1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/kernel.h> 16 #include <linux/kref.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/device.h> 20 #include <linux/slab.h> 21 #include <linux/err.h> 22 #include <linux/list.h> 23 #include <linux/debugfs.h> 24 #include <linux/seq_file.h> 25 #include <linux/pinctrl/consumer.h> 26 #include <linux/pinctrl/pinctrl.h> 27 #include <linux/pinctrl/machine.h> 28 29 #ifdef CONFIG_GPIOLIB 30 #include <asm-generic/gpio.h> 31 #endif 32 33 #include "core.h" 34 #include "devicetree.h" 35 #include "pinmux.h" 36 #include "pinconf.h" 37 38 39 static bool pinctrl_dummy_state; 40 41 /* Mutex taken to protect pinctrl_list */ 42 static DEFINE_MUTEX(pinctrl_list_mutex); 43 44 /* Mutex taken to protect pinctrl_maps */ 45 DEFINE_MUTEX(pinctrl_maps_mutex); 46 47 /* Mutex taken to protect pinctrldev_list */ 48 static DEFINE_MUTEX(pinctrldev_list_mutex); 49 50 /* Global list of pin control devices (struct pinctrl_dev) */ 51 static LIST_HEAD(pinctrldev_list); 52 53 /* List of pin controller handles (struct pinctrl) */ 54 static LIST_HEAD(pinctrl_list); 55 56 /* List of pinctrl maps (struct pinctrl_maps) */ 57 LIST_HEAD(pinctrl_maps); 58 59 60 /** 61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 62 * 63 * Usually this function is called by platforms without pinctrl driver support 64 * but run with some shared drivers using pinctrl APIs. 65 * After calling this function, the pinctrl core will return successfully 66 * with creating a dummy state for the driver to keep going smoothly. 67 */ 68 void pinctrl_provide_dummies(void) 69 { 70 pinctrl_dummy_state = true; 71 } 72 73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 74 { 75 /* We're not allowed to register devices without name */ 76 return pctldev->desc->name; 77 } 78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 79 80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 81 { 82 return dev_name(pctldev->dev); 83 } 84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 85 86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 87 { 88 return pctldev->driver_data; 89 } 90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 91 92 /** 93 * get_pinctrl_dev_from_devname() - look up pin controller device 94 * @devname: the name of a device instance, as returned by dev_name() 95 * 96 * Looks up a pin control device matching a certain device name or pure device 97 * pointer, the pure device pointer will take precedence. 98 */ 99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 100 { 101 struct pinctrl_dev *pctldev = NULL; 102 103 if (!devname) 104 return NULL; 105 106 mutex_lock(&pinctrldev_list_mutex); 107 108 list_for_each_entry(pctldev, &pinctrldev_list, node) { 109 if (!strcmp(dev_name(pctldev->dev), devname)) { 110 /* Matched on device name */ 111 mutex_unlock(&pinctrldev_list_mutex); 112 return pctldev; 113 } 114 } 115 116 mutex_unlock(&pinctrldev_list_mutex); 117 118 return NULL; 119 } 120 121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 122 { 123 struct pinctrl_dev *pctldev; 124 125 mutex_lock(&pinctrldev_list_mutex); 126 127 list_for_each_entry(pctldev, &pinctrldev_list, node) 128 if (pctldev->dev->of_node == np) { 129 mutex_unlock(&pinctrldev_list_mutex); 130 return pctldev; 131 } 132 133 mutex_unlock(&pinctrldev_list_mutex); 134 135 return NULL; 136 } 137 138 /** 139 * pin_get_from_name() - look up a pin number from a name 140 * @pctldev: the pin control device to lookup the pin on 141 * @name: the name of the pin to look up 142 */ 143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 144 { 145 unsigned i, pin; 146 147 /* The pin number can be retrived from the pin controller descriptor */ 148 for (i = 0; i < pctldev->desc->npins; i++) { 149 struct pin_desc *desc; 150 151 pin = pctldev->desc->pins[i].number; 152 desc = pin_desc_get(pctldev, pin); 153 /* Pin space may be sparse */ 154 if (desc && !strcmp(name, desc->name)) 155 return pin; 156 } 157 158 return -EINVAL; 159 } 160 161 /** 162 * pin_get_name_from_id() - look up a pin name from a pin id 163 * @pctldev: the pin control device to lookup the pin on 164 * @name: the name of the pin to look up 165 */ 166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 167 { 168 const struct pin_desc *desc; 169 170 desc = pin_desc_get(pctldev, pin); 171 if (!desc) { 172 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 173 pin); 174 return NULL; 175 } 176 177 return desc->name; 178 } 179 180 /** 181 * pin_is_valid() - check if pin exists on controller 182 * @pctldev: the pin control device to check the pin on 183 * @pin: pin to check, use the local pin controller index number 184 * 185 * This tells us whether a certain pin exist on a certain pin controller or 186 * not. Pin lists may be sparse, so some pins may not exist. 187 */ 188 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 189 { 190 struct pin_desc *pindesc; 191 192 if (pin < 0) 193 return false; 194 195 mutex_lock(&pctldev->mutex); 196 pindesc = pin_desc_get(pctldev, pin); 197 mutex_unlock(&pctldev->mutex); 198 199 return pindesc != NULL; 200 } 201 EXPORT_SYMBOL_GPL(pin_is_valid); 202 203 /* Deletes a range of pin descriptors */ 204 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pins, 206 unsigned num_pins) 207 { 208 int i; 209 210 for (i = 0; i < num_pins; i++) { 211 struct pin_desc *pindesc; 212 213 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 214 pins[i].number); 215 if (pindesc) { 216 radix_tree_delete(&pctldev->pin_desc_tree, 217 pins[i].number); 218 if (pindesc->dynamic_name) 219 kfree(pindesc->name); 220 } 221 kfree(pindesc); 222 } 223 } 224 225 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 226 const struct pinctrl_pin_desc *pin) 227 { 228 struct pin_desc *pindesc; 229 230 pindesc = pin_desc_get(pctldev, pin->number); 231 if (pindesc) { 232 dev_err(pctldev->dev, "pin %d already registered\n", 233 pin->number); 234 return -EINVAL; 235 } 236 237 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 238 if (!pindesc) 239 return -ENOMEM; 240 241 /* Set owner */ 242 pindesc->pctldev = pctldev; 243 244 /* Copy basic pin info */ 245 if (pin->name) { 246 pindesc->name = pin->name; 247 } else { 248 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 249 if (!pindesc->name) { 250 kfree(pindesc); 251 return -ENOMEM; 252 } 253 pindesc->dynamic_name = true; 254 } 255 256 pindesc->drv_data = pin->drv_data; 257 258 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 259 pr_debug("registered pin %d (%s) on %s\n", 260 pin->number, pindesc->name, pctldev->desc->name); 261 return 0; 262 } 263 264 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 265 const struct pinctrl_pin_desc *pins, 266 unsigned num_descs) 267 { 268 unsigned i; 269 int ret = 0; 270 271 for (i = 0; i < num_descs; i++) { 272 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 273 if (ret) 274 return ret; 275 } 276 277 return 0; 278 } 279 280 /** 281 * gpio_to_pin() - GPIO range GPIO number to pin number translation 282 * @range: GPIO range used for the translation 283 * @gpio: gpio pin to translate to a pin number 284 * 285 * Finds the pin number for a given GPIO using the specified GPIO range 286 * as a base for translation. The distinction between linear GPIO ranges 287 * and pin list based GPIO ranges is managed correctly by this function. 288 * 289 * This function assumes the gpio is part of the specified GPIO range, use 290 * only after making sure this is the case (e.g. by calling it on the 291 * result of successful pinctrl_get_device_gpio_range calls)! 292 */ 293 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 294 unsigned int gpio) 295 { 296 unsigned int offset = gpio - range->base; 297 if (range->pins) 298 return range->pins[offset]; 299 else 300 return range->pin_base + offset; 301 } 302 303 /** 304 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 305 * @pctldev: pin controller device to check 306 * @gpio: gpio pin to check taken from the global GPIO pin space 307 * 308 * Tries to match a GPIO pin number to the ranges handled by a certain pin 309 * controller, return the range or NULL 310 */ 311 static struct pinctrl_gpio_range * 312 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 313 { 314 struct pinctrl_gpio_range *range = NULL; 315 316 mutex_lock(&pctldev->mutex); 317 /* Loop over the ranges */ 318 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 319 /* Check if we're in the valid range */ 320 if (gpio >= range->base && 321 gpio < range->base + range->npins) { 322 mutex_unlock(&pctldev->mutex); 323 return range; 324 } 325 } 326 mutex_unlock(&pctldev->mutex); 327 return NULL; 328 } 329 330 /** 331 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 332 * the same GPIO chip are in range 333 * @gpio: gpio pin to check taken from the global GPIO pin space 334 * 335 * This function is complement of pinctrl_match_gpio_range(). If the return 336 * value of pinctrl_match_gpio_range() is NULL, this function could be used 337 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 338 * of the same GPIO chip don't have back-end pinctrl interface. 339 * If the return value is true, it means that pinctrl device is ready & the 340 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 341 * is false, it means that pinctrl device may not be ready. 342 */ 343 #ifdef CONFIG_GPIOLIB 344 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 345 { 346 struct pinctrl_dev *pctldev; 347 struct pinctrl_gpio_range *range = NULL; 348 struct gpio_chip *chip = gpio_to_chip(gpio); 349 350 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 351 return false; 352 353 mutex_lock(&pinctrldev_list_mutex); 354 355 /* Loop over the pin controllers */ 356 list_for_each_entry(pctldev, &pinctrldev_list, node) { 357 /* Loop over the ranges */ 358 mutex_lock(&pctldev->mutex); 359 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 360 /* Check if any gpio range overlapped with gpio chip */ 361 if (range->base + range->npins - 1 < chip->base || 362 range->base > chip->base + chip->ngpio - 1) 363 continue; 364 mutex_unlock(&pctldev->mutex); 365 mutex_unlock(&pinctrldev_list_mutex); 366 return true; 367 } 368 mutex_unlock(&pctldev->mutex); 369 } 370 371 mutex_unlock(&pinctrldev_list_mutex); 372 373 return false; 374 } 375 #else 376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 377 #endif 378 379 /** 380 * pinctrl_get_device_gpio_range() - find device for GPIO range 381 * @gpio: the pin to locate the pin controller for 382 * @outdev: the pin control device if found 383 * @outrange: the GPIO range if found 384 * 385 * Find the pin controller handling a certain GPIO pin from the pinspace of 386 * the GPIO subsystem, return the device and the matching GPIO range. Returns 387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 388 * may still have not been registered. 389 */ 390 static int pinctrl_get_device_gpio_range(unsigned gpio, 391 struct pinctrl_dev **outdev, 392 struct pinctrl_gpio_range **outrange) 393 { 394 struct pinctrl_dev *pctldev = NULL; 395 396 mutex_lock(&pinctrldev_list_mutex); 397 398 /* Loop over the pin controllers */ 399 list_for_each_entry(pctldev, &pinctrldev_list, node) { 400 struct pinctrl_gpio_range *range; 401 402 range = pinctrl_match_gpio_range(pctldev, gpio); 403 if (range) { 404 *outdev = pctldev; 405 *outrange = range; 406 mutex_unlock(&pinctrldev_list_mutex); 407 return 0; 408 } 409 } 410 411 mutex_unlock(&pinctrldev_list_mutex); 412 413 return -EPROBE_DEFER; 414 } 415 416 /** 417 * pinctrl_add_gpio_range() - register a GPIO range for a controller 418 * @pctldev: pin controller device to add the range to 419 * @range: the GPIO range to add 420 * 421 * This adds a range of GPIOs to be handled by a certain pin controller. Call 422 * this to register handled ranges after registering your pin controller. 423 */ 424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 425 struct pinctrl_gpio_range *range) 426 { 427 mutex_lock(&pctldev->mutex); 428 list_add_tail(&range->node, &pctldev->gpio_ranges); 429 mutex_unlock(&pctldev->mutex); 430 } 431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 432 433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 434 struct pinctrl_gpio_range *ranges, 435 unsigned nranges) 436 { 437 int i; 438 439 for (i = 0; i < nranges; i++) 440 pinctrl_add_gpio_range(pctldev, &ranges[i]); 441 } 442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 443 444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 445 struct pinctrl_gpio_range *range) 446 { 447 struct pinctrl_dev *pctldev; 448 449 pctldev = get_pinctrl_dev_from_devname(devname); 450 451 /* 452 * If we can't find this device, let's assume that is because 453 * it has not probed yet, so the driver trying to register this 454 * range need to defer probing. 455 */ 456 if (!pctldev) { 457 return ERR_PTR(-EPROBE_DEFER); 458 } 459 pinctrl_add_gpio_range(pctldev, range); 460 461 return pctldev; 462 } 463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 464 465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 466 const unsigned **pins, unsigned *num_pins) 467 { 468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 469 int gs; 470 471 if (!pctlops->get_group_pins) 472 return -EINVAL; 473 474 gs = pinctrl_get_group_selector(pctldev, pin_group); 475 if (gs < 0) 476 return gs; 477 478 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 479 } 480 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 481 482 struct pinctrl_gpio_range * 483 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 484 unsigned int pin) 485 { 486 struct pinctrl_gpio_range *range; 487 488 /* Loop over the ranges */ 489 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 490 /* Check if we're in the valid range */ 491 if (range->pins) { 492 int a; 493 for (a = 0; a < range->npins; a++) { 494 if (range->pins[a] == pin) 495 return range; 496 } 497 } else if (pin >= range->pin_base && 498 pin < range->pin_base + range->npins) 499 return range; 500 } 501 502 return NULL; 503 } 504 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 505 506 /** 507 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 508 * @pctldev: the pin controller device to look in 509 * @pin: a controller-local number to find the range for 510 */ 511 struct pinctrl_gpio_range * 512 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 513 unsigned int pin) 514 { 515 struct pinctrl_gpio_range *range; 516 517 mutex_lock(&pctldev->mutex); 518 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 519 mutex_unlock(&pctldev->mutex); 520 521 return range; 522 } 523 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 524 525 /** 526 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 527 * @pctldev: pin controller device to remove the range from 528 * @range: the GPIO range to remove 529 */ 530 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 531 struct pinctrl_gpio_range *range) 532 { 533 mutex_lock(&pctldev->mutex); 534 list_del(&range->node); 535 mutex_unlock(&pctldev->mutex); 536 } 537 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 538 539 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 540 541 /** 542 * pinctrl_generic_get_group_count() - returns the number of pin groups 543 * @pctldev: pin controller device 544 */ 545 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 546 { 547 return pctldev->num_groups; 548 } 549 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 550 551 /** 552 * pinctrl_generic_get_group_name() - returns the name of a pin group 553 * @pctldev: pin controller device 554 * @selector: group number 555 */ 556 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 557 unsigned int selector) 558 { 559 struct group_desc *group; 560 561 group = radix_tree_lookup(&pctldev->pin_group_tree, 562 selector); 563 if (!group) 564 return NULL; 565 566 return group->name; 567 } 568 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 569 570 /** 571 * pinctrl_generic_get_group_pins() - gets the pin group pins 572 * @pctldev: pin controller device 573 * @selector: group number 574 * @pins: pins in the group 575 * @num_pins: number of pins in the group 576 */ 577 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 578 unsigned int selector, 579 const unsigned int **pins, 580 unsigned int *num_pins) 581 { 582 struct group_desc *group; 583 584 group = radix_tree_lookup(&pctldev->pin_group_tree, 585 selector); 586 if (!group) { 587 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 588 __func__, selector); 589 return -EINVAL; 590 } 591 592 *pins = group->pins; 593 *num_pins = group->num_pins; 594 595 return 0; 596 } 597 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 598 599 /** 600 * pinctrl_generic_get_group() - returns a pin group based on the number 601 * @pctldev: pin controller device 602 * @gselector: group number 603 */ 604 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 605 unsigned int selector) 606 { 607 struct group_desc *group; 608 609 group = radix_tree_lookup(&pctldev->pin_group_tree, 610 selector); 611 if (!group) 612 return NULL; 613 614 return group; 615 } 616 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 617 618 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 619 const char *function) 620 { 621 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 622 int ngroups = ops->get_groups_count(pctldev); 623 int selector = 0; 624 625 /* See if this pctldev has this group */ 626 while (selector < ngroups) { 627 const char *gname = ops->get_group_name(pctldev, selector); 628 629 if (gname && !strcmp(function, gname)) 630 return selector; 631 632 selector++; 633 } 634 635 return -EINVAL; 636 } 637 638 /** 639 * pinctrl_generic_add_group() - adds a new pin group 640 * @pctldev: pin controller device 641 * @name: name of the pin group 642 * @pins: pins in the pin group 643 * @num_pins: number of pins in the pin group 644 * @data: pin controller driver specific data 645 * 646 * Note that the caller must take care of locking. 647 */ 648 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 649 int *pins, int num_pins, void *data) 650 { 651 struct group_desc *group; 652 int selector; 653 654 if (!name) 655 return -EINVAL; 656 657 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 658 if (selector >= 0) 659 return selector; 660 661 selector = pctldev->num_groups; 662 663 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 664 if (!group) 665 return -ENOMEM; 666 667 group->name = name; 668 group->pins = pins; 669 group->num_pins = num_pins; 670 group->data = data; 671 672 radix_tree_insert(&pctldev->pin_group_tree, selector, group); 673 674 pctldev->num_groups++; 675 676 return selector; 677 } 678 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 679 680 /** 681 * pinctrl_generic_remove_group() - removes a numbered pin group 682 * @pctldev: pin controller device 683 * @selector: group number 684 * 685 * Note that the caller must take care of locking. 686 */ 687 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 688 unsigned int selector) 689 { 690 struct group_desc *group; 691 692 group = radix_tree_lookup(&pctldev->pin_group_tree, 693 selector); 694 if (!group) 695 return -ENOENT; 696 697 radix_tree_delete(&pctldev->pin_group_tree, selector); 698 devm_kfree(pctldev->dev, group); 699 700 pctldev->num_groups--; 701 702 return 0; 703 } 704 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 705 706 /** 707 * pinctrl_generic_free_groups() - removes all pin groups 708 * @pctldev: pin controller device 709 * 710 * Note that the caller must take care of locking. The pinctrl groups 711 * are allocated with devm_kzalloc() so no need to free them here. 712 */ 713 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 714 { 715 struct radix_tree_iter iter; 716 void __rcu **slot; 717 718 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 719 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 720 721 pctldev->num_groups = 0; 722 } 723 724 #else 725 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 726 { 727 } 728 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 729 730 /** 731 * pinctrl_get_group_selector() - returns the group selector for a group 732 * @pctldev: the pin controller handling the group 733 * @pin_group: the pin group to look up 734 */ 735 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 736 const char *pin_group) 737 { 738 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 739 unsigned ngroups = pctlops->get_groups_count(pctldev); 740 unsigned group_selector = 0; 741 742 while (group_selector < ngroups) { 743 const char *gname = pctlops->get_group_name(pctldev, 744 group_selector); 745 if (gname && !strcmp(gname, pin_group)) { 746 dev_dbg(pctldev->dev, 747 "found group selector %u for %s\n", 748 group_selector, 749 pin_group); 750 return group_selector; 751 } 752 753 group_selector++; 754 } 755 756 dev_err(pctldev->dev, "does not have pin group %s\n", 757 pin_group); 758 759 return -EINVAL; 760 } 761 762 /** 763 * pinctrl_gpio_request() - request a single pin to be used as GPIO 764 * @gpio: the GPIO pin number from the GPIO subsystem number space 765 * 766 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 767 * as part of their gpio_request() semantics, platforms and individual drivers 768 * shall *NOT* request GPIO pins to be muxed in. 769 */ 770 int pinctrl_gpio_request(unsigned gpio) 771 { 772 struct pinctrl_dev *pctldev; 773 struct pinctrl_gpio_range *range; 774 int ret; 775 int pin; 776 777 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 778 if (ret) { 779 if (pinctrl_ready_for_gpio_range(gpio)) 780 ret = 0; 781 return ret; 782 } 783 784 mutex_lock(&pctldev->mutex); 785 786 /* Convert to the pin controllers number space */ 787 pin = gpio_to_pin(range, gpio); 788 789 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 790 791 mutex_unlock(&pctldev->mutex); 792 793 return ret; 794 } 795 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 796 797 /** 798 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 799 * @gpio: the GPIO pin number from the GPIO subsystem number space 800 * 801 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 802 * as part of their gpio_free() semantics, platforms and individual drivers 803 * shall *NOT* request GPIO pins to be muxed out. 804 */ 805 void pinctrl_gpio_free(unsigned gpio) 806 { 807 struct pinctrl_dev *pctldev; 808 struct pinctrl_gpio_range *range; 809 int ret; 810 int pin; 811 812 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 813 if (ret) { 814 return; 815 } 816 mutex_lock(&pctldev->mutex); 817 818 /* Convert to the pin controllers number space */ 819 pin = gpio_to_pin(range, gpio); 820 821 pinmux_free_gpio(pctldev, pin, range); 822 823 mutex_unlock(&pctldev->mutex); 824 } 825 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 826 827 static int pinctrl_gpio_direction(unsigned gpio, bool input) 828 { 829 struct pinctrl_dev *pctldev; 830 struct pinctrl_gpio_range *range; 831 int ret; 832 int pin; 833 834 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 835 if (ret) { 836 return ret; 837 } 838 839 mutex_lock(&pctldev->mutex); 840 841 /* Convert to the pin controllers number space */ 842 pin = gpio_to_pin(range, gpio); 843 ret = pinmux_gpio_direction(pctldev, range, pin, input); 844 845 mutex_unlock(&pctldev->mutex); 846 847 return ret; 848 } 849 850 /** 851 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 852 * @gpio: the GPIO pin number from the GPIO subsystem number space 853 * 854 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 855 * as part of their gpio_direction_input() semantics, platforms and individual 856 * drivers shall *NOT* touch pin control GPIO calls. 857 */ 858 int pinctrl_gpio_direction_input(unsigned gpio) 859 { 860 return pinctrl_gpio_direction(gpio, true); 861 } 862 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 863 864 /** 865 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 866 * @gpio: the GPIO pin number from the GPIO subsystem number space 867 * 868 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 869 * as part of their gpio_direction_output() semantics, platforms and individual 870 * drivers shall *NOT* touch pin control GPIO calls. 871 */ 872 int pinctrl_gpio_direction_output(unsigned gpio) 873 { 874 return pinctrl_gpio_direction(gpio, false); 875 } 876 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 877 878 /** 879 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 880 * @gpio: the GPIO pin number from the GPIO subsystem number space 881 * @config: the configuration to apply to the GPIO 882 * 883 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 884 * they need to call the underlying pin controller to change GPIO config 885 * (for example set debounce time). 886 */ 887 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 888 { 889 unsigned long configs[] = { config }; 890 struct pinctrl_gpio_range *range; 891 struct pinctrl_dev *pctldev; 892 int ret, pin; 893 894 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 895 if (ret) 896 return ret; 897 898 mutex_lock(&pctldev->mutex); 899 pin = gpio_to_pin(range, gpio); 900 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 901 mutex_unlock(&pctldev->mutex); 902 903 return ret; 904 } 905 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 906 907 static struct pinctrl_state *find_state(struct pinctrl *p, 908 const char *name) 909 { 910 struct pinctrl_state *state; 911 912 list_for_each_entry(state, &p->states, node) 913 if (!strcmp(state->name, name)) 914 return state; 915 916 return NULL; 917 } 918 919 static struct pinctrl_state *create_state(struct pinctrl *p, 920 const char *name) 921 { 922 struct pinctrl_state *state; 923 924 state = kzalloc(sizeof(*state), GFP_KERNEL); 925 if (!state) 926 return ERR_PTR(-ENOMEM); 927 928 state->name = name; 929 INIT_LIST_HEAD(&state->settings); 930 931 list_add_tail(&state->node, &p->states); 932 933 return state; 934 } 935 936 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 937 const struct pinctrl_map *map) 938 { 939 struct pinctrl_state *state; 940 struct pinctrl_setting *setting; 941 int ret; 942 943 state = find_state(p, map->name); 944 if (!state) 945 state = create_state(p, map->name); 946 if (IS_ERR(state)) 947 return PTR_ERR(state); 948 949 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 950 return 0; 951 952 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 953 if (!setting) 954 return -ENOMEM; 955 956 setting->type = map->type; 957 958 if (pctldev) 959 setting->pctldev = pctldev; 960 else 961 setting->pctldev = 962 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 963 if (!setting->pctldev) { 964 kfree(setting); 965 /* Do not defer probing of hogs (circular loop) */ 966 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 967 return -ENODEV; 968 /* 969 * OK let us guess that the driver is not there yet, and 970 * let's defer obtaining this pinctrl handle to later... 971 */ 972 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 973 map->ctrl_dev_name); 974 return -EPROBE_DEFER; 975 } 976 977 setting->dev_name = map->dev_name; 978 979 switch (map->type) { 980 case PIN_MAP_TYPE_MUX_GROUP: 981 ret = pinmux_map_to_setting(map, setting); 982 break; 983 case PIN_MAP_TYPE_CONFIGS_PIN: 984 case PIN_MAP_TYPE_CONFIGS_GROUP: 985 ret = pinconf_map_to_setting(map, setting); 986 break; 987 default: 988 ret = -EINVAL; 989 break; 990 } 991 if (ret < 0) { 992 kfree(setting); 993 return ret; 994 } 995 996 list_add_tail(&setting->node, &state->settings); 997 998 return 0; 999 } 1000 1001 static struct pinctrl *find_pinctrl(struct device *dev) 1002 { 1003 struct pinctrl *p; 1004 1005 mutex_lock(&pinctrl_list_mutex); 1006 list_for_each_entry(p, &pinctrl_list, node) 1007 if (p->dev == dev) { 1008 mutex_unlock(&pinctrl_list_mutex); 1009 return p; 1010 } 1011 1012 mutex_unlock(&pinctrl_list_mutex); 1013 return NULL; 1014 } 1015 1016 static void pinctrl_free(struct pinctrl *p, bool inlist); 1017 1018 static struct pinctrl *create_pinctrl(struct device *dev, 1019 struct pinctrl_dev *pctldev) 1020 { 1021 struct pinctrl *p; 1022 const char *devname; 1023 struct pinctrl_maps *maps_node; 1024 int i; 1025 const struct pinctrl_map *map; 1026 int ret; 1027 1028 /* 1029 * create the state cookie holder struct pinctrl for each 1030 * mapping, this is what consumers will get when requesting 1031 * a pin control handle with pinctrl_get() 1032 */ 1033 p = kzalloc(sizeof(*p), GFP_KERNEL); 1034 if (!p) 1035 return ERR_PTR(-ENOMEM); 1036 p->dev = dev; 1037 INIT_LIST_HEAD(&p->states); 1038 INIT_LIST_HEAD(&p->dt_maps); 1039 1040 ret = pinctrl_dt_to_map(p, pctldev); 1041 if (ret < 0) { 1042 kfree(p); 1043 return ERR_PTR(ret); 1044 } 1045 1046 devname = dev_name(dev); 1047 1048 mutex_lock(&pinctrl_maps_mutex); 1049 /* Iterate over the pin control maps to locate the right ones */ 1050 for_each_maps(maps_node, i, map) { 1051 /* Map must be for this device */ 1052 if (strcmp(map->dev_name, devname)) 1053 continue; 1054 /* 1055 * If pctldev is not null, we are claiming hog for it, 1056 * that means, setting that is served by pctldev by itself. 1057 * 1058 * Thus we must skip map that is for this device but is served 1059 * by other device. 1060 */ 1061 if (pctldev && 1062 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1063 continue; 1064 1065 ret = add_setting(p, pctldev, map); 1066 /* 1067 * At this point the adding of a setting may: 1068 * 1069 * - Defer, if the pinctrl device is not yet available 1070 * - Fail, if the pinctrl device is not yet available, 1071 * AND the setting is a hog. We cannot defer that, since 1072 * the hog will kick in immediately after the device 1073 * is registered. 1074 * 1075 * If the error returned was not -EPROBE_DEFER then we 1076 * accumulate the errors to see if we end up with 1077 * an -EPROBE_DEFER later, as that is the worst case. 1078 */ 1079 if (ret == -EPROBE_DEFER) { 1080 pinctrl_free(p, false); 1081 mutex_unlock(&pinctrl_maps_mutex); 1082 return ERR_PTR(ret); 1083 } 1084 } 1085 mutex_unlock(&pinctrl_maps_mutex); 1086 1087 if (ret < 0) { 1088 /* If some other error than deferral occurred, return here */ 1089 pinctrl_free(p, false); 1090 return ERR_PTR(ret); 1091 } 1092 1093 kref_init(&p->users); 1094 1095 /* Add the pinctrl handle to the global list */ 1096 mutex_lock(&pinctrl_list_mutex); 1097 list_add_tail(&p->node, &pinctrl_list); 1098 mutex_unlock(&pinctrl_list_mutex); 1099 1100 return p; 1101 } 1102 1103 /** 1104 * pinctrl_get() - retrieves the pinctrl handle for a device 1105 * @dev: the device to obtain the handle for 1106 */ 1107 struct pinctrl *pinctrl_get(struct device *dev) 1108 { 1109 struct pinctrl *p; 1110 1111 if (WARN_ON(!dev)) 1112 return ERR_PTR(-EINVAL); 1113 1114 /* 1115 * See if somebody else (such as the device core) has already 1116 * obtained a handle to the pinctrl for this device. In that case, 1117 * return another pointer to it. 1118 */ 1119 p = find_pinctrl(dev); 1120 if (p) { 1121 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1122 kref_get(&p->users); 1123 return p; 1124 } 1125 1126 return create_pinctrl(dev, NULL); 1127 } 1128 EXPORT_SYMBOL_GPL(pinctrl_get); 1129 1130 static void pinctrl_free_setting(bool disable_setting, 1131 struct pinctrl_setting *setting) 1132 { 1133 switch (setting->type) { 1134 case PIN_MAP_TYPE_MUX_GROUP: 1135 if (disable_setting) 1136 pinmux_disable_setting(setting); 1137 pinmux_free_setting(setting); 1138 break; 1139 case PIN_MAP_TYPE_CONFIGS_PIN: 1140 case PIN_MAP_TYPE_CONFIGS_GROUP: 1141 pinconf_free_setting(setting); 1142 break; 1143 default: 1144 break; 1145 } 1146 } 1147 1148 static void pinctrl_free(struct pinctrl *p, bool inlist) 1149 { 1150 struct pinctrl_state *state, *n1; 1151 struct pinctrl_setting *setting, *n2; 1152 1153 mutex_lock(&pinctrl_list_mutex); 1154 list_for_each_entry_safe(state, n1, &p->states, node) { 1155 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1156 pinctrl_free_setting(state == p->state, setting); 1157 list_del(&setting->node); 1158 kfree(setting); 1159 } 1160 list_del(&state->node); 1161 kfree(state); 1162 } 1163 1164 pinctrl_dt_free_maps(p); 1165 1166 if (inlist) 1167 list_del(&p->node); 1168 kfree(p); 1169 mutex_unlock(&pinctrl_list_mutex); 1170 } 1171 1172 /** 1173 * pinctrl_release() - release the pinctrl handle 1174 * @kref: the kref in the pinctrl being released 1175 */ 1176 static void pinctrl_release(struct kref *kref) 1177 { 1178 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1179 1180 pinctrl_free(p, true); 1181 } 1182 1183 /** 1184 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1185 * @p: the pinctrl handle to release 1186 */ 1187 void pinctrl_put(struct pinctrl *p) 1188 { 1189 kref_put(&p->users, pinctrl_release); 1190 } 1191 EXPORT_SYMBOL_GPL(pinctrl_put); 1192 1193 /** 1194 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1195 * @p: the pinctrl handle to retrieve the state from 1196 * @name: the state name to retrieve 1197 */ 1198 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1199 const char *name) 1200 { 1201 struct pinctrl_state *state; 1202 1203 state = find_state(p, name); 1204 if (!state) { 1205 if (pinctrl_dummy_state) { 1206 /* create dummy state */ 1207 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1208 name); 1209 state = create_state(p, name); 1210 } else 1211 state = ERR_PTR(-ENODEV); 1212 } 1213 1214 return state; 1215 } 1216 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1217 1218 /** 1219 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1220 * @p: the pinctrl handle for the device that requests configuration 1221 * @state: the state handle to select/activate/program 1222 */ 1223 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1224 { 1225 struct pinctrl_setting *setting, *setting2; 1226 struct pinctrl_state *old_state = p->state; 1227 int ret; 1228 1229 if (p->state) { 1230 /* 1231 * For each pinmux setting in the old state, forget SW's record 1232 * of mux owner for that pingroup. Any pingroups which are 1233 * still owned by the new state will be re-acquired by the call 1234 * to pinmux_enable_setting() in the loop below. 1235 */ 1236 list_for_each_entry(setting, &p->state->settings, node) { 1237 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1238 continue; 1239 pinmux_disable_setting(setting); 1240 } 1241 } 1242 1243 p->state = NULL; 1244 1245 /* Apply all the settings for the new state */ 1246 list_for_each_entry(setting, &state->settings, node) { 1247 switch (setting->type) { 1248 case PIN_MAP_TYPE_MUX_GROUP: 1249 ret = pinmux_enable_setting(setting); 1250 break; 1251 case PIN_MAP_TYPE_CONFIGS_PIN: 1252 case PIN_MAP_TYPE_CONFIGS_GROUP: 1253 ret = pinconf_apply_setting(setting); 1254 break; 1255 default: 1256 ret = -EINVAL; 1257 break; 1258 } 1259 1260 if (ret < 0) { 1261 goto unapply_new_state; 1262 } 1263 } 1264 1265 p->state = state; 1266 1267 return 0; 1268 1269 unapply_new_state: 1270 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1271 1272 list_for_each_entry(setting2, &state->settings, node) { 1273 if (&setting2->node == &setting->node) 1274 break; 1275 /* 1276 * All we can do here is pinmux_disable_setting. 1277 * That means that some pins are muxed differently now 1278 * than they were before applying the setting (We can't 1279 * "unmux a pin"!), but it's not a big deal since the pins 1280 * are free to be muxed by another apply_setting. 1281 */ 1282 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1283 pinmux_disable_setting(setting2); 1284 } 1285 1286 /* There's no infinite recursive loop here because p->state is NULL */ 1287 if (old_state) 1288 pinctrl_select_state(p, old_state); 1289 1290 return ret; 1291 } 1292 1293 /** 1294 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1295 * @p: the pinctrl handle for the device that requests configuration 1296 * @state: the state handle to select/activate/program 1297 */ 1298 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1299 { 1300 if (p->state == state) 1301 return 0; 1302 1303 return pinctrl_commit_state(p, state); 1304 } 1305 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1306 1307 static void devm_pinctrl_release(struct device *dev, void *res) 1308 { 1309 pinctrl_put(*(struct pinctrl **)res); 1310 } 1311 1312 /** 1313 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1314 * @dev: the device to obtain the handle for 1315 * 1316 * If there is a need to explicitly destroy the returned struct pinctrl, 1317 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1318 */ 1319 struct pinctrl *devm_pinctrl_get(struct device *dev) 1320 { 1321 struct pinctrl **ptr, *p; 1322 1323 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1324 if (!ptr) 1325 return ERR_PTR(-ENOMEM); 1326 1327 p = pinctrl_get(dev); 1328 if (!IS_ERR(p)) { 1329 *ptr = p; 1330 devres_add(dev, ptr); 1331 } else { 1332 devres_free(ptr); 1333 } 1334 1335 return p; 1336 } 1337 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1338 1339 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1340 { 1341 struct pinctrl **p = res; 1342 1343 return *p == data; 1344 } 1345 1346 /** 1347 * devm_pinctrl_put() - Resource managed pinctrl_put() 1348 * @p: the pinctrl handle to release 1349 * 1350 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1351 * this function will not need to be called and the resource management 1352 * code will ensure that the resource is freed. 1353 */ 1354 void devm_pinctrl_put(struct pinctrl *p) 1355 { 1356 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1357 devm_pinctrl_match, p)); 1358 } 1359 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1360 1361 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps, 1362 bool dup) 1363 { 1364 int i, ret; 1365 struct pinctrl_maps *maps_node; 1366 1367 pr_debug("add %u pinctrl maps\n", num_maps); 1368 1369 /* First sanity check the new mapping */ 1370 for (i = 0; i < num_maps; i++) { 1371 if (!maps[i].dev_name) { 1372 pr_err("failed to register map %s (%d): no device given\n", 1373 maps[i].name, i); 1374 return -EINVAL; 1375 } 1376 1377 if (!maps[i].name) { 1378 pr_err("failed to register map %d: no map name given\n", 1379 i); 1380 return -EINVAL; 1381 } 1382 1383 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1384 !maps[i].ctrl_dev_name) { 1385 pr_err("failed to register map %s (%d): no pin control device given\n", 1386 maps[i].name, i); 1387 return -EINVAL; 1388 } 1389 1390 switch (maps[i].type) { 1391 case PIN_MAP_TYPE_DUMMY_STATE: 1392 break; 1393 case PIN_MAP_TYPE_MUX_GROUP: 1394 ret = pinmux_validate_map(&maps[i], i); 1395 if (ret < 0) 1396 return ret; 1397 break; 1398 case PIN_MAP_TYPE_CONFIGS_PIN: 1399 case PIN_MAP_TYPE_CONFIGS_GROUP: 1400 ret = pinconf_validate_map(&maps[i], i); 1401 if (ret < 0) 1402 return ret; 1403 break; 1404 default: 1405 pr_err("failed to register map %s (%d): invalid type given\n", 1406 maps[i].name, i); 1407 return -EINVAL; 1408 } 1409 } 1410 1411 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1412 if (!maps_node) 1413 return -ENOMEM; 1414 1415 maps_node->num_maps = num_maps; 1416 if (dup) { 1417 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1418 GFP_KERNEL); 1419 if (!maps_node->maps) { 1420 kfree(maps_node); 1421 return -ENOMEM; 1422 } 1423 } else { 1424 maps_node->maps = maps; 1425 } 1426 1427 mutex_lock(&pinctrl_maps_mutex); 1428 list_add_tail(&maps_node->node, &pinctrl_maps); 1429 mutex_unlock(&pinctrl_maps_mutex); 1430 1431 return 0; 1432 } 1433 1434 /** 1435 * pinctrl_register_mappings() - register a set of pin controller mappings 1436 * @maps: the pincontrol mappings table to register. This should probably be 1437 * marked with __initdata so it can be discarded after boot. This 1438 * function will perform a shallow copy for the mapping entries. 1439 * @num_maps: the number of maps in the mapping table 1440 */ 1441 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1442 unsigned num_maps) 1443 { 1444 return pinctrl_register_map(maps, num_maps, true); 1445 } 1446 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1447 1448 void pinctrl_unregister_map(const struct pinctrl_map *map) 1449 { 1450 struct pinctrl_maps *maps_node; 1451 1452 mutex_lock(&pinctrl_maps_mutex); 1453 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1454 if (maps_node->maps == map) { 1455 list_del(&maps_node->node); 1456 kfree(maps_node); 1457 mutex_unlock(&pinctrl_maps_mutex); 1458 return; 1459 } 1460 } 1461 mutex_unlock(&pinctrl_maps_mutex); 1462 } 1463 1464 /** 1465 * pinctrl_force_sleep() - turn a given controller device into sleep state 1466 * @pctldev: pin controller device 1467 */ 1468 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1469 { 1470 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1471 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1472 return 0; 1473 } 1474 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1475 1476 /** 1477 * pinctrl_force_default() - turn a given controller device into default state 1478 * @pctldev: pin controller device 1479 */ 1480 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1481 { 1482 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1483 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1484 return 0; 1485 } 1486 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1487 1488 /** 1489 * pinctrl_init_done() - tell pinctrl probe is done 1490 * 1491 * We'll use this time to switch the pins from "init" to "default" unless the 1492 * driver selected some other state. 1493 * 1494 * @dev: device to that's done probing 1495 */ 1496 int pinctrl_init_done(struct device *dev) 1497 { 1498 struct dev_pin_info *pins = dev->pins; 1499 int ret; 1500 1501 if (!pins) 1502 return 0; 1503 1504 if (IS_ERR(pins->init_state)) 1505 return 0; /* No such state */ 1506 1507 if (pins->p->state != pins->init_state) 1508 return 0; /* Not at init anyway */ 1509 1510 if (IS_ERR(pins->default_state)) 1511 return 0; /* No default state */ 1512 1513 ret = pinctrl_select_state(pins->p, pins->default_state); 1514 if (ret) 1515 dev_err(dev, "failed to activate default pinctrl state\n"); 1516 1517 return ret; 1518 } 1519 1520 #ifdef CONFIG_PM 1521 1522 /** 1523 * pinctrl_pm_select_state() - select pinctrl state for PM 1524 * @dev: device to select default state for 1525 * @state: state to set 1526 */ 1527 static int pinctrl_pm_select_state(struct device *dev, 1528 struct pinctrl_state *state) 1529 { 1530 struct dev_pin_info *pins = dev->pins; 1531 int ret; 1532 1533 if (IS_ERR(state)) 1534 return 0; /* No such state */ 1535 ret = pinctrl_select_state(pins->p, state); 1536 if (ret) 1537 dev_err(dev, "failed to activate pinctrl state %s\n", 1538 state->name); 1539 return ret; 1540 } 1541 1542 /** 1543 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1544 * @dev: device to select default state for 1545 */ 1546 int pinctrl_pm_select_default_state(struct device *dev) 1547 { 1548 if (!dev->pins) 1549 return 0; 1550 1551 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1552 } 1553 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1554 1555 /** 1556 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1557 * @dev: device to select sleep state for 1558 */ 1559 int pinctrl_pm_select_sleep_state(struct device *dev) 1560 { 1561 if (!dev->pins) 1562 return 0; 1563 1564 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1565 } 1566 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1567 1568 /** 1569 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1570 * @dev: device to select idle state for 1571 */ 1572 int pinctrl_pm_select_idle_state(struct device *dev) 1573 { 1574 if (!dev->pins) 1575 return 0; 1576 1577 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1578 } 1579 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1580 #endif 1581 1582 #ifdef CONFIG_DEBUG_FS 1583 1584 static int pinctrl_pins_show(struct seq_file *s, void *what) 1585 { 1586 struct pinctrl_dev *pctldev = s->private; 1587 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1588 unsigned i, pin; 1589 1590 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1591 1592 mutex_lock(&pctldev->mutex); 1593 1594 /* The pin number can be retrived from the pin controller descriptor */ 1595 for (i = 0; i < pctldev->desc->npins; i++) { 1596 struct pin_desc *desc; 1597 1598 pin = pctldev->desc->pins[i].number; 1599 desc = pin_desc_get(pctldev, pin); 1600 /* Pin space may be sparse */ 1601 if (!desc) 1602 continue; 1603 1604 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1605 1606 /* Driver-specific info per pin */ 1607 if (ops->pin_dbg_show) 1608 ops->pin_dbg_show(pctldev, s, pin); 1609 1610 seq_puts(s, "\n"); 1611 } 1612 1613 mutex_unlock(&pctldev->mutex); 1614 1615 return 0; 1616 } 1617 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1618 1619 static int pinctrl_groups_show(struct seq_file *s, void *what) 1620 { 1621 struct pinctrl_dev *pctldev = s->private; 1622 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1623 unsigned ngroups, selector = 0; 1624 1625 mutex_lock(&pctldev->mutex); 1626 1627 ngroups = ops->get_groups_count(pctldev); 1628 1629 seq_puts(s, "registered pin groups:\n"); 1630 while (selector < ngroups) { 1631 const unsigned *pins = NULL; 1632 unsigned num_pins = 0; 1633 const char *gname = ops->get_group_name(pctldev, selector); 1634 const char *pname; 1635 int ret = 0; 1636 int i; 1637 1638 if (ops->get_group_pins) 1639 ret = ops->get_group_pins(pctldev, selector, 1640 &pins, &num_pins); 1641 if (ret) 1642 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1643 gname); 1644 else { 1645 seq_printf(s, "group: %s\n", gname); 1646 for (i = 0; i < num_pins; i++) { 1647 pname = pin_get_name(pctldev, pins[i]); 1648 if (WARN_ON(!pname)) { 1649 mutex_unlock(&pctldev->mutex); 1650 return -EINVAL; 1651 } 1652 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1653 } 1654 seq_puts(s, "\n"); 1655 } 1656 selector++; 1657 } 1658 1659 mutex_unlock(&pctldev->mutex); 1660 1661 return 0; 1662 } 1663 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1664 1665 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1666 { 1667 struct pinctrl_dev *pctldev = s->private; 1668 struct pinctrl_gpio_range *range = NULL; 1669 1670 seq_puts(s, "GPIO ranges handled:\n"); 1671 1672 mutex_lock(&pctldev->mutex); 1673 1674 /* Loop over the ranges */ 1675 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1676 if (range->pins) { 1677 int a; 1678 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1679 range->id, range->name, 1680 range->base, (range->base + range->npins - 1)); 1681 for (a = 0; a < range->npins - 1; a++) 1682 seq_printf(s, "%u, ", range->pins[a]); 1683 seq_printf(s, "%u}\n", range->pins[a]); 1684 } 1685 else 1686 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1687 range->id, range->name, 1688 range->base, (range->base + range->npins - 1), 1689 range->pin_base, 1690 (range->pin_base + range->npins - 1)); 1691 } 1692 1693 mutex_unlock(&pctldev->mutex); 1694 1695 return 0; 1696 } 1697 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1698 1699 static int pinctrl_devices_show(struct seq_file *s, void *what) 1700 { 1701 struct pinctrl_dev *pctldev; 1702 1703 seq_puts(s, "name [pinmux] [pinconf]\n"); 1704 1705 mutex_lock(&pinctrldev_list_mutex); 1706 1707 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1708 seq_printf(s, "%s ", pctldev->desc->name); 1709 if (pctldev->desc->pmxops) 1710 seq_puts(s, "yes "); 1711 else 1712 seq_puts(s, "no "); 1713 if (pctldev->desc->confops) 1714 seq_puts(s, "yes"); 1715 else 1716 seq_puts(s, "no"); 1717 seq_puts(s, "\n"); 1718 } 1719 1720 mutex_unlock(&pinctrldev_list_mutex); 1721 1722 return 0; 1723 } 1724 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1725 1726 static inline const char *map_type(enum pinctrl_map_type type) 1727 { 1728 static const char * const names[] = { 1729 "INVALID", 1730 "DUMMY_STATE", 1731 "MUX_GROUP", 1732 "CONFIGS_PIN", 1733 "CONFIGS_GROUP", 1734 }; 1735 1736 if (type >= ARRAY_SIZE(names)) 1737 return "UNKNOWN"; 1738 1739 return names[type]; 1740 } 1741 1742 static int pinctrl_maps_show(struct seq_file *s, void *what) 1743 { 1744 struct pinctrl_maps *maps_node; 1745 int i; 1746 const struct pinctrl_map *map; 1747 1748 seq_puts(s, "Pinctrl maps:\n"); 1749 1750 mutex_lock(&pinctrl_maps_mutex); 1751 for_each_maps(maps_node, i, map) { 1752 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1753 map->dev_name, map->name, map_type(map->type), 1754 map->type); 1755 1756 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1757 seq_printf(s, "controlling device %s\n", 1758 map->ctrl_dev_name); 1759 1760 switch (map->type) { 1761 case PIN_MAP_TYPE_MUX_GROUP: 1762 pinmux_show_map(s, map); 1763 break; 1764 case PIN_MAP_TYPE_CONFIGS_PIN: 1765 case PIN_MAP_TYPE_CONFIGS_GROUP: 1766 pinconf_show_map(s, map); 1767 break; 1768 default: 1769 break; 1770 } 1771 1772 seq_putc(s, '\n'); 1773 } 1774 mutex_unlock(&pinctrl_maps_mutex); 1775 1776 return 0; 1777 } 1778 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1779 1780 static int pinctrl_show(struct seq_file *s, void *what) 1781 { 1782 struct pinctrl *p; 1783 struct pinctrl_state *state; 1784 struct pinctrl_setting *setting; 1785 1786 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1787 1788 mutex_lock(&pinctrl_list_mutex); 1789 1790 list_for_each_entry(p, &pinctrl_list, node) { 1791 seq_printf(s, "device: %s current state: %s\n", 1792 dev_name(p->dev), 1793 p->state ? p->state->name : "none"); 1794 1795 list_for_each_entry(state, &p->states, node) { 1796 seq_printf(s, " state: %s\n", state->name); 1797 1798 list_for_each_entry(setting, &state->settings, node) { 1799 struct pinctrl_dev *pctldev = setting->pctldev; 1800 1801 seq_printf(s, " type: %s controller %s ", 1802 map_type(setting->type), 1803 pinctrl_dev_get_name(pctldev)); 1804 1805 switch (setting->type) { 1806 case PIN_MAP_TYPE_MUX_GROUP: 1807 pinmux_show_setting(s, setting); 1808 break; 1809 case PIN_MAP_TYPE_CONFIGS_PIN: 1810 case PIN_MAP_TYPE_CONFIGS_GROUP: 1811 pinconf_show_setting(s, setting); 1812 break; 1813 default: 1814 break; 1815 } 1816 } 1817 } 1818 } 1819 1820 mutex_unlock(&pinctrl_list_mutex); 1821 1822 return 0; 1823 } 1824 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1825 1826 static struct dentry *debugfs_root; 1827 1828 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1829 { 1830 struct dentry *device_root; 1831 const char *debugfs_name; 1832 1833 if (pctldev->desc->name && 1834 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1835 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1836 "%s-%s", dev_name(pctldev->dev), 1837 pctldev->desc->name); 1838 if (!debugfs_name) { 1839 pr_warn("failed to determine debugfs dir name for %s\n", 1840 dev_name(pctldev->dev)); 1841 return; 1842 } 1843 } else { 1844 debugfs_name = dev_name(pctldev->dev); 1845 } 1846 1847 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1848 pctldev->device_root = device_root; 1849 1850 if (IS_ERR(device_root) || !device_root) { 1851 pr_warn("failed to create debugfs directory for %s\n", 1852 dev_name(pctldev->dev)); 1853 return; 1854 } 1855 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1856 device_root, pctldev, &pinctrl_pins_fops); 1857 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1858 device_root, pctldev, &pinctrl_groups_fops); 1859 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1860 device_root, pctldev, &pinctrl_gpioranges_fops); 1861 if (pctldev->desc->pmxops) 1862 pinmux_init_device_debugfs(device_root, pctldev); 1863 if (pctldev->desc->confops) 1864 pinconf_init_device_debugfs(device_root, pctldev); 1865 } 1866 1867 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1868 { 1869 debugfs_remove_recursive(pctldev->device_root); 1870 } 1871 1872 static void pinctrl_init_debugfs(void) 1873 { 1874 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1875 if (IS_ERR(debugfs_root) || !debugfs_root) { 1876 pr_warn("failed to create debugfs directory\n"); 1877 debugfs_root = NULL; 1878 return; 1879 } 1880 1881 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1882 debugfs_root, NULL, &pinctrl_devices_fops); 1883 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1884 debugfs_root, NULL, &pinctrl_maps_fops); 1885 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1886 debugfs_root, NULL, &pinctrl_fops); 1887 } 1888 1889 #else /* CONFIG_DEBUG_FS */ 1890 1891 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1892 { 1893 } 1894 1895 static void pinctrl_init_debugfs(void) 1896 { 1897 } 1898 1899 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1900 { 1901 } 1902 1903 #endif 1904 1905 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1906 { 1907 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1908 1909 if (!ops || 1910 !ops->get_groups_count || 1911 !ops->get_group_name) 1912 return -EINVAL; 1913 1914 return 0; 1915 } 1916 1917 /** 1918 * pinctrl_init_controller() - init a pin controller device 1919 * @pctldesc: descriptor for this pin controller 1920 * @dev: parent device for this pin controller 1921 * @driver_data: private pin controller data for this pin controller 1922 */ 1923 static struct pinctrl_dev * 1924 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 1925 void *driver_data) 1926 { 1927 struct pinctrl_dev *pctldev; 1928 int ret; 1929 1930 if (!pctldesc) 1931 return ERR_PTR(-EINVAL); 1932 if (!pctldesc->name) 1933 return ERR_PTR(-EINVAL); 1934 1935 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1936 if (!pctldev) 1937 return ERR_PTR(-ENOMEM); 1938 1939 /* Initialize pin control device struct */ 1940 pctldev->owner = pctldesc->owner; 1941 pctldev->desc = pctldesc; 1942 pctldev->driver_data = driver_data; 1943 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1944 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 1945 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 1946 #endif 1947 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 1948 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 1949 #endif 1950 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1951 INIT_LIST_HEAD(&pctldev->node); 1952 pctldev->dev = dev; 1953 mutex_init(&pctldev->mutex); 1954 1955 /* check core ops for sanity */ 1956 ret = pinctrl_check_ops(pctldev); 1957 if (ret) { 1958 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1959 goto out_err; 1960 } 1961 1962 /* If we're implementing pinmuxing, check the ops for sanity */ 1963 if (pctldesc->pmxops) { 1964 ret = pinmux_check_ops(pctldev); 1965 if (ret) 1966 goto out_err; 1967 } 1968 1969 /* If we're implementing pinconfig, check the ops for sanity */ 1970 if (pctldesc->confops) { 1971 ret = pinconf_check_ops(pctldev); 1972 if (ret) 1973 goto out_err; 1974 } 1975 1976 /* Register all the pins */ 1977 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1978 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1979 if (ret) { 1980 dev_err(dev, "error during pin registration\n"); 1981 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1982 pctldesc->npins); 1983 goto out_err; 1984 } 1985 1986 return pctldev; 1987 1988 out_err: 1989 mutex_destroy(&pctldev->mutex); 1990 kfree(pctldev); 1991 return ERR_PTR(ret); 1992 } 1993 1994 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 1995 { 1996 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 1997 if (PTR_ERR(pctldev->p) == -ENODEV) { 1998 dev_dbg(pctldev->dev, "no hogs found\n"); 1999 2000 return 0; 2001 } 2002 2003 if (IS_ERR(pctldev->p)) { 2004 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2005 PTR_ERR(pctldev->p)); 2006 2007 return PTR_ERR(pctldev->p); 2008 } 2009 2010 kref_get(&pctldev->p->users); 2011 pctldev->hog_default = 2012 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2013 if (IS_ERR(pctldev->hog_default)) { 2014 dev_dbg(pctldev->dev, 2015 "failed to lookup the default state\n"); 2016 } else { 2017 if (pinctrl_select_state(pctldev->p, 2018 pctldev->hog_default)) 2019 dev_err(pctldev->dev, 2020 "failed to select default state\n"); 2021 } 2022 2023 pctldev->hog_sleep = 2024 pinctrl_lookup_state(pctldev->p, 2025 PINCTRL_STATE_SLEEP); 2026 if (IS_ERR(pctldev->hog_sleep)) 2027 dev_dbg(pctldev->dev, 2028 "failed to lookup the sleep state\n"); 2029 2030 return 0; 2031 } 2032 2033 int pinctrl_enable(struct pinctrl_dev *pctldev) 2034 { 2035 int error; 2036 2037 error = pinctrl_claim_hogs(pctldev); 2038 if (error) { 2039 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2040 error); 2041 mutex_destroy(&pctldev->mutex); 2042 kfree(pctldev); 2043 2044 return error; 2045 } 2046 2047 mutex_lock(&pinctrldev_list_mutex); 2048 list_add_tail(&pctldev->node, &pinctrldev_list); 2049 mutex_unlock(&pinctrldev_list_mutex); 2050 2051 pinctrl_init_device_debugfs(pctldev); 2052 2053 return 0; 2054 } 2055 EXPORT_SYMBOL_GPL(pinctrl_enable); 2056 2057 /** 2058 * pinctrl_register() - register a pin controller device 2059 * @pctldesc: descriptor for this pin controller 2060 * @dev: parent device for this pin controller 2061 * @driver_data: private pin controller data for this pin controller 2062 * 2063 * Note that pinctrl_register() is known to have problems as the pin 2064 * controller driver functions are called before the driver has a 2065 * struct pinctrl_dev handle. To avoid issues later on, please use the 2066 * new pinctrl_register_and_init() below instead. 2067 */ 2068 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2069 struct device *dev, void *driver_data) 2070 { 2071 struct pinctrl_dev *pctldev; 2072 int error; 2073 2074 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2075 if (IS_ERR(pctldev)) 2076 return pctldev; 2077 2078 error = pinctrl_enable(pctldev); 2079 if (error) 2080 return ERR_PTR(error); 2081 2082 return pctldev; 2083 2084 } 2085 EXPORT_SYMBOL_GPL(pinctrl_register); 2086 2087 /** 2088 * pinctrl_register_and_init() - register and init pin controller device 2089 * @pctldesc: descriptor for this pin controller 2090 * @dev: parent device for this pin controller 2091 * @driver_data: private pin controller data for this pin controller 2092 * @pctldev: pin controller device 2093 * 2094 * Note that pinctrl_enable() still needs to be manually called after 2095 * this once the driver is ready. 2096 */ 2097 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2098 struct device *dev, void *driver_data, 2099 struct pinctrl_dev **pctldev) 2100 { 2101 struct pinctrl_dev *p; 2102 2103 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2104 if (IS_ERR(p)) 2105 return PTR_ERR(p); 2106 2107 /* 2108 * We have pinctrl_start() call functions in the pin controller 2109 * driver with create_pinctrl() for at least dt_node_to_map(). So 2110 * let's make sure pctldev is properly initialized for the 2111 * pin controller driver before we do anything. 2112 */ 2113 *pctldev = p; 2114 2115 return 0; 2116 } 2117 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2118 2119 /** 2120 * pinctrl_unregister() - unregister pinmux 2121 * @pctldev: pin controller to unregister 2122 * 2123 * Called by pinmux drivers to unregister a pinmux. 2124 */ 2125 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2126 { 2127 struct pinctrl_gpio_range *range, *n; 2128 2129 if (!pctldev) 2130 return; 2131 2132 mutex_lock(&pctldev->mutex); 2133 pinctrl_remove_device_debugfs(pctldev); 2134 mutex_unlock(&pctldev->mutex); 2135 2136 if (!IS_ERR_OR_NULL(pctldev->p)) 2137 pinctrl_put(pctldev->p); 2138 2139 mutex_lock(&pinctrldev_list_mutex); 2140 mutex_lock(&pctldev->mutex); 2141 /* TODO: check that no pinmuxes are still active? */ 2142 list_del(&pctldev->node); 2143 pinmux_generic_free_functions(pctldev); 2144 pinctrl_generic_free_groups(pctldev); 2145 /* Destroy descriptor tree */ 2146 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2147 pctldev->desc->npins); 2148 /* remove gpio ranges map */ 2149 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2150 list_del(&range->node); 2151 2152 mutex_unlock(&pctldev->mutex); 2153 mutex_destroy(&pctldev->mutex); 2154 kfree(pctldev); 2155 mutex_unlock(&pinctrldev_list_mutex); 2156 } 2157 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2158 2159 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2160 { 2161 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2162 2163 pinctrl_unregister(pctldev); 2164 } 2165 2166 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2167 { 2168 struct pctldev **r = res; 2169 2170 if (WARN_ON(!r || !*r)) 2171 return 0; 2172 2173 return *r == data; 2174 } 2175 2176 /** 2177 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2178 * @dev: parent device for this pin controller 2179 * @pctldesc: descriptor for this pin controller 2180 * @driver_data: private pin controller data for this pin controller 2181 * 2182 * Returns an error pointer if pincontrol register failed. Otherwise 2183 * it returns valid pinctrl handle. 2184 * 2185 * The pinctrl device will be automatically released when the device is unbound. 2186 */ 2187 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2188 struct pinctrl_desc *pctldesc, 2189 void *driver_data) 2190 { 2191 struct pinctrl_dev **ptr, *pctldev; 2192 2193 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2194 if (!ptr) 2195 return ERR_PTR(-ENOMEM); 2196 2197 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2198 if (IS_ERR(pctldev)) { 2199 devres_free(ptr); 2200 return pctldev; 2201 } 2202 2203 *ptr = pctldev; 2204 devres_add(dev, ptr); 2205 2206 return pctldev; 2207 } 2208 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2209 2210 /** 2211 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2212 * @dev: parent device for this pin controller 2213 * @pctldesc: descriptor for this pin controller 2214 * @driver_data: private pin controller data for this pin controller 2215 * 2216 * Returns an error pointer if pincontrol register failed. Otherwise 2217 * it returns valid pinctrl handle. 2218 * 2219 * The pinctrl device will be automatically released when the device is unbound. 2220 */ 2221 int devm_pinctrl_register_and_init(struct device *dev, 2222 struct pinctrl_desc *pctldesc, 2223 void *driver_data, 2224 struct pinctrl_dev **pctldev) 2225 { 2226 struct pinctrl_dev **ptr; 2227 int error; 2228 2229 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2230 if (!ptr) 2231 return -ENOMEM; 2232 2233 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2234 if (error) { 2235 devres_free(ptr); 2236 return error; 2237 } 2238 2239 *ptr = *pctldev; 2240 devres_add(dev, ptr); 2241 2242 return 0; 2243 } 2244 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2245 2246 /** 2247 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2248 * @dev: device for which which resource was allocated 2249 * @pctldev: the pinctrl device to unregister. 2250 */ 2251 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2252 { 2253 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2254 devm_pinctrl_dev_match, pctldev)); 2255 } 2256 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2257 2258 static int __init pinctrl_init(void) 2259 { 2260 pr_info("initialized pinctrl subsystem\n"); 2261 pinctrl_init_debugfs(); 2262 return 0; 2263 } 2264 2265 /* init early since many drivers really need to initialized pinmux early */ 2266 core_initcall(pinctrl_init); 2267