finds the pin number for a given GPIO using the specified GPIO range
263  * as a base for translation. The distinction between linear GPIO ranges
264  * and pin list based GPIO ranges is managed correctly by this function.
265  *
266  * This function assumes the gpio is part of the specified GPIO range, use
267  * only after making sure this is the case (e.g. by calling it on the
268  * result of successful pinctrl_get_device_gpio_range calls)!
269  */
270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
271 				unsigned int gpio)
272 {
273 	unsigned int offset = gpio - range->base;
274 	if (range->pins)
275 		return range->pins[offset];
276 	else
277 		return range->pin_base + offset;
278 }
279 
280 /**
281  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
282  * @pctldev: pin controller device to check
283  * @gpio: gpio pin to check taken from the global GPIO pin space
284  *
285  * Tries to match a GPIO pin number to the ranges handled by a certain pin
286  * controller, return the range or NULL
287  */
288 static struct pinctrl_gpio_range *
289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
290 {
291 	struct pinctrl_gpio_range *range;
292 
293 	mutex_lock(&pctldev->mutex);
294 	/* Loop over the ranges */
295 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
296 		/* Check if we're in the valid range */
297 		if (gpio >= range->base &&
298 		    gpio < range->base + range->npins) {
299 			mutex_unlock(&pctldev->mutex);
300 			return range;
301 		}
302 	}
303 	mutex_unlock(&pctldev->mutex);
304 	return NULL;
305 }
306 
307 /**
308  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
309  * the same GPIO chip are in range
310  * @gpio: gpio pin to check taken from the global GPIO pin space
311  *
312  * This function is complement of pinctrl_match_gpio_range(). If the return
313  * value of pinctrl_match_gpio_range() is NULL, this function could be used
314  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
315  * of the same GPIO chip don't have back-end pinctrl interface.
316  * If the return value is true, it means that pinctrl device is ready & the
317  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
318  * is false, it means that pinctrl device may not be ready.
319  */
320 #ifdef CONFIG_GPIOLIB
321 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
322 {
323 	struct pinctrl_dev *pctldev;
324 	struct pinctrl_gpio_range *range = NULL;
325 	struct gpio_chip *chip = gpio_to_chip(gpio);
326 
327 	if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
328 		return false;
329 
330 	mutex_lock(&pinctrldev_list_mutex);
331 
332 	/* Loop over the pin controllers */
333 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
334 		/* Loop over the ranges */
335 		mutex_lock(&pctldev->mutex);
336 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
337 			/* Check if any gpio range overlapped with gpio chip */
338 			if (range->base + range->npins - 1 < chip->base ||
339 			    range->base > chip->base + chip->ngpio - 1)
340 				continue;
341 			mutex_unlock(&pctldev->mutex);
342 			mutex_unlock(&pinctrldev_list_mutex);
343 			return true;
344 		}
345 		mutex_unlock(&pctldev->mutex);
346 	}
347 
348 	mutex_unlock(&pinctrldev_list_mutex);
349 
350 	return false;
351 }
352 #else
353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
354 #endif
355 
356 /**
357  * pinctrl_get_device_gpio_range() - find device for GPIO range
358  * @gpio: the pin to locate the pin controller for
359  * @outdev: the pin control device if found
360  * @outrange: the GPIO range if found
361  *
362  * Find the pin controller handling a certain GPIO pin from the pinspace of
363  * the GPIO subsystem, return the device and the matching GPIO range. Returns
364  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
365  * may still have not been registered.
366  */
367 static int pinctrl_get_device_gpio_range(unsigned gpio,
368 					 struct pinctrl_dev **outdev,
369 					 struct pinctrl_gpio_range **outrange)
370 {
371 	struct pinctrl_dev *pctldev;
372 
373 	mutex_lock(&pinctrldev_list_mutex);
374 
375 	/* Loop over the pin controllers */
376 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
377 		struct pinctrl_gpio_range *range;
378 
379 		range = pinctrl_match_gpio_range(pctldev, gpio);
380 		if (range) {
381 			*outdev = pctldev;
382 			*outrange = range;
383 			mutex_unlock(&pinctrldev_list_mutex);
384 			return 0;
385 		}
386 	}
387 
388 	mutex_unlock(&pinctrldev_list_mutex);
389 
390 	return -EPROBE_DEFER;
391 }
392 
393 /**
394  * pinctrl_add_gpio_range() - register a GPIO range for a controller
395  * @pctldev: pin controller device to add the range to
396  * @range: the GPIO range to add
397  *
398  * This adds a range of GPIOs to be handled by a certain pin controller. Call
399  * this to register handled ranges after registering your pin controller.
400  */
401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
402 			    struct pinctrl_gpio_range *range)
403 {
404 	mutex_lock(&pctldev->mutex);
405 	list_add_tail(&range->node, &pctldev->gpio_ranges);
406 	mutex_unlock(&pctldev->mutex);
407 }
408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
409 
410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
411 			     struct pinctrl_gpio_range *ranges,
412 			     unsigned nranges)
413 {
414 	int i;
415 
416 	for (i = 0; i < nranges; i++)
417 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
418 }
419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
420 
421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
422 		struct pinctrl_gpio_range *range)
423 {
424 	struct pinctrl_dev *pctldev;
425 
426 	pctldev = get_pinctrl_dev_from_devname(devname);
427 
428 	/*
429 	 * If we can't find this device, let's assume that is because
430 	 * it has not probed yet, so the driver trying to register this
431 	 * range need to defer probing.
432 	 */
433 	if (!pctldev) {
434 		return ERR_PTR(-EPROBE_DEFER);
435 	}
436 	pinctrl_add_gpio_range(pctldev, range);
437 
438 	return pctldev;
439 }
440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
441 
442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
443 				const unsigned **pins, unsigned *num_pins)
444 {
445 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
446 	int gs;
447 
448 	if (!pctlops->get_group_pins)
449 		return -EINVAL;
450 
451 	gs = pinctrl_get_group_selector(pctldev, pin_group);
452 	if (gs < 0)
453 		return gs;
454 
455 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
456 }
457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
458 
459 struct pinctrl_gpio_range *
460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
461 					unsigned int pin)
462 {
463 	struct pinctrl_gpio_range *range;
464 
465 	/* Loop over the ranges */
466 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
467 		/* Check if we're in the valid range */
468 		if (range->pins) {
469 			int a;
470 			for (a = 0; a < range->npins; a++) {
471 				if (range->pins[a] == pin)
472 					return range;
473 			}
474 		} else if (pin >= range->pin_base &&
475 			   pin < range->pin_base + range->npins)
476 			return range;
477 	}
478 
479 	return NULL;
480 }
481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
482 
483 /**
484  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
485  * @pctldev: the pin controller device to look in
486  * @pin: a controller-local number to find the range for
487  */
488 struct pinctrl_gpio_range *
489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
490 				 unsigned int pin)
491 {
492 	struct pinctrl_gpio_range *range;
493 
494 	mutex_lock(&pctldev->mutex);
495 	range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
496 	mutex_unlock(&pctldev->mutex);
497 
498 	return range;
499 }
500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
501 
502 /**
503  * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
504  * @pctldev: pin controller device to remove the range from
505  * @range: the GPIO range to remove
506  */
507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
508 			       struct pinctrl_gpio_range *range)
509 {
510 	mutex_lock(&pctldev->mutex);
511 	list_del(&range->node);
512 	mutex_unlock(&pctldev->mutex);
513 }
514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
515 
516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
517 
518 /**
519  * pinctrl_generic_get_group_count() - returns the number of pin groups
520  * @pctldev: pin controller device
521  */
522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
523 {
524 	return pctldev->num_groups;
525 }
526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
527 
528 /**
529  * pinctrl_generic_get_group_name() - returns the name of a pin group
530  * @pctldev: pin controller device
531  * @selector: group number
532  */
533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
534 					   unsigned int selector)
535 {
536 	struct group_desc *group;
537 
538 	group = radix_tree_lookup(&pctldev->pin_group_tree,
539 				  selector);
540 	if (!group)
541 		return NULL;
542 
543 	return group->name;
544 }
545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
546 
547 /**
548  * pinctrl_generic_get_group_pins() - gets the pin group pins
549  * @pctldev: pin controller device
550  * @selector: group number
551  * @pins: pins in the group
552  * @num_pins: number of pins in the group
553  */
554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
555 				   unsigned int selector,
556 				   const unsigned int **pins,
557 				   unsigned int *num_pins)
558 {
559 	struct group_desc *group;
560 
561 	group = radix_tree_lookup(&pctldev->pin_group_tree,
562 				  selector);
563 	if (!group) {
564 		dev_err(pctldev->dev, "%s could not find pingroup%i\n",
565 			__func__, selector);
566 		return -EINVAL;
567 	}
568 
569 	*pins = group->pins;
570 	*num_pins = group->num_pins;
571 
572 	return 0;
573 }
574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
575 
576 /**
577  * pinctrl_generic_get_group() - returns a pin group based on the number
578  * @pctldev: pin controller device
579  * @gselector: group number
580  */
581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
582 					     unsigned int selector)
583 {
584 	struct group_desc *group;
585 
586 	group = radix_tree_lookup(&pctldev->pin_group_tree,
587 				  selector);
588 	if (!group)
589 		return NULL;
590 
591 	return group;
592 }
593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
594 
595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
596 						  const char *function)
597 {
598 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
599 	int ngroups = ops->get_groups_count(pctldev);
600 	int selector = 0;
601 
602 	/* See if this pctldev has this group */
603 	while (selector < ngroups) {
604 		const char *gname = ops->get_group_name(pctldev, selector);
605 
606 		if (gname && !strcmp(function, gname))
607 			return selector;
608 
609 		selector++;
610 	}
611 
612 	return -EINVAL;
613 }
614 
615 /**
616  * pinctrl_generic_add_group() - adds a new pin group
617  * @pctldev: pin controller device
618  * @name: name of the pin group
619  * @pins: pins in the pin group
620  * @num_pins: number of pins in the pin group
621  * @data: pin controller driver specific data
622  *
623  * Note that the caller must take care of locking.
624  */
625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
626 			      int *pins, int num_pins, void *data)
627 {
628 	struct group_desc *group;
629 	int selector;
630 
631 	if (!name)
632 		return -EINVAL;
633 
634 	selector = pinctrl_generic_group_name_to_selector(pctldev, name);
635 	if (selector >= 0)
636 		return selector;
637 
638 	selector = pctldev->num_groups;
639 
640 	group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
641 	if (!group)
642 		return -ENOMEM;
643 
644 	group->name = name;
645 	group->pins = pins;
646 	group->num_pins = num_pins;
647 	group->data = data;
648 
649 	radix_tree_insert(&pctldev->pin_group_tree, selector, group);
650 
651 	pctldev->num_groups++;
652 
653 	return selector;
654 }
655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
656 
657 /**
658  * pinctrl_generic_remove_group() - removes a numbered pin group
659  * @pctldev: pin controller device
660  * @selector: group number
661  *
662  * Note that the caller must take care of locking.
663  */
664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
665 				 unsigned int selector)
666 {
667 	struct group_desc *group;
668 
669 	group = radix_tree_lookup(&pctldev->pin_group_tree,
670 				  selector);
671 	if (!group)
672 		return -ENOENT;
673 
674 	radix_tree_delete(&pctldev->pin_group_tree, selector);
675 	devm_kfree(pctldev->dev, group);
676 
677 	pctldev->num_groups--;
678 
679 	return 0;
680 }
681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
682 
683 /**
684  * pinctrl_generic_free_groups() - removes all pin groups
685  * @pctldev: pin controller device
686  *
687  * Note that the caller must take care of locking. The pinctrl groups
688  * are allocated with devm_kzalloc() so no need to free them here.
689  */
690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
691 {
692 	struct radix_tree_iter iter;
693 	void __rcu **slot;
694 
695 	radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
696 		radix_tree_delete(&pctldev->pin_group_tree, iter.index);
697 
698 	pctldev->num_groups = 0;
699 }
700 
701 #else
702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
703 {
704 }
705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
706 
707 /**
708  * pinctrl_get_group_selector() - returns the group selector for a group
709  * @pctldev: the pin controller handling the group
710  * @pin_group: the pin group to look up
711  */
712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
713 			       const char *pin_group)
714 {
715 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
716 	unsigned ngroups = pctlops->get_groups_count(pctldev);
717 	unsigned group_selector = 0;
718 
719 	while (group_selector < ngroups) {
720 		const char *gname = pctlops->get_group_name(pctldev,
721 							    group_selector);
722 		if (gname && !strcmp(gname, pin_group)) {
723 			dev_dbg(pctldev->dev,
724 				"found group selector %u for %s\n",
725 				group_selector,
726 				pin_group);
727 			return group_selector;
728 		}
729 
730 		group_selector++;
731 	}
732 
733 	dev_err(pctldev->dev, "does not have pin group %s\n",
734 		pin_group);
735 
736 	return -EINVAL;
737 }
738 
739 /**
740  * pinctrl_gpio_request() - request a single pin to be used as GPIO
741  * @gpio: the GPIO pin number from the GPIO subsystem number space
742  *
743  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
744  * as part of their gpio_request() semantics, platforms and individual drivers
745  * shall *NOT* request GPIO pins to be muxed in.
746  */
747 int pinctrl_gpio_request(unsigned gpio)
748 {
749 	struct pinctrl_dev *pctldev;
750 	struct pinctrl_gpio_range *range;
751 	int ret;
752 	int pin;
753 
754 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
755 	if (ret) {
756 		if (pinctrl_ready_for_gpio_range(gpio))
757 			ret = 0;
758 		return ret;
759 	}
760 
761 	mutex_lock(&pctldev->mutex);
762 
763 	/* Convert to the pin controllers number space */
764 	pin = gpio_to_pin(range, gpio);
765 
766 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
767 
768 	mutex_unlock(&pctldev->mutex);
769 
770 	return ret;
771 }
772 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
773 
774 /**
775  * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
776  * @gpio: the GPIO pin number from the GPIO subsystem number space
777  *
778  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
779  * as part of their gpio_free() semantics, platforms and individual drivers
780  * shall *NOT* request GPIO pins to be muxed out.
781  */
782 void pinctrl_gpio_free(unsigned gpio)
783 {
784 	struct pinctrl_dev *pctldev;
785 	struct pinctrl_gpio_range *range;
786 	int ret;
787 	int pin;
788 
789 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
790 	if (ret) {
791 		return;
792 	}
793 	mutex_lock(&pctldev->mutex);
794 
795 	/* Convert to the pin controllers number space */
796 	pin = gpio_to_pin(range, gpio);
797 
798 	pinmux_free_gpio(pctldev, pin, range);
799 
800 	mutex_unlock(&pctldev->mutex);
801 }
802 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
803 
804 static int pinctrl_gpio_direction(unsigned gpio, bool input)
805 {
806 	struct pinctrl_dev *pctldev;
807 	struct pinctrl_gpio_range *range;
808 	int ret;
809 	int pin;
810 
811 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
812 	if (ret) {
813 		return ret;
814 	}
815 
816 	mutex_lock(&pctldev->mutex);
817 
818 	/* Convert to the pin controllers number space */
819 	pin = gpio_to_pin(range, gpio);
820 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
821 
822 	mutex_unlock(&pctldev->mutex);
823 
824 	return ret;
825 }
826 
827 /**
828  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
829  * @gpio: the GPIO pin number from the GPIO subsystem number space
830  *
831  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
832  * as part of their gpio_direction_input() semantics, platforms and individual
833  * drivers shall *NOT* touch pin control GPIO calls.
834  */
835 int pinctrl_gpio_direction_input(unsigned gpio)
836 {
837 	return pinctrl_gpio_direction(gpio, true);
838 }
839 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
840 
841 /**
842  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
843  * @gpio: the GPIO pin number from the GPIO subsystem number space
844  *
845  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
846  * as part of their gpio_direction_output() semantics, platforms and individual
847  * drivers shall *NOT* touch pin control GPIO calls.
848  */
849 int pinctrl_gpio_direction_output(unsigned gpio)
850 {
851 	return pinctrl_gpio_direction(gpio, false);
852 }
853 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
854 
855 /**
856  * pinctrl_gpio_set_config() - Apply config to given GPIO pin
857  * @gpio: the GPIO pin number from the GPIO subsystem number space
858  * @config: the configuration to apply to the GPIO
859  *
860  * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
861  * they need to call the underlying pin controller to change GPIO config
862  * (for example set debounce time).
863  */
864 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
865 {
866 	unsigned long configs[] = { config };
867 	struct pinctrl_gpio_range *range;
868 	struct pinctrl_dev *pctldev;
869 	int ret, pin;
870 
871 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
872 	if (ret)
873 		return ret;
874 
875 	mutex_lock(&pctldev->mutex);
876 	pin = gpio_to_pin(range, gpio);
877 	ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
878 	mutex_unlock(&pctldev->mutex);
879 
880 	return ret;
881 }
882 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
883 
884 static struct pinctrl_state *find_state(struct pinctrl *p,
885 					const char *name)
886 {
887 	struct pinctrl_state *state;
888 
889 	list_for_each_entry(state, &p->states, node)
890 		if (!strcmp(state->name, name))
891 			return state;
892 
893 	return NULL;
894 }
895 
896 static struct pinctrl_state *create_state(struct pinctrl *p,
897 					  const char *name)
898 {
899 	struct pinctrl_state *state;
900 
901 	state = kzalloc(sizeof(*state), GFP_KERNEL);
902 	if (!state)
903 		return ERR_PTR(-ENOMEM);
904 
905 	state->name = name;
906 	INIT_LIST_HEAD(&state->settings);
907 
908 	list_add_tail(&state->node, &p->states);
909 
910 	return state;
911 }
912 
913 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
914 		       const struct pinctrl_map *map)
915 {
916 	struct pinctrl_state *state;
917 	struct pinctrl_setting *setting;
918 	int ret;
919 
920 	state = find_state(p, map->name);
921 	if (!state)
922 		state = create_state(p, map->name);
923 	if (IS_ERR(state))
924 		return PTR_ERR(state);
925 
926 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
927 		return 0;
928 
929 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
930 	if (!setting)
931 		return -ENOMEM;
932 
933 	setting->type = map->type;
934 
935 	if (pctldev)
936 		setting->pctldev = pctldev;
937 	else
938 		setting->pctldev =
939 			get_pinctrl_dev_from_devname(map->ctrl_dev_name);
940 	if (!setting->pctldev) {
941 		kfree(setting);
942 		/* Do not defer probing of hogs (circular loop) */
943 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
944 			return -ENODEV;
945 		/*
946 		 * OK let us guess that the driver is not there yet, and
947 		 * let's defer obtaining this pinctrl handle to later...
948 		 */
949 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
950 			map->ctrl_dev_name);
951 		return -EPROBE_DEFER;
952 	}
953 
954 	setting->dev_name = map->dev_name;
955 
956 	switch (map->type) {
957 	case PIN_MAP_TYPE_MUX_GROUP:
958 		ret = pinmux_map_to_setting(map, setting);
959 		break;
960 	case PIN_MAP_TYPE_CONFIGS_PIN:
961 	case PIN_MAP_TYPE_CONFIGS_GROUP:
962 		ret = pinconf_map_to_setting(map, setting);
963 		break;
964 	default:
965 		ret = -EINVAL;
966 		break;
967 	}
968 	if (ret < 0) {
969 		kfree(setting);
970 		return ret;
971 	}
972 
973 	list_add_tail(&setting->node, &state->settings);
974 
975 	return 0;
976 }
977 
978 static struct pinctrl *find_pinctrl(struct device *dev)
979 {
980 	struct pinctrl *p;
981 
982 	mutex_lock(&pinctrl_list_mutex);
983 	list_for_each_entry(p, &pinctrl_list, node)
984 		if (p->dev == dev) {
985 			mutex_unlock(&pinctrl_list_mutex);
986 			return p;
987 		}
988 
989 	mutex_unlock(&pinctrl_list_mutex);
990 	return NULL;
991 }
992 
993 static void pinctrl_free(struct pinctrl *p, bool inlist);
994 
995 static struct pinctrl *create_pinctrl(struct device *dev,
996 				      struct pinctrl_dev *pctldev)
997 {
998 	struct pinctrl *p;
999 	const char *devname;
1000 	struct pinctrl_maps *maps_node;
1001 	int i;
1002 	const struct pinctrl_map *map;
1003 	int ret;
1004 
1005 	/*
1006 	 * create the state cookie holder struct pinctrl for each
1007 	 * mapping, this is what consumers will get when requesting
1008 	 * a pin control handle with pinctrl_get()
1009 	 */
1010 	p = kzalloc(sizeof(*p), GFP_KERNEL);
1011 	if (!p)
1012 		return ERR_PTR(-ENOMEM);
1013 	p->dev = dev;
1014 	INIT_LIST_HEAD(&p->states);
1015 	INIT_LIST_HEAD(&p->dt_maps);
1016 
1017 	ret = pinctrl_dt_to_map(p, pctldev);
1018 	if (ret < 0) {
1019 		kfree(p);
1020 		return ERR_PTR(ret);
1021 	}
1022 
1023 	devname = dev_name(dev);
1024 
1025 	mutex_lock(&pinctrl_maps_mutex);
1026 	/* Iterate over the pin control maps to locate the right ones */
1027 	for_each_maps(maps_node, i, map) {
1028 		/* Map must be for this device */
1029 		if (strcmp(map->dev_name, devname))
1030 			continue;
1031 		/*
1032 		 * If pctldev is not null, we are claiming hog for it,
1033 		 * that means, setting that is served by pctldev by itself.
1034 		 *
1035 		 * Thus we must skip map that is for this device but is served
1036 		 * by other device.
1037 		 */
1038 		if (pctldev &&
1039 		    strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1040 			continue;
1041 
1042 		ret = add_setting(p, pctldev, map);
1043 		/*
1044 		 * At this point the adding of a setting may:
1045 		 *
1046 		 * - Defer, if the pinctrl device is not yet available
1047 		 * - Fail, if the pinctrl device is not yet available,
1048 		 *   AND the setting is a hog. We cannot defer that, since
1049 		 *   the hog will kick in immediately after the device
1050 		 *   is registered.
1051 		 *
1052 		 * If the error returned was not -EPROBE_DEFER then we
1053 		 * accumulate the errors to see if we end up with
1054 		 * an -EPROBE_DEFER later, as that is the worst case.
1055 		 */
1056 		if (ret == -EPROBE_DEFER) {
1057 			pinctrl_free(p, false);
1058 			mutex_unlock(&pinctrl_maps_mutex);
1059 			return ERR_PTR(ret);
1060 		}
1061 	}
1062 	mutex_unlock(&pinctrl_maps_mutex);
1063 
1064 	if (ret < 0) {
1065 		/* If some other error than deferral occurred, return here */
1066 		pinctrl_free(p, false);
1067 		return ERR_PTR(ret);
1068 	}
1069 
1070 	kref_init(&p->users);
1071 
1072 	/* Add the pinctrl handle to the global list */
1073 	mutex_lock(&pinctrl_list_mutex);
1074 	list_add_tail(&p->node, &pinctrl_list);
1075 	mutex_unlock(&pinctrl_list_mutex);
1076 
1077 	return p;
1078 }
1079 
1080 /**
1081  * pinctrl_get() - retrieves the pinctrl handle for a device
1082  * @dev: the device to obtain the handle for
1083  */
1084 struct pinctrl *pinctrl_get(struct device *dev)
1085 {
1086 	struct pinctrl *p;
1087 
1088 	if (WARN_ON(!dev))
1089 		return ERR_PTR(-EINVAL);
1090 
1091 	/*
1092 	 * See if somebody else (such as the device core) has already
1093 	 * obtained a handle to the pinctrl for this device. In that case,
1094 	 * return another pointer to it.
1095 	 */
1096 	p = find_pinctrl(dev);
1097 	if (p) {
1098 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1099 		kref_get(&p->users);
1100 		return p;
1101 	}
1102 
1103 	return create_pinctrl(dev, NULL);
1104 }
1105 EXPORT_SYMBOL_GPL(pinctrl_get);
1106 
1107 static void pinctrl_free_setting(bool disable_setting,
1108 				 struct pinctrl_setting *setting)
1109 {
1110 	switch (setting->type) {
1111 	case PIN_MAP_TYPE_MUX_GROUP:
1112 		if (disable_setting)
1113 			pinmux_disable_setting(setting);
1114 		pinmux_free_setting(setting);
1115 		break;
1116 	case PIN_MAP_TYPE_CONFIGS_PIN:
1117 	case PIN_MAP_TYPE_CONFIGS_GROUP:
1118 		pinconf_free_setting(setting);
1119 		break;
1120 	default:
1121 		break;
1122 	}
1123 }
1124 
1125 static void pinctrl_free(struct pinctrl *p, bool inlist)
1126 {
1127 	struct pinctrl_state *state, *n1;
1128 	struct pinctrl_setting *setting, *n2;
1129 
1130 	mutex_lock(&pinctrl_list_mutex);
1131 	list_for_each_entry_safe(state, n1, &p->states, node) {
1132 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
1133 			pinctrl_free_setting(state == p->state, setting);
1134 			list_del(&setting->node);
1135 			kfree(setting);
1136 		}
1137 		list_del(&state->node);
1138 		kfree(state);
1139 	}
1140 
1141 	pinctrl_dt_free_maps(p);
1142 
1143 	if (inlist)
1144 		list_del(&p->node);
1145 	kfree(p);
1146 	mutex_unlock(&pinctrl_list_mutex);
1147 }
1148 
1149 /**
1150  * pinctrl_release() - release the pinctrl handle
1151  * @kref: the kref in the pinctrl being released
1152  */
1153 static void pinctrl_release(struct kref *kref)
1154 {
1155 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
1156 
1157 	pinctrl_free(p, true);
1158 }
1159 
1160 /**
1161  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1162  * @p: the pinctrl handle to release
1163  */
1164 void pinctrl_put(struct pinctrl *p)
1165 {
1166 	kref_put(&p->users, pinctrl_release);
1167 }
1168 EXPORT_SYMBOL_GPL(pinctrl_put);
1169 
1170 /**
1171  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1172  * @p: the pinctrl handle to retrieve the state from
1173  * @name: the state name to retrieve
1174  */
1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1176 						 const char *name)
1177 {
1178 	struct pinctrl_state *state;
1179 
1180 	state = find_state(p, name);
1181 	if (!state) {
1182 		if (pinctrl_dummy_state) {
1183 			/* create dummy state */
1184 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1185 				name);
1186 			state = create_state(p, name);
1187 		} else
1188 			state = ERR_PTR(-ENODEV);
1189 	}
1190 
1191 	return state;
1192 }
1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1194 
1195 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1196 			     struct device *consumer)
1197 {
1198 	if (pctldev->desc->link_consumers)
1199 		device_link_add(consumer, pctldev->dev,
1200 				DL_FLAG_PM_RUNTIME |
1201 				DL_FLAG_AUTOREMOVE_CONSUMER);
1202 }
1203 
1204 /**
1205  * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1206  * @p: the pinctrl handle for the device that requests configuration
1207  * @state: the state handle to select/activate/program
1208  */
1209 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1210 {
1211 	struct pinctrl_setting *setting, *setting2;
1212 	struct pinctrl_state *old_state = p->state;
1213 	int ret;
1214 
1215 	if (p->state) {
1216 		/*
1217 		 * For each pinmux setting in the old state, forget SW's record
1218 		 * of mux owner for that pingroup. Any pingroups which are
1219 		 * still owned by the new state will be re-acquired by the call
1220 		 * to pinmux_enable_setting() in the loop below.
1221 		 */
1222 		list_for_each_entry(setting, &p->state->settings, node) {
1223 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1224 				continue;
1225 			pinmux_disable_setting(setting);
1226 		}
1227 	}
1228 
1229 	p->state = NULL;
1230 
1231 	/* Apply all the settings for the new state */
1232 	list_for_each_entry(setting, &state->settings, node) {
1233 		switch (setting->type) {
1234 		case PIN_MAP_TYPE_MUX_GROUP:
1235 			ret = pinmux_enable_setting(setting);
1236 			break;
1237 		case PIN_MAP_TYPE_CONFIGS_PIN:
1238 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1239 			ret = pinconf_apply_setting(setting);
1240 			break;
1241 		default:
1242 			ret = -EINVAL;
1243 			break;
1244 		}
1245 
1246 		if (ret < 0) {
1247 			goto unapply_new_state;
1248 		}
1249 
1250 		/* Do not link hogs (circular dependency) */
1251 		if (p != setting->pctldev->p)
1252 			pinctrl_link_add(setting->pctldev, p->dev);
1253 	}
1254 
1255 	p->state = state;
1256 
1257 	return 0;
1258 
1259 unapply_new_state:
1260 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1261 
1262 	list_for_each_entry(setting2, &state->settings, node) {
1263 		if (&setting2->node == &setting->node)
1264 			break;
1265 		/*
1266 		 * All we can do here is pinmux_disable_setting.
1267 		 * That means that some pins are muxed differently now
1268 		 * than they were before applying the setting (We can't
1269 		 * "unmux a pin"!), but it's not a big deal since the pins
1270 		 * are free to be muxed by another apply_setting.
1271 		 */
1272 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1273 			pinmux_disable_setting(setting2);
1274 	}
1275 
1276 	/* There's no infinite recursive loop here because p->state is NULL */
1277 	if (old_state)
1278 		pinctrl_select_state(p, old_state);
1279 
1280 	return ret;
1281 }
1282 
1283 /**
1284  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1285  * @p: the pinctrl handle for the device that requests configuration
1286  * @state: the state handle to select/activate/program
1287  */
1288 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1289 {
1290 	if (p->state == state)
1291 		return 0;
1292 
1293 	return pinctrl_commit_state(p, state);
1294 }
1295 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1296 
1297 static void devm_pinctrl_release(struct device *dev, void *res)
1298 {
1299 	pinctrl_put(*(struct pinctrl **)res);
1300 }
1301 
1302 /**
1303  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1304  * @dev: the device to obtain the handle for
1305  *
1306  * If there is a need to explicitly destroy the returned struct pinctrl,
1307  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1308  */
1309 struct pinctrl *devm_pinctrl_get(struct device *dev)
1310 {
1311 	struct pinctrl **ptr, *p;
1312 
1313 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1314 	if (!ptr)
1315 		return ERR_PTR(-ENOMEM);
1316 
1317 	p = pinctrl_get(dev);
1318 	if (!IS_ERR(p)) {
1319 		*ptr = p;
1320 		devres_add(dev, ptr);
1321 	} else {
1322 		devres_free(ptr);
1323 	}
1324 
1325 	return p;
1326 }
1327 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1328 
1329 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1330 {
1331 	struct pinctrl **p = res;
1332 
1333 	return *p == data;
1334 }
1335 
1336 /**
1337  * devm_pinctrl_put() - Resource managed pinctrl_put()
1338  * @p: the pinctrl handle to release
1339  *
1340  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1341  * this function will not need to be called and the resource management
1342  * code will ensure that the resource is freed.
1343  */
1344 void devm_pinctrl_put(struct pinctrl *p)
1345 {
1346 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1347 			       devm_pinctrl_match, p));
1348 }
1349 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1350 
1351 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1352 			 bool dup)
1353 {
1354 	int i, ret;
1355 	struct pinctrl_maps *maps_node;
1356 
1357 	pr_debug("add %u pinctrl maps\n", num_maps);
1358 
1359 	/* First sanity check the new mapping */
1360 	for (i = 0; i < num_maps; i++) {
1361 		if (!maps[i].dev_name) {
1362 			pr_err("failed to register map %s (%d): no device given\n",
1363 			       maps[i].name, i);
1364 			return -EINVAL;
1365 		}
1366 
1367 		if (!maps[i].name) {
1368 			pr_err("failed to register map %d: no map name given\n",
1369 			       i);
1370 			return -EINVAL;
1371 		}
1372 
1373 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1374 				!maps[i].ctrl_dev_name) {
1375 			pr_err("failed to register map %s (%d): no pin control device given\n",
1376 			       maps[i].name, i);
1377 			return -EINVAL;
1378 		}
1379 
1380 		switch (maps[i].type) {
1381 		case PIN_MAP_TYPE_DUMMY_STATE:
1382 			break;
1383 		case PIN_MAP_TYPE_MUX_GROUP:
1384 			ret = pinmux_validate_map(&maps[i], i);
1385 			if (ret < 0)
1386 				return ret;
1387 			break;
1388 		case PIN_MAP_TYPE_CONFIGS_PIN:
1389 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1390 			ret = pinconf_validate_map(&maps[i], i);
1391 			if (ret < 0)
1392 				return ret;
1393 			break;
1394 		default:
1395 			pr_err("failed to register map %s (%d): invalid type given\n",
1396 			       maps[i].name, i);
1397 			return -EINVAL;
1398 		}
1399 	}
1400 
1401 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1402 	if (!maps_node)
1403 		return -ENOMEM;
1404 
1405 	maps_node->num_maps = num_maps;
1406 	if (dup) {
1407 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1408 					  GFP_KERNEL);
1409 		if (!maps_node->maps) {
1410 			kfree(maps_node);
1411 			return -ENOMEM;
1412 		}
1413 	} else {
1414 		maps_node->maps = maps;
1415 	}
1416 
1417 	mutex_lock(&pinctrl_maps_mutex);
1418 	list_add_tail(&maps_node->node, &pinctrl_maps);
1419 	mutex_unlock(&pinctrl_maps_mutex);
1420 
1421 	return 0;
1422 }
1423 
1424 /**
1425  * pinctrl_register_mappings() - register a set of pin controller mappings
1426  * @maps: the pincontrol mappings table to register. This should probably be
1427  *	marked with __initdata so it can be discarded after boot. This
1428  *	function will perform a shallow copy for the mapping entries.
1429  * @num_maps: the number of maps in the mapping table
1430  */
1431 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1432 			      unsigned num_maps)
1433 {
1434 	return pinctrl_register_map(maps, num_maps, true);
1435 }
1436 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1437 
1438 void pinctrl_unregister_map(const struct pinctrl_map *map)
1439 {
1440 	struct pinctrl_maps *maps_node;
1441 
1442 	mutex_lock(&pinctrl_maps_mutex);
1443 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1444 		if (maps_node->maps == map) {
1445 			list_del(&maps_node->node);
1446 			kfree(maps_node);
1447 			mutex_unlock(&pinctrl_maps_mutex);
1448 			return;
1449 		}
1450 	}
1451 	mutex_unlock(&pinctrl_maps_mutex);
1452 }
1453 
1454 /**
1455  * pinctrl_force_sleep() - turn a given controller device into sleep state
1456  * @pctldev: pin controller device
1457  */
1458 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1459 {
1460 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1461 		return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1465 
1466 /**
1467  * pinctrl_force_default() - turn a given controller device into default state
1468  * @pctldev: pin controller device
1469  */
1470 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1471 {
1472 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1473 		return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1474 	return 0;
1475 }
1476 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1477 
1478 /**
1479  * pinctrl_init_done() - tell pinctrl probe is done
1480  *
1481  * We'll use this time to switch the pins from "init" to "default" unless the
1482  * driver selected some other state.
1483  *
1484  * @dev: device to that's done probing
1485  */
1486 int pinctrl_init_done(struct device *dev)
1487 {
1488 	struct dev_pin_info *pins = dev->pins;
1489 	int ret;
1490 
1491 	if (!pins)
1492 		return 0;
1493 
1494 	if (IS_ERR(pins->init_state))
1495 		return 0; /* No such state */
1496 
1497 	if (pins->p->state != pins->init_state)
1498 		return 0; /* Not at init anyway */
1499 
1500 	if (IS_ERR(pins->default_state))
1501 		return 0; /* No default state */
1502 
1503 	ret = pinctrl_select_state(pins->p, pins->default_state);
1504 	if (ret)
1505 		dev_err(dev, "failed to activate default pinctrl state\n");
1506 
1507 	return ret;
1508 }
1509 
1510 #ifdef CONFIG_PM
1511 
1512 /**
1513  * pinctrl_pm_select_state() - select pinctrl state for PM
1514  * @dev: device to select default state for
1515  * @state: state to set
1516  */
1517 static int pinctrl_pm_select_state(struct device *dev,
1518 				   struct pinctrl_state *state)
1519 {
1520 	struct dev_pin_info *pins = dev->pins;
1521 	int ret;
1522 
1523 	if (IS_ERR(state))
1524 		return 0; /* No such state */
1525 	ret = pinctrl_select_state(pins->p, state);
1526 	if (ret)
1527 		dev_err(dev, "failed to activate pinctrl state %s\n",
1528 			state->name);
1529 	return ret;
1530 }
1531 
1532 /**
1533  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1534  * @dev: device to select default state for
1535  */
1536 int pinctrl_pm_select_default_state(struct device *dev)
1537 {
1538 	if (!dev->pins)
1539 		return 0;
1540 
1541 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1542 }
1543 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1544 
1545 /**
1546  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1547  * @dev: device to select sleep state for
1548  */
1549 int pinctrl_pm_select_sleep_state(struct device *dev)
1550 {
1551 	if (!dev->pins)
1552 		return 0;
1553 
1554 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1555 }
1556 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1557 
1558 /**
1559  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1560  * @dev: device to select idle state for
1561  */
1562 int pinctrl_pm_select_idle_state(struct device *dev)
1563 {
1564 	if (!dev->pins)
1565 		return 0;
1566 
1567 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1568 }
1569 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1570 #endif
1571 
1572 #ifdef CONFIG_DEBUG_FS
1573 
1574 static int pinctrl_pins_show(struct seq_file *s, void *what)
1575 {
1576 	struct pinctrl_dev *pctldev = s->private;
1577 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1578 	unsigned i, pin;
1579 
1580 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1581 
1582 	mutex_lock(&pctldev->mutex);
1583 
1584 	/* The pin number can be retrived from the pin controller descriptor */
1585 	for (i = 0; i < pctldev->desc->npins; i++) {
1586 		struct pin_desc *desc;
1587 
1588 		pin = pctldev->desc->pins[i].number;
1589 		desc = pin_desc_get(pctldev, pin);
1590 		/* Pin space may be sparse */
1591 		if (!desc)
1592 			continue;
1593 
1594 		seq_printf(s, "pin %d (%s) ", pin, desc->name);
1595 
1596 		/* Driver-specific info per pin */
1597 		if (ops->pin_dbg_show)
1598 			ops->pin_dbg_show(pctldev, s, pin);
1599 
1600 		seq_puts(s, "\n");
1601 	}
1602 
1603 	mutex_unlock(&pctldev->mutex);
1604 
1605 	return 0;
1606 }
1607 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1608 
1609 static int pinctrl_groups_show(struct seq_file *s, void *what)
1610 {
1611 	struct pinctrl_dev *pctldev = s->private;
1612 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1613 	unsigned ngroups, selector = 0;
1614 
1615 	mutex_lock(&pctldev->mutex);
1616 
1617 	ngroups = ops->get_groups_count(pctldev);
1618 
1619 	seq_puts(s, "registered pin groups:\n");
1620 	while (selector < ngroups) {
1621 		const unsigned *pins = NULL;
1622 		unsigned num_pins = 0;
1623 		const char *gname = ops->get_group_name(pctldev, selector);
1624 		const char *pname;
1625 		int ret = 0;
1626 		int i;
1627 
1628 		if (ops->get_group_pins)
1629 			ret = ops->get_group_pins(pctldev, selector,
1630 						  &pins, &num_pins);
1631 		if (ret)
1632 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1633 				   gname);
1634 		else {
1635 			seq_printf(s, "group: %s\n", gname);
1636 			for (i = 0; i < num_pins; i++) {
1637 				pname = pin_get_name(pctldev, pins[i]);
1638 				if (WARN_ON(!pname)) {
1639 					mutex_unlock(&pctldev->mutex);
1640 					return -EINVAL;
1641 				}
1642 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1643 			}
1644 			seq_puts(s, "\n");
1645 		}
1646 		selector++;
1647 	}
1648 
1649 	mutex_unlock(&pctldev->mutex);
1650 
1651 	return 0;
1652 }
1653 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1654 
1655 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1656 {
1657 	struct pinctrl_dev *pctldev = s->private;
1658 	struct pinctrl_gpio_range *range;
1659 
1660 	seq_puts(s, "GPIO ranges handled:\n");
1661 
1662 	mutex_lock(&pctldev->mutex);
1663 
1664 	/* Loop over the ranges */
1665 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1666 		if (range->pins) {
1667 			int a;
1668 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1669 				range->id, range->name,
1670 				range->base, (range->base + range->npins - 1));
1671 			for (a = 0; a < range->npins - 1; a++)
1672 				seq_printf(s, "%u, ", range->pins[a]);
1673 			seq_printf(s, "%u}\n", range->pins[a]);
1674 		}
1675 		else
1676 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1677 				range->id, range->name,
1678 				range->base, (range->base + range->npins - 1),
1679 				range->pin_base,
1680 				(range->pin_base + range->npins - 1));
1681 	}
1682 
1683 	mutex_unlock(&pctldev->mutex);
1684 
1685 	return 0;
1686 }
1687 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1688 
1689 static int pinctrl_devices_show(struct seq_file *s, void *what)
1690 {
1691 	struct pinctrl_dev *pctldev;
1692 
1693 	seq_puts(s, "name [pinmux] [pinconf]\n");
1694 
1695 	mutex_lock(&pinctrldev_list_mutex);
1696 
1697 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1698 		seq_printf(s, "%s ", pctldev->desc->name);
1699 		if (pctldev->desc->pmxops)
1700 			seq_puts(s, "yes ");
1701 		else
1702 			seq_puts(s, "no ");
1703 		if (pctldev->desc->confops)
1704 			seq_puts(s, "yes");
1705 		else
1706 			seq_puts(s, "no");
1707 		seq_puts(s, "\n");
1708 	}
1709 
1710 	mutex_unlock(&pinctrldev_list_mutex);
1711 
1712 	return 0;
1713 }
1714 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1715 
1716 static inline const char *map_type(enum pinctrl_map_type type)
1717 {
1718 	static const char * const names[] = {
1719 		"INVALID",
1720 		"DUMMY_STATE",
1721 		"MUX_GROUP",
1722 		"CONFIGS_PIN",
1723 		"CONFIGS_GROUP",
1724 	};
1725 
1726 	if (type >= ARRAY_SIZE(names))
1727 		return "UNKNOWN";
1728 
1729 	return names[type];
1730 }
1731 
1732 static int pinctrl_maps_show(struct seq_file *s, void *what)
1733 {
1734 	struct pinctrl_maps *maps_node;
1735 	int i;
1736 	const struct pinctrl_map *map;
1737 
1738 	seq_puts(s, "Pinctrl maps:\n");
1739 
1740 	mutex_lock(&pinctrl_maps_mutex);
1741 	for_each_maps(maps_node, i, map) {
1742 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1743 			   map->dev_name, map->name, map_type(map->type),
1744 			   map->type);
1745 
1746 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1747 			seq_printf(s, "controlling device %s\n",
1748 				   map->ctrl_dev_name);
1749 
1750 		switch (map->type) {
1751 		case PIN_MAP_TYPE_MUX_GROUP:
1752 			pinmux_show_map(s, map);
1753 			break;
1754 		case PIN_MAP_TYPE_CONFIGS_PIN:
1755 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1756 			pinconf_show_map(s, map);
1757 			break;
1758 		default:
1759 			break;
1760 		}
1761 
1762 		seq_putc(s, '\n');
1763 	}
1764 	mutex_unlock(&pinctrl_maps_mutex);
1765 
1766 	return 0;
1767 }
1768 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1769 
1770 static int pinctrl_show(struct seq_file *s, void *what)
1771 {
1772 	struct pinctrl *p;
1773 	struct pinctrl_state *state;
1774 	struct pinctrl_setting *setting;
1775 
1776 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1777 
1778 	mutex_lock(&pinctrl_list_mutex);
1779 
1780 	list_for_each_entry(p, &pinctrl_list, node) {
1781 		seq_printf(s, "device: %s current state: %s\n",
1782 			   dev_name(p->dev),
1783 			   p->state ? p->state->name : "none");
1784 
1785 		list_for_each_entry(state, &p->states, node) {
1786 			seq_printf(s, "  state: %s\n", state->name);
1787 
1788 			list_for_each_entry(setting, &state->settings, node) {
1789 				struct pinctrl_dev *pctldev = setting->pctldev;
1790 
1791 				seq_printf(s, "    type: %s controller %s ",
1792 					   map_type(setting->type),
1793 					   pinctrl_dev_get_name(pctldev));
1794 
1795 				switch (setting->type) {
1796 				case PIN_MAP_TYPE_MUX_GROUP:
1797 					pinmux_show_setting(s, setting);
1798 					break;
1799 				case PIN_MAP_TYPE_CONFIGS_PIN:
1800 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1801 					pinconf_show_setting(s, setting);
1802 					break;
1803 				default:
1804 					break;
1805 				}
1806 			}
1807 		}
1808 	}
1809 
1810 	mutex_unlock(&pinctrl_list_mutex);
1811 
1812 	return 0;
1813 }
1814 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1815 
1816 static struct dentry *debugfs_root;
1817 
1818 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1819 {
1820 	struct dentry *device_root;
1821 	const char *debugfs_name;
1822 
1823 	if (pctldev->desc->name &&
1824 			strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1825 		debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1826 				"%s-%s", dev_name(pctldev->dev),
1827 				pctldev->desc->name);
1828 		if (!debugfs_name) {
1829 			pr_warn("failed to determine debugfs dir name for %s\n",
1830 				dev_name(pctldev->dev));
1831 			return;
1832 		}
1833 	} else {
1834 		debugfs_name = dev_name(pctldev->dev);
1835 	}
1836 
1837 	device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1838 	pctldev->device_root = device_root;
1839 
1840 	if (IS_ERR(device_root) || !device_root) {
1841 		pr_warn("failed to create debugfs directory for %s\n",
1842 			dev_name(pctldev->dev));
1843 		return;
1844 	}
1845 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1846 			    device_root, pctldev, &pinctrl_pins_fops);
1847 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1848 			    device_root, pctldev, &pinctrl_groups_fops);
1849 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1850 			    device_root, pctldev, &pinctrl_gpioranges_fops);
1851 	if (pctldev->desc->pmxops)
1852 		pinmux_init_device_debugfs(device_root, pctldev);
1853 	if (pctldev->desc->confops)
1854 		pinconf_init_device_debugfs(device_root, pctldev);
1855 }
1856 
1857 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1858 {
1859 	debugfs_remove_recursive(pctldev->device_root);
1860 }
1861 
1862 static void pinctrl_init_debugfs(void)
1863 {
1864 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1865 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1866 		pr_warn("failed to create debugfs directory\n");
1867 		debugfs_root = NULL;
1868 		return;
1869 	}
1870 
1871 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1872 			    debugfs_root, NULL, &pinctrl_devices_fops);
1873 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1874 			    debugfs_root, NULL, &pinctrl_maps_fops);
1875 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1876 			    debugfs_root, NULL, &pinctrl_fops);
1877 }
1878 
1879 #else /* CONFIG_DEBUG_FS */
1880 
1881 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1882 {
1883 }
1884 
1885 static void pinctrl_init_debugfs(void)
1886 {
1887 }
1888 
1889 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1890 {
1891 }
1892 
1893 #endif
1894 
1895 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1896 {
1897 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1898 
1899 	if (!ops ||
1900 	    !ops->get_groups_count ||
1901 	    !ops->get_group_name)
1902 		return -EINVAL;
1903 
1904 	return 0;
1905 }
1906 
1907 /**
1908  * pinctrl_init_controller() - init a pin controller device
1909  * @pctldesc: descriptor for this pin controller
1910  * @dev: parent device for this pin controller
1911  * @driver_data: private pin controller data for this pin controller
1912  */
1913 static struct pinctrl_dev *
1914 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1915 			void *driver_data)
1916 {
1917 	struct pinctrl_dev *pctldev;
1918 	int ret;
1919 
1920 	if (!pctldesc)
1921 		return ERR_PTR(-EINVAL);
1922 	if (!pctldesc->name)
1923 		return ERR_PTR(-EINVAL);
1924 
1925 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1926 	if (!pctldev)
1927 		return ERR_PTR(-ENOMEM);
1928 
1929 	/* Initialize pin control device struct */
1930 	pctldev->owner = pctldesc->owner;
1931 	pctldev->desc = pctldesc;
1932 	pctldev->driver_data = driver_data;
1933 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1934 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1935 	INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1936 #endif
1937 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1938 	INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1939 #endif
1940 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1941 	INIT_LIST_HEAD(&pctldev->node);
1942 	pctldev->dev = dev;
1943 	mutex_init(&pctldev->mutex);
1944 
1945 	/* check core ops for sanity */
1946 	ret = pinctrl_check_ops(pctldev);
1947 	if (ret) {
1948 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1949 		goto out_err;
1950 	}
1951 
1952 	/* If we're implementing pinmuxing, check the ops for sanity */
1953 	if (pctldesc->pmxops) {
1954 		ret = pinmux_check_ops(pctldev);
1955 		if (ret)
1956 			goto out_err;
1957 	}
1958 
1959 	/* If we're implementing pinconfig, check the ops for sanity */
1960 	if (pctldesc->confops) {
1961 		ret = pinconf_check_ops(pctldev);
1962 		if (ret)
1963 			goto out_err;
1964 	}
1965 
1966 	/* Register all the pins */
1967 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1968 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1969 	if (ret) {
1970 		dev_err(dev, "error during pin registration\n");
1971 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1972 				      pctldesc->npins);
1973 		goto out_err;
1974 	}
1975 
1976 	return pctldev;
1977 
1978 out_err:
1979 	mutex_destroy(&pctldev->mutex);
1980 	kfree(pctldev);
1981 	return ERR_PTR(ret);
1982 }
1983 
1984 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1985 {
1986 	pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1987 	if (PTR_ERR(pctldev->p) == -ENODEV) {
1988 		dev_dbg(pctldev->dev, "no hogs found\n");
1989 
1990 		return 0;
1991 	}
1992 
1993 	if (IS_ERR(pctldev->p)) {
1994 		dev_err(pctldev->dev, "error claiming hogs: %li\n",
1995 			PTR_ERR(pctldev->p));
1996 
1997 		return PTR_ERR(pctldev->p);
1998 	}
1999 
2000 	kref_get(&pctldev->p->users);
2001 	pctldev->hog_default =
2002 		pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2003 	if (IS_ERR(pctldev->hog_default)) {
2004 		dev_dbg(pctldev->dev,
2005 			"failed to lookup the default state\n");
2006 	} else {
2007 		if (pinctrl_select_state(pctldev->p,
2008 					 pctldev->hog_default))
2009 			dev_err(pctldev->dev,
2010 				"failed to select default state\n");
2011 	}
2012 
2013 	pctldev->hog_sleep =
2014 		pinctrl_lookup_state(pctldev->p,
2015 				     PINCTRL_STATE_SLEEP);
2016 	if (IS_ERR(pctldev->hog_sleep))
2017 		dev_dbg(pctldev->dev,
2018 			"failed to lookup the sleep state\n");
2019 
2020 	return 0;
2021 }
2022 
2023 int pinctrl_enable(struct pinctrl_dev *pctldev)
2024 {
2025 	int error;
2026 
2027 	error = pinctrl_claim_hogs(pctldev);
2028 	if (error) {
2029 		dev_err(pctldev->dev, "could not claim hogs: %i\n",
2030 			error);
2031 		mutex_destroy(&pctldev->mutex);
2032 		kfree(pctldev);
2033 
2034 		return error;
2035 	}
2036 
2037 	mutex_lock(&pinctrldev_list_mutex);
2038 	list_add_tail(&pctldev->node, &pinctrldev_list);
2039 	mutex_unlock(&pinctrldev_list_mutex);
2040 
2041 	pinctrl_init_device_debugfs(pctldev);
2042 
2043 	return 0;
2044 }
2045 EXPORT_SYMBOL_GPL(pinctrl_enable);
2046 
2047 /**
2048  * pinctrl_register() - register a pin controller device
2049  * @pctldesc: descriptor for this pin controller
2050  * @dev: parent device for this pin controller
2051  * @driver_data: private pin controller data for this pin controller
2052  *
2053  * Note that pinctrl_register() is known to have problems as the pin
2054  * controller driver functions are called before the driver has a
2055  * struct pinctrl_dev handle. To avoid issues later on, please use the
2056  * new pinctrl_register_and_init() below instead.
2057  */
2058 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2059 				    struct device *dev, void *driver_data)
2060 {
2061 	struct pinctrl_dev *pctldev;
2062 	int error;
2063 
2064 	pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2065 	if (IS_ERR(pctldev))
2066 		return pctldev;
2067 
2068 	error = pinctrl_enable(pctldev);
2069 	if (error)
2070 		return ERR_PTR(error);
2071 
2072 	return pctldev;
2073 
2074 }
2075 EXPORT_SYMBOL_GPL(pinctrl_register);
2076 
2077 /**
2078  * pinctrl_register_and_init() - register and init pin controller device
2079  * @pctldesc: descriptor for this pin controller
2080  * @dev: parent device for this pin controller
2081  * @driver_data: private pin controller data for this pin controller
2082  * @pctldev: pin controller device
2083  *
2084  * Note that pinctrl_enable() still needs to be manually called after
2085  * this once the driver is ready.
2086  */
2087 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2088 			      struct device *dev, void *driver_data,
2089 			      struct pinctrl_dev **pctldev)
2090 {
2091 	struct pinctrl_dev *p;
2092 
2093 	p = pinctrl_init_controller(pctldesc, dev, driver_data);
2094 	if (IS_ERR(p))
2095 		return PTR_ERR(p);
2096 
2097 	/*
2098 	 * We have pinctrl_start() call functions in the pin controller
2099 	 * driver with create_pinctrl() for at least dt_node_to_map(). So
2100 	 * let's make sure pctldev is properly initialized for the
2101 	 * pin controller driver before we do anything.
2102 	 */
2103 	*pctldev = p;
2104 
2105 	return 0;
2106 }
2107 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2108 
2109 /**
2110  * pinctrl_unregister() - unregister pinmux
2111  * @pctldev: pin controller to unregister
2112  *
2113  * Called by pinmux drivers to unregister a pinmux.
2114  */
2115 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2116 {
2117 	struct pinctrl_gpio_range *range, *n;
2118 
2119 	if (!pctldev)
2120 		return;
2121 
2122 	mutex_lock(&pctldev->mutex);
2123 	pinctrl_remove_device_debugfs(pctldev);
2124 	mutex_unlock(&pctldev->mutex);
2125 
2126 	if (!IS_ERR_OR_NULL(pctldev->p))
2127 		pinctrl_put(pctldev->p);
2128 
2129 	mutex_lock(&pinctrldev_list_mutex);
2130 	mutex_lock(&pctldev->mutex);
2131 	/* TODO: check that no pinmuxes are still active? */
2132 	list_del(&pctldev->node);
2133 	pinmux_generic_free_functions(pctldev);
2134 	pinctrl_generic_free_groups(pctldev);
2135 	/* Destroy descriptor tree */
2136 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2137 			      pctldev->desc->npins);
2138 	/* remove gpio ranges map */
2139 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2140 		list_del(&range->node);
2141 
2142 	mutex_unlock(&pctldev->mutex);
2143 	mutex_destroy(&pctldev->mutex);
2144 	kfree(pctldev);
2145 	mutex_unlock(&pinctrldev_list_mutex);
2146 }
2147 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2148 
2149 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2150 {
2151 	struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2152 
2153 	pinctrl_unregister(pctldev);
2154 }
2155 
2156 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2157 {
2158 	struct pctldev **r = res;
2159 
2160 	if (WARN_ON(!r || !*r))
2161 		return 0;
2162 
2163 	return *r == data;
2164 }
2165 
2166 /**
2167  * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2168  * @dev: parent device for this pin controller
2169  * @pctldesc: descriptor for this pin controller
2170  * @driver_data: private pin controller data for this pin controller
2171  *
2172  * Returns an error pointer if pincontrol register failed. Otherwise
2173  * it returns valid pinctrl handle.
2174  *
2175  * The pinctrl device will be automatically released when the device is unbound.
2176  */
2177 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2178 					  struct pinctrl_desc *pctldesc,
2179 					  void *driver_data)
2180 {
2181 	struct pinctrl_dev **ptr, *pctldev;
2182 
2183 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2184 	if (!ptr)
2185 		return ERR_PTR(-ENOMEM);
2186 
2187 	pctldev = pinctrl_register(pctldesc, dev, driver_data);
2188 	if (IS_ERR(pctldev)) {
2189 		devres_free(ptr);
2190 		return pctldev;
2191 	}
2192 
2193 	*ptr = pctldev;
2194 	devres_add(dev, ptr);
2195 
2196 	return pctldev;
2197 }
2198 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2199 
2200 /**
2201  * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2202  * @dev: parent device for this pin controller
2203  * @pctldesc: descriptor for this pin controller
2204  * @driver_data: private pin controller data for this pin controller
2205  *
2206  * Returns an error pointer if pincontrol register failed. Otherwise
2207  * it returns valid pinctrl handle.
2208  *
2209  * The pinctrl device will be automatically released when the device is unbound.
2210  */
2211 int devm_pinctrl_register_and_init(struct device *dev,
2212 				   struct pinctrl_desc *pctldesc,
2213 				   void *driver_data,
2214 				   struct pinctrl_dev **pctldev)
2215 {
2216 	struct pinctrl_dev **ptr;
2217 	int error;
2218 
2219 	ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2220 	if (!ptr)
2221 		return -ENOMEM;
2222 
2223 	error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2224 	if (error) {
2225 		devres_free(ptr);
2226 		return error;
2227 	}
2228 
2229 	*ptr = *pctldev;
2230 	devres_add(dev, ptr);
2231 
2232 	return 0;
2233 }
2234 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2235 
2236 /**
2237  * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2238  * @dev: device for which which resource was allocated
2239  * @pctldev: the pinctrl device to unregister.
2240  */
2241 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2242 {
2243 	WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2244 			       devm_pinctrl_dev_match, pctldev));
2245 }
2246 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2247 
2248 static int __init pinctrl_init(void)
2249 {
2250 	pr_info("initialized pinctrl subsystem\n");
2251 	pinctrl_init_debugfs();
2252 	return 0;
2253 }
2254 
2255 /* init early since many drivers really need to initialized pinmux early */
2256 core_initcall(pinctrl_init);
2257