1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Core driver for the pin control subsystem 4 * 5 * Copyright (C) 2011-2012 ST-Ericsson SA 6 * Written on behalf of Linaro for ST-Ericsson 7 * Based on bits of regulator core, gpio core and clk core 8 * 9 * Author: Linus Walleij <linus.walleij@linaro.org> 10 * 11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 12 */ 13 #define pr_fmt(fmt) "pinctrl core: " fmt 14 15 #include <linux/debugfs.h> 16 #include <linux/device.h> 17 #include <linux/err.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/kref.h> 22 #include <linux/list.h> 23 #include <linux/seq_file.h> 24 #include <linux/slab.h> 25 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/pinctrl/devinfo.h> 28 #include <linux/pinctrl/machine.h> 29 #include <linux/pinctrl/pinctrl.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include "../gpio/gpiolib.h" 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinconf.h" 38 #include "pinmux.h" 39 40 static bool pinctrl_dummy_state; 41 42 /* Mutex taken to protect pinctrl_list */ 43 static DEFINE_MUTEX(pinctrl_list_mutex); 44 45 /* Mutex taken to protect pinctrl_maps */ 46 DEFINE_MUTEX(pinctrl_maps_mutex); 47 48 /* Mutex taken to protect pinctrldev_list */ 49 static DEFINE_MUTEX(pinctrldev_list_mutex); 50 51 /* Global list of pin control devices (struct pinctrl_dev) */ 52 static LIST_HEAD(pinctrldev_list); 53 54 /* List of pin controller handles (struct pinctrl) */ 55 static LIST_HEAD(pinctrl_list); 56 57 /* List of pinctrl maps (struct pinctrl_maps) */ 58 LIST_HEAD(pinctrl_maps); 59 60 61 /** 62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 63 * 64 * Usually this function is called by platforms without pinctrl driver support 65 * but run with some shared drivers using pinctrl APIs. 66 * After calling this function, the pinctrl core will return successfully 67 * with creating a dummy state for the driver to keep going smoothly. 68 */ 69 void pinctrl_provide_dummies(void) 70 { 71 pinctrl_dummy_state = true; 72 } 73 74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 75 { 76 /* We're not allowed to register devices without name */ 77 return pctldev->desc->name; 78 } 79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 80 81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 82 { 83 return dev_name(pctldev->dev); 84 } 85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 86 87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 88 { 89 return pctldev->driver_data; 90 } 91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 92 93 /** 94 * get_pinctrl_dev_from_devname() - look up pin controller device 95 * @devname: the name of a device instance, as returned by dev_name() 96 * 97 * Looks up a pin control device matching a certain device name or pure device 98 * pointer, the pure device pointer will take precedence. 99 */ 100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 101 { 102 struct pinctrl_dev *pctldev; 103 104 if (!devname) 105 return NULL; 106 107 mutex_lock(&pinctrldev_list_mutex); 108 109 list_for_each_entry(pctldev, &pinctrldev_list, node) { 110 if (!strcmp(dev_name(pctldev->dev), devname)) { 111 /* Matched on device name */ 112 mutex_unlock(&pinctrldev_list_mutex); 113 return pctldev; 114 } 115 } 116 117 mutex_unlock(&pinctrldev_list_mutex); 118 119 return NULL; 120 } 121 122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 123 { 124 struct pinctrl_dev *pctldev; 125 126 mutex_lock(&pinctrldev_list_mutex); 127 128 list_for_each_entry(pctldev, &pinctrldev_list, node) 129 if (device_match_of_node(pctldev->dev, np)) { 130 mutex_unlock(&pinctrldev_list_mutex); 131 return pctldev; 132 } 133 134 mutex_unlock(&pinctrldev_list_mutex); 135 136 return NULL; 137 } 138 139 /** 140 * pin_get_from_name() - look up a pin number from a name 141 * @pctldev: the pin control device to lookup the pin on 142 * @name: the name of the pin to look up 143 */ 144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 145 { 146 unsigned i, pin; 147 148 /* The pin number can be retrived from the pin controller descriptor */ 149 for (i = 0; i < pctldev->desc->npins; i++) { 150 struct pin_desc *desc; 151 152 pin = pctldev->desc->pins[i].number; 153 desc = pin_desc_get(pctldev, pin); 154 /* Pin space may be sparse */ 155 if (desc && !strcmp(name, desc->name)) 156 return pin; 157 } 158 159 return -EINVAL; 160 } 161 162 /** 163 * pin_get_name() - look up a pin name from a pin id 164 * @pctldev: the pin control device to lookup the pin on 165 * @pin: pin number/id to look up 166 */ 167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 168 { 169 const struct pin_desc *desc; 170 171 desc = pin_desc_get(pctldev, pin); 172 if (!desc) { 173 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 174 pin); 175 return NULL; 176 } 177 178 return desc->name; 179 } 180 EXPORT_SYMBOL_GPL(pin_get_name); 181 182 /* Deletes a range of pin descriptors */ 183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 184 const struct pinctrl_pin_desc *pins, 185 unsigned num_pins) 186 { 187 int i; 188 189 for (i = 0; i < num_pins; i++) { 190 struct pin_desc *pindesc; 191 192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 193 pins[i].number); 194 if (pindesc) { 195 radix_tree_delete(&pctldev->pin_desc_tree, 196 pins[i].number); 197 if (pindesc->dynamic_name) 198 kfree(pindesc->name); 199 } 200 kfree(pindesc); 201 } 202 } 203 204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 205 const struct pinctrl_pin_desc *pin) 206 { 207 struct pin_desc *pindesc; 208 int error; 209 210 pindesc = pin_desc_get(pctldev, pin->number); 211 if (pindesc) { 212 dev_err(pctldev->dev, "pin %d already registered\n", 213 pin->number); 214 return -EINVAL; 215 } 216 217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 218 if (!pindesc) 219 return -ENOMEM; 220 221 /* Set owner */ 222 pindesc->pctldev = pctldev; 223 224 /* Copy basic pin info */ 225 if (pin->name) { 226 pindesc->name = pin->name; 227 } else { 228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 229 if (!pindesc->name) { 230 error = -ENOMEM; 231 goto failed; 232 } 233 pindesc->dynamic_name = true; 234 } 235 236 pindesc->drv_data = pin->drv_data; 237 238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 239 if (error) 240 goto failed; 241 242 pr_debug("registered pin %d (%s) on %s\n", 243 pin->number, pindesc->name, pctldev->desc->name); 244 return 0; 245 246 failed: 247 kfree(pindesc); 248 return error; 249 } 250 251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 252 const struct pinctrl_pin_desc *pins, 253 unsigned num_descs) 254 { 255 unsigned i; 256 int ret = 0; 257 258 for (i = 0; i < num_descs; i++) { 259 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 260 if (ret) 261 return ret; 262 } 263 264 return 0; 265 } 266 267 /** 268 * gpio_to_pin() - GPIO range GPIO number to pin number translation 269 * @range: GPIO range used for the translation 270 * @gpio: gpio pin to translate to a pin number 271 * 272 * Finds the pin number for a given GPIO using the specified GPIO range 273 * as a base for translation. The distinction between linear GPIO ranges 274 * and pin list based GPIO ranges is managed correctly by this function. 275 * 276 * This function assumes the gpio is part of the specified GPIO range, use 277 * only after making sure this is the case (e.g. by calling it on the 278 * result of successful pinctrl_get_device_gpio_range calls)! 279 */ 280 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 281 unsigned int gpio) 282 { 283 unsigned int offset = gpio - range->base; 284 if (range->pins) 285 return range->pins[offset]; 286 else 287 return range->pin_base + offset; 288 } 289 290 /** 291 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 292 * @pctldev: pin controller device to check 293 * @gpio: gpio pin to check taken from the global GPIO pin space 294 * 295 * Tries to match a GPIO pin number to the ranges handled by a certain pin 296 * controller, return the range or NULL 297 */ 298 static struct pinctrl_gpio_range * 299 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 300 { 301 struct pinctrl_gpio_range *range; 302 303 mutex_lock(&pctldev->mutex); 304 /* Loop over the ranges */ 305 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 306 /* Check if we're in the valid range */ 307 if (gpio >= range->base && 308 gpio < range->base + range->npins) { 309 mutex_unlock(&pctldev->mutex); 310 return range; 311 } 312 } 313 mutex_unlock(&pctldev->mutex); 314 return NULL; 315 } 316 317 /** 318 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 319 * the same GPIO chip are in range 320 * @gpio: gpio pin to check taken from the global GPIO pin space 321 * 322 * This function is complement of pinctrl_match_gpio_range(). If the return 323 * value of pinctrl_match_gpio_range() is NULL, this function could be used 324 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 325 * of the same GPIO chip don't have back-end pinctrl interface. 326 * If the return value is true, it means that pinctrl device is ready & the 327 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 328 * is false, it means that pinctrl device may not be ready. 329 */ 330 #ifdef CONFIG_GPIOLIB 331 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 332 { 333 struct pinctrl_dev *pctldev; 334 struct pinctrl_gpio_range *range = NULL; 335 /* 336 * FIXME: "gpio" here is a number in the global GPIO numberspace. 337 * get rid of this from the ranges eventually and get the GPIO 338 * descriptor from the gpio_chip. 339 */ 340 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio)); 341 342 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 343 return false; 344 345 mutex_lock(&pinctrldev_list_mutex); 346 347 /* Loop over the pin controllers */ 348 list_for_each_entry(pctldev, &pinctrldev_list, node) { 349 /* Loop over the ranges */ 350 mutex_lock(&pctldev->mutex); 351 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 352 /* Check if any gpio range overlapped with gpio chip */ 353 if (range->base + range->npins - 1 < chip->base || 354 range->base > chip->base + chip->ngpio - 1) 355 continue; 356 mutex_unlock(&pctldev->mutex); 357 mutex_unlock(&pinctrldev_list_mutex); 358 return true; 359 } 360 mutex_unlock(&pctldev->mutex); 361 } 362 363 mutex_unlock(&pinctrldev_list_mutex); 364 365 return false; 366 } 367 #else 368 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 369 #endif 370 371 /** 372 * pinctrl_get_device_gpio_range() - find device for GPIO range 373 * @gpio: the pin to locate the pin controller for 374 * @outdev: the pin control device if found 375 * @outrange: the GPIO range if found 376 * 377 * Find the pin controller handling a certain GPIO pin from the pinspace of 378 * the GPIO subsystem, return the device and the matching GPIO range. Returns 379 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 380 * may still have not been registered. 381 */ 382 static int pinctrl_get_device_gpio_range(unsigned gpio, 383 struct pinctrl_dev **outdev, 384 struct pinctrl_gpio_range **outrange) 385 { 386 struct pinctrl_dev *pctldev; 387 388 mutex_lock(&pinctrldev_list_mutex); 389 390 /* Loop over the pin controllers */ 391 list_for_each_entry(pctldev, &pinctrldev_list, node) { 392 struct pinctrl_gpio_range *range; 393 394 range = pinctrl_match_gpio_range(pctldev, gpio); 395 if (range) { 396 *outdev = pctldev; 397 *outrange = range; 398 mutex_unlock(&pinctrldev_list_mutex); 399 return 0; 400 } 401 } 402 403 mutex_unlock(&pinctrldev_list_mutex); 404 405 return -EPROBE_DEFER; 406 } 407 408 /** 409 * pinctrl_add_gpio_range() - register a GPIO range for a controller 410 * @pctldev: pin controller device to add the range to 411 * @range: the GPIO range to add 412 * 413 * This adds a range of GPIOs to be handled by a certain pin controller. Call 414 * this to register handled ranges after registering your pin controller. 415 */ 416 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 417 struct pinctrl_gpio_range *range) 418 { 419 mutex_lock(&pctldev->mutex); 420 list_add_tail(&range->node, &pctldev->gpio_ranges); 421 mutex_unlock(&pctldev->mutex); 422 } 423 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 424 425 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 426 struct pinctrl_gpio_range *ranges, 427 unsigned nranges) 428 { 429 int i; 430 431 for (i = 0; i < nranges; i++) 432 pinctrl_add_gpio_range(pctldev, &ranges[i]); 433 } 434 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 435 436 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 437 struct pinctrl_gpio_range *range) 438 { 439 struct pinctrl_dev *pctldev; 440 441 pctldev = get_pinctrl_dev_from_devname(devname); 442 443 /* 444 * If we can't find this device, let's assume that is because 445 * it has not probed yet, so the driver trying to register this 446 * range need to defer probing. 447 */ 448 if (!pctldev) { 449 return ERR_PTR(-EPROBE_DEFER); 450 } 451 pinctrl_add_gpio_range(pctldev, range); 452 453 return pctldev; 454 } 455 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 456 457 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 458 const unsigned **pins, unsigned *num_pins) 459 { 460 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 461 int gs; 462 463 if (!pctlops->get_group_pins) 464 return -EINVAL; 465 466 gs = pinctrl_get_group_selector(pctldev, pin_group); 467 if (gs < 0) 468 return gs; 469 470 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 471 } 472 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 473 474 struct pinctrl_gpio_range * 475 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 476 unsigned int pin) 477 { 478 struct pinctrl_gpio_range *range; 479 480 /* Loop over the ranges */ 481 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 482 /* Check if we're in the valid range */ 483 if (range->pins) { 484 int a; 485 for (a = 0; a < range->npins; a++) { 486 if (range->pins[a] == pin) 487 return range; 488 } 489 } else if (pin >= range->pin_base && 490 pin < range->pin_base + range->npins) 491 return range; 492 } 493 494 return NULL; 495 } 496 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 497 498 /** 499 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 500 * @pctldev: the pin controller device to look in 501 * @pin: a controller-local number to find the range for 502 */ 503 struct pinctrl_gpio_range * 504 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 505 unsigned int pin) 506 { 507 struct pinctrl_gpio_range *range; 508 509 mutex_lock(&pctldev->mutex); 510 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 511 mutex_unlock(&pctldev->mutex); 512 513 return range; 514 } 515 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 516 517 /** 518 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller 519 * @pctldev: pin controller device to remove the range from 520 * @range: the GPIO range to remove 521 */ 522 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 523 struct pinctrl_gpio_range *range) 524 { 525 mutex_lock(&pctldev->mutex); 526 list_del(&range->node); 527 mutex_unlock(&pctldev->mutex); 528 } 529 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 530 531 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 532 533 /** 534 * pinctrl_generic_get_group_count() - returns the number of pin groups 535 * @pctldev: pin controller device 536 */ 537 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev) 538 { 539 return pctldev->num_groups; 540 } 541 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count); 542 543 /** 544 * pinctrl_generic_get_group_name() - returns the name of a pin group 545 * @pctldev: pin controller device 546 * @selector: group number 547 */ 548 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev, 549 unsigned int selector) 550 { 551 struct group_desc *group; 552 553 group = radix_tree_lookup(&pctldev->pin_group_tree, 554 selector); 555 if (!group) 556 return NULL; 557 558 return group->name; 559 } 560 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name); 561 562 /** 563 * pinctrl_generic_get_group_pins() - gets the pin group pins 564 * @pctldev: pin controller device 565 * @selector: group number 566 * @pins: pins in the group 567 * @num_pins: number of pins in the group 568 */ 569 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev, 570 unsigned int selector, 571 const unsigned int **pins, 572 unsigned int *num_pins) 573 { 574 struct group_desc *group; 575 576 group = radix_tree_lookup(&pctldev->pin_group_tree, 577 selector); 578 if (!group) { 579 dev_err(pctldev->dev, "%s could not find pingroup%i\n", 580 __func__, selector); 581 return -EINVAL; 582 } 583 584 *pins = group->pins; 585 *num_pins = group->num_pins; 586 587 return 0; 588 } 589 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins); 590 591 /** 592 * pinctrl_generic_get_group() - returns a pin group based on the number 593 * @pctldev: pin controller device 594 * @selector: group number 595 */ 596 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev, 597 unsigned int selector) 598 { 599 struct group_desc *group; 600 601 group = radix_tree_lookup(&pctldev->pin_group_tree, 602 selector); 603 if (!group) 604 return NULL; 605 606 return group; 607 } 608 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group); 609 610 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev, 611 const char *function) 612 { 613 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 614 int ngroups = ops->get_groups_count(pctldev); 615 int selector = 0; 616 617 /* See if this pctldev has this group */ 618 while (selector < ngroups) { 619 const char *gname = ops->get_group_name(pctldev, selector); 620 621 if (gname && !strcmp(function, gname)) 622 return selector; 623 624 selector++; 625 } 626 627 return -EINVAL; 628 } 629 630 /** 631 * pinctrl_generic_add_group() - adds a new pin group 632 * @pctldev: pin controller device 633 * @name: name of the pin group 634 * @pins: pins in the pin group 635 * @num_pins: number of pins in the pin group 636 * @data: pin controller driver specific data 637 * 638 * Note that the caller must take care of locking. 639 */ 640 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name, 641 int *pins, int num_pins, void *data) 642 { 643 struct group_desc *group; 644 int selector, error; 645 646 if (!name) 647 return -EINVAL; 648 649 selector = pinctrl_generic_group_name_to_selector(pctldev, name); 650 if (selector >= 0) 651 return selector; 652 653 selector = pctldev->num_groups; 654 655 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL); 656 if (!group) 657 return -ENOMEM; 658 659 group->name = name; 660 group->pins = pins; 661 group->num_pins = num_pins; 662 group->data = data; 663 664 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group); 665 if (error) 666 return error; 667 668 pctldev->num_groups++; 669 670 return selector; 671 } 672 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group); 673 674 /** 675 * pinctrl_generic_remove_group() - removes a numbered pin group 676 * @pctldev: pin controller device 677 * @selector: group number 678 * 679 * Note that the caller must take care of locking. 680 */ 681 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev, 682 unsigned int selector) 683 { 684 struct group_desc *group; 685 686 group = radix_tree_lookup(&pctldev->pin_group_tree, 687 selector); 688 if (!group) 689 return -ENOENT; 690 691 radix_tree_delete(&pctldev->pin_group_tree, selector); 692 devm_kfree(pctldev->dev, group); 693 694 pctldev->num_groups--; 695 696 return 0; 697 } 698 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group); 699 700 /** 701 * pinctrl_generic_free_groups() - removes all pin groups 702 * @pctldev: pin controller device 703 * 704 * Note that the caller must take care of locking. The pinctrl groups 705 * are allocated with devm_kzalloc() so no need to free them here. 706 */ 707 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 708 { 709 struct radix_tree_iter iter; 710 void __rcu **slot; 711 712 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0) 713 radix_tree_delete(&pctldev->pin_group_tree, iter.index); 714 715 pctldev->num_groups = 0; 716 } 717 718 #else 719 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev) 720 { 721 } 722 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */ 723 724 /** 725 * pinctrl_get_group_selector() - returns the group selector for a group 726 * @pctldev: the pin controller handling the group 727 * @pin_group: the pin group to look up 728 */ 729 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 730 const char *pin_group) 731 { 732 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 733 unsigned ngroups = pctlops->get_groups_count(pctldev); 734 unsigned group_selector = 0; 735 736 while (group_selector < ngroups) { 737 const char *gname = pctlops->get_group_name(pctldev, 738 group_selector); 739 if (gname && !strcmp(gname, pin_group)) { 740 dev_dbg(pctldev->dev, 741 "found group selector %u for %s\n", 742 group_selector, 743 pin_group); 744 return group_selector; 745 } 746 747 group_selector++; 748 } 749 750 dev_err(pctldev->dev, "does not have pin group %s\n", 751 pin_group); 752 753 return -EINVAL; 754 } 755 756 bool pinctrl_gpio_can_use_line(unsigned gpio) 757 { 758 struct pinctrl_dev *pctldev; 759 struct pinctrl_gpio_range *range; 760 bool result; 761 int pin; 762 763 /* 764 * Try to obtain GPIO range, if it fails 765 * we're probably dealing with GPIO driver 766 * without a backing pin controller - bail out. 767 */ 768 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range)) 769 return true; 770 771 mutex_lock(&pctldev->mutex); 772 773 /* Convert to the pin controllers number space */ 774 pin = gpio_to_pin(range, gpio); 775 776 result = pinmux_can_be_used_for_gpio(pctldev, pin); 777 778 mutex_unlock(&pctldev->mutex); 779 780 return result; 781 } 782 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line); 783 784 /** 785 * pinctrl_gpio_request() - request a single pin to be used as GPIO 786 * @gpio: the GPIO pin number from the GPIO subsystem number space 787 * 788 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 789 * as part of their gpio_request() semantics, platforms and individual drivers 790 * shall *NOT* request GPIO pins to be muxed in. 791 */ 792 int pinctrl_gpio_request(unsigned gpio) 793 { 794 struct pinctrl_dev *pctldev; 795 struct pinctrl_gpio_range *range; 796 int ret; 797 int pin; 798 799 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 800 if (ret) { 801 if (pinctrl_ready_for_gpio_range(gpio)) 802 ret = 0; 803 return ret; 804 } 805 806 mutex_lock(&pctldev->mutex); 807 808 /* Convert to the pin controllers number space */ 809 pin = gpio_to_pin(range, gpio); 810 811 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 812 813 mutex_unlock(&pctldev->mutex); 814 815 return ret; 816 } 817 EXPORT_SYMBOL_GPL(pinctrl_gpio_request); 818 819 /** 820 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO 821 * @gpio: the GPIO pin number from the GPIO subsystem number space 822 * 823 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 824 * as part of their gpio_free() semantics, platforms and individual drivers 825 * shall *NOT* request GPIO pins to be muxed out. 826 */ 827 void pinctrl_gpio_free(unsigned gpio) 828 { 829 struct pinctrl_dev *pctldev; 830 struct pinctrl_gpio_range *range; 831 int ret; 832 int pin; 833 834 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 835 if (ret) { 836 return; 837 } 838 mutex_lock(&pctldev->mutex); 839 840 /* Convert to the pin controllers number space */ 841 pin = gpio_to_pin(range, gpio); 842 843 pinmux_free_gpio(pctldev, pin, range); 844 845 mutex_unlock(&pctldev->mutex); 846 } 847 EXPORT_SYMBOL_GPL(pinctrl_gpio_free); 848 849 static int pinctrl_gpio_direction(unsigned gpio, bool input) 850 { 851 struct pinctrl_dev *pctldev; 852 struct pinctrl_gpio_range *range; 853 int ret; 854 int pin; 855 856 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 857 if (ret) { 858 return ret; 859 } 860 861 mutex_lock(&pctldev->mutex); 862 863 /* Convert to the pin controllers number space */ 864 pin = gpio_to_pin(range, gpio); 865 ret = pinmux_gpio_direction(pctldev, range, pin, input); 866 867 mutex_unlock(&pctldev->mutex); 868 869 return ret; 870 } 871 872 /** 873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 874 * @gpio: the GPIO pin number from the GPIO subsystem number space 875 * 876 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 877 * as part of their gpio_direction_input() semantics, platforms and individual 878 * drivers shall *NOT* touch pin control GPIO calls. 879 */ 880 int pinctrl_gpio_direction_input(unsigned gpio) 881 { 882 return pinctrl_gpio_direction(gpio, true); 883 } 884 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 885 886 /** 887 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 888 * @gpio: the GPIO pin number from the GPIO subsystem number space 889 * 890 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 891 * as part of their gpio_direction_output() semantics, platforms and individual 892 * drivers shall *NOT* touch pin control GPIO calls. 893 */ 894 int pinctrl_gpio_direction_output(unsigned gpio) 895 { 896 return pinctrl_gpio_direction(gpio, false); 897 } 898 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 899 900 /** 901 * pinctrl_gpio_set_config() - Apply config to given GPIO pin 902 * @gpio: the GPIO pin number from the GPIO subsystem number space 903 * @config: the configuration to apply to the GPIO 904 * 905 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if 906 * they need to call the underlying pin controller to change GPIO config 907 * (for example set debounce time). 908 */ 909 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config) 910 { 911 unsigned long configs[] = { config }; 912 struct pinctrl_gpio_range *range; 913 struct pinctrl_dev *pctldev; 914 int ret, pin; 915 916 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 917 if (ret) 918 return ret; 919 920 mutex_lock(&pctldev->mutex); 921 pin = gpio_to_pin(range, gpio); 922 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs)); 923 mutex_unlock(&pctldev->mutex); 924 925 return ret; 926 } 927 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config); 928 929 static struct pinctrl_state *find_state(struct pinctrl *p, 930 const char *name) 931 { 932 struct pinctrl_state *state; 933 934 list_for_each_entry(state, &p->states, node) 935 if (!strcmp(state->name, name)) 936 return state; 937 938 return NULL; 939 } 940 941 static struct pinctrl_state *create_state(struct pinctrl *p, 942 const char *name) 943 { 944 struct pinctrl_state *state; 945 946 state = kzalloc(sizeof(*state), GFP_KERNEL); 947 if (!state) 948 return ERR_PTR(-ENOMEM); 949 950 state->name = name; 951 INIT_LIST_HEAD(&state->settings); 952 953 list_add_tail(&state->node, &p->states); 954 955 return state; 956 } 957 958 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev, 959 const struct pinctrl_map *map) 960 { 961 struct pinctrl_state *state; 962 struct pinctrl_setting *setting; 963 int ret; 964 965 state = find_state(p, map->name); 966 if (!state) 967 state = create_state(p, map->name); 968 if (IS_ERR(state)) 969 return PTR_ERR(state); 970 971 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 972 return 0; 973 974 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 975 if (!setting) 976 return -ENOMEM; 977 978 setting->type = map->type; 979 980 if (pctldev) 981 setting->pctldev = pctldev; 982 else 983 setting->pctldev = 984 get_pinctrl_dev_from_devname(map->ctrl_dev_name); 985 if (!setting->pctldev) { 986 kfree(setting); 987 /* Do not defer probing of hogs (circular loop) */ 988 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 989 return -ENODEV; 990 /* 991 * OK let us guess that the driver is not there yet, and 992 * let's defer obtaining this pinctrl handle to later... 993 */ 994 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 995 map->ctrl_dev_name); 996 return -EPROBE_DEFER; 997 } 998 999 setting->dev_name = map->dev_name; 1000 1001 switch (map->type) { 1002 case PIN_MAP_TYPE_MUX_GROUP: 1003 ret = pinmux_map_to_setting(map, setting); 1004 break; 1005 case PIN_MAP_TYPE_CONFIGS_PIN: 1006 case PIN_MAP_TYPE_CONFIGS_GROUP: 1007 ret = pinconf_map_to_setting(map, setting); 1008 break; 1009 default: 1010 ret = -EINVAL; 1011 break; 1012 } 1013 if (ret < 0) { 1014 kfree(setting); 1015 return ret; 1016 } 1017 1018 list_add_tail(&setting->node, &state->settings); 1019 1020 return 0; 1021 } 1022 1023 static struct pinctrl *find_pinctrl(struct device *dev) 1024 { 1025 struct pinctrl *entry, *p = NULL; 1026 1027 mutex_lock(&pinctrl_list_mutex); 1028 1029 list_for_each_entry(entry, &pinctrl_list, node) { 1030 if (entry->dev == dev) { 1031 p = entry; 1032 kref_get(&p->users); 1033 break; 1034 } 1035 } 1036 1037 mutex_unlock(&pinctrl_list_mutex); 1038 return p; 1039 } 1040 1041 static void pinctrl_free(struct pinctrl *p, bool inlist); 1042 1043 static struct pinctrl *create_pinctrl(struct device *dev, 1044 struct pinctrl_dev *pctldev) 1045 { 1046 struct pinctrl *p; 1047 const char *devname; 1048 struct pinctrl_maps *maps_node; 1049 const struct pinctrl_map *map; 1050 int ret; 1051 1052 /* 1053 * create the state cookie holder struct pinctrl for each 1054 * mapping, this is what consumers will get when requesting 1055 * a pin control handle with pinctrl_get() 1056 */ 1057 p = kzalloc(sizeof(*p), GFP_KERNEL); 1058 if (!p) 1059 return ERR_PTR(-ENOMEM); 1060 p->dev = dev; 1061 INIT_LIST_HEAD(&p->states); 1062 INIT_LIST_HEAD(&p->dt_maps); 1063 1064 ret = pinctrl_dt_to_map(p, pctldev); 1065 if (ret < 0) { 1066 kfree(p); 1067 return ERR_PTR(ret); 1068 } 1069 1070 devname = dev_name(dev); 1071 1072 mutex_lock(&pinctrl_maps_mutex); 1073 /* Iterate over the pin control maps to locate the right ones */ 1074 for_each_pin_map(maps_node, map) { 1075 /* Map must be for this device */ 1076 if (strcmp(map->dev_name, devname)) 1077 continue; 1078 /* 1079 * If pctldev is not null, we are claiming hog for it, 1080 * that means, setting that is served by pctldev by itself. 1081 * 1082 * Thus we must skip map that is for this device but is served 1083 * by other device. 1084 */ 1085 if (pctldev && 1086 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name)) 1087 continue; 1088 1089 ret = add_setting(p, pctldev, map); 1090 /* 1091 * At this point the adding of a setting may: 1092 * 1093 * - Defer, if the pinctrl device is not yet available 1094 * - Fail, if the pinctrl device is not yet available, 1095 * AND the setting is a hog. We cannot defer that, since 1096 * the hog will kick in immediately after the device 1097 * is registered. 1098 * 1099 * If the error returned was not -EPROBE_DEFER then we 1100 * accumulate the errors to see if we end up with 1101 * an -EPROBE_DEFER later, as that is the worst case. 1102 */ 1103 if (ret == -EPROBE_DEFER) { 1104 pinctrl_free(p, false); 1105 mutex_unlock(&pinctrl_maps_mutex); 1106 return ERR_PTR(ret); 1107 } 1108 } 1109 mutex_unlock(&pinctrl_maps_mutex); 1110 1111 if (ret < 0) { 1112 /* If some other error than deferral occurred, return here */ 1113 pinctrl_free(p, false); 1114 return ERR_PTR(ret); 1115 } 1116 1117 kref_init(&p->users); 1118 1119 /* Add the pinctrl handle to the global list */ 1120 mutex_lock(&pinctrl_list_mutex); 1121 list_add_tail(&p->node, &pinctrl_list); 1122 mutex_unlock(&pinctrl_list_mutex); 1123 1124 return p; 1125 } 1126 1127 /** 1128 * pinctrl_get() - retrieves the pinctrl handle for a device 1129 * @dev: the device to obtain the handle for 1130 */ 1131 struct pinctrl *pinctrl_get(struct device *dev) 1132 { 1133 struct pinctrl *p; 1134 1135 if (WARN_ON(!dev)) 1136 return ERR_PTR(-EINVAL); 1137 1138 /* 1139 * See if somebody else (such as the device core) has already 1140 * obtained a handle to the pinctrl for this device. In that case, 1141 * return another pointer to it. 1142 */ 1143 p = find_pinctrl(dev); 1144 if (p) { 1145 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 1146 return p; 1147 } 1148 1149 return create_pinctrl(dev, NULL); 1150 } 1151 EXPORT_SYMBOL_GPL(pinctrl_get); 1152 1153 static void pinctrl_free_setting(bool disable_setting, 1154 struct pinctrl_setting *setting) 1155 { 1156 switch (setting->type) { 1157 case PIN_MAP_TYPE_MUX_GROUP: 1158 if (disable_setting) 1159 pinmux_disable_setting(setting); 1160 pinmux_free_setting(setting); 1161 break; 1162 case PIN_MAP_TYPE_CONFIGS_PIN: 1163 case PIN_MAP_TYPE_CONFIGS_GROUP: 1164 pinconf_free_setting(setting); 1165 break; 1166 default: 1167 break; 1168 } 1169 } 1170 1171 static void pinctrl_free(struct pinctrl *p, bool inlist) 1172 { 1173 struct pinctrl_state *state, *n1; 1174 struct pinctrl_setting *setting, *n2; 1175 1176 mutex_lock(&pinctrl_list_mutex); 1177 list_for_each_entry_safe(state, n1, &p->states, node) { 1178 list_for_each_entry_safe(setting, n2, &state->settings, node) { 1179 pinctrl_free_setting(state == p->state, setting); 1180 list_del(&setting->node); 1181 kfree(setting); 1182 } 1183 list_del(&state->node); 1184 kfree(state); 1185 } 1186 1187 pinctrl_dt_free_maps(p); 1188 1189 if (inlist) 1190 list_del(&p->node); 1191 kfree(p); 1192 mutex_unlock(&pinctrl_list_mutex); 1193 } 1194 1195 /** 1196 * pinctrl_release() - release the pinctrl handle 1197 * @kref: the kref in the pinctrl being released 1198 */ 1199 static void pinctrl_release(struct kref *kref) 1200 { 1201 struct pinctrl *p = container_of(kref, struct pinctrl, users); 1202 1203 pinctrl_free(p, true); 1204 } 1205 1206 /** 1207 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 1208 * @p: the pinctrl handle to release 1209 */ 1210 void pinctrl_put(struct pinctrl *p) 1211 { 1212 kref_put(&p->users, pinctrl_release); 1213 } 1214 EXPORT_SYMBOL_GPL(pinctrl_put); 1215 1216 /** 1217 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 1218 * @p: the pinctrl handle to retrieve the state from 1219 * @name: the state name to retrieve 1220 */ 1221 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 1222 const char *name) 1223 { 1224 struct pinctrl_state *state; 1225 1226 state = find_state(p, name); 1227 if (!state) { 1228 if (pinctrl_dummy_state) { 1229 /* create dummy state */ 1230 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 1231 name); 1232 state = create_state(p, name); 1233 } else 1234 state = ERR_PTR(-ENODEV); 1235 } 1236 1237 return state; 1238 } 1239 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 1240 1241 static void pinctrl_link_add(struct pinctrl_dev *pctldev, 1242 struct device *consumer) 1243 { 1244 if (pctldev->desc->link_consumers) 1245 device_link_add(consumer, pctldev->dev, 1246 DL_FLAG_PM_RUNTIME | 1247 DL_FLAG_AUTOREMOVE_CONSUMER); 1248 } 1249 1250 /** 1251 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW 1252 * @p: the pinctrl handle for the device that requests configuration 1253 * @state: the state handle to select/activate/program 1254 */ 1255 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state) 1256 { 1257 struct pinctrl_setting *setting, *setting2; 1258 struct pinctrl_state *old_state = p->state; 1259 int ret; 1260 1261 if (p->state) { 1262 /* 1263 * For each pinmux setting in the old state, forget SW's record 1264 * of mux owner for that pingroup. Any pingroups which are 1265 * still owned by the new state will be re-acquired by the call 1266 * to pinmux_enable_setting() in the loop below. 1267 */ 1268 list_for_each_entry(setting, &p->state->settings, node) { 1269 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1270 continue; 1271 pinmux_disable_setting(setting); 1272 } 1273 } 1274 1275 p->state = NULL; 1276 1277 /* Apply all the settings for the new state - pinmux first */ 1278 list_for_each_entry(setting, &state->settings, node) { 1279 switch (setting->type) { 1280 case PIN_MAP_TYPE_MUX_GROUP: 1281 ret = pinmux_enable_setting(setting); 1282 break; 1283 case PIN_MAP_TYPE_CONFIGS_PIN: 1284 case PIN_MAP_TYPE_CONFIGS_GROUP: 1285 ret = 0; 1286 break; 1287 default: 1288 ret = -EINVAL; 1289 break; 1290 } 1291 1292 if (ret < 0) 1293 goto unapply_new_state; 1294 1295 /* Do not link hogs (circular dependency) */ 1296 if (p != setting->pctldev->p) 1297 pinctrl_link_add(setting->pctldev, p->dev); 1298 } 1299 1300 /* Apply all the settings for the new state - pinconf after */ 1301 list_for_each_entry(setting, &state->settings, node) { 1302 switch (setting->type) { 1303 case PIN_MAP_TYPE_MUX_GROUP: 1304 ret = 0; 1305 break; 1306 case PIN_MAP_TYPE_CONFIGS_PIN: 1307 case PIN_MAP_TYPE_CONFIGS_GROUP: 1308 ret = pinconf_apply_setting(setting); 1309 break; 1310 default: 1311 ret = -EINVAL; 1312 break; 1313 } 1314 1315 if (ret < 0) { 1316 goto unapply_new_state; 1317 } 1318 1319 /* Do not link hogs (circular dependency) */ 1320 if (p != setting->pctldev->p) 1321 pinctrl_link_add(setting->pctldev, p->dev); 1322 } 1323 1324 p->state = state; 1325 1326 return 0; 1327 1328 unapply_new_state: 1329 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1330 1331 list_for_each_entry(setting2, &state->settings, node) { 1332 if (&setting2->node == &setting->node) 1333 break; 1334 /* 1335 * All we can do here is pinmux_disable_setting. 1336 * That means that some pins are muxed differently now 1337 * than they were before applying the setting (We can't 1338 * "unmux a pin"!), but it's not a big deal since the pins 1339 * are free to be muxed by another apply_setting. 1340 */ 1341 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1342 pinmux_disable_setting(setting2); 1343 } 1344 1345 /* There's no infinite recursive loop here because p->state is NULL */ 1346 if (old_state) 1347 pinctrl_select_state(p, old_state); 1348 1349 return ret; 1350 } 1351 1352 /** 1353 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 1354 * @p: the pinctrl handle for the device that requests configuration 1355 * @state: the state handle to select/activate/program 1356 */ 1357 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1358 { 1359 if (p->state == state) 1360 return 0; 1361 1362 return pinctrl_commit_state(p, state); 1363 } 1364 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1365 1366 static void devm_pinctrl_release(struct device *dev, void *res) 1367 { 1368 pinctrl_put(*(struct pinctrl **)res); 1369 } 1370 1371 /** 1372 * devm_pinctrl_get() - Resource managed pinctrl_get() 1373 * @dev: the device to obtain the handle for 1374 * 1375 * If there is a need to explicitly destroy the returned struct pinctrl, 1376 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1377 */ 1378 struct pinctrl *devm_pinctrl_get(struct device *dev) 1379 { 1380 struct pinctrl **ptr, *p; 1381 1382 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1383 if (!ptr) 1384 return ERR_PTR(-ENOMEM); 1385 1386 p = pinctrl_get(dev); 1387 if (!IS_ERR(p)) { 1388 *ptr = p; 1389 devres_add(dev, ptr); 1390 } else { 1391 devres_free(ptr); 1392 } 1393 1394 return p; 1395 } 1396 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1397 1398 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1399 { 1400 struct pinctrl **p = res; 1401 1402 return *p == data; 1403 } 1404 1405 /** 1406 * devm_pinctrl_put() - Resource managed pinctrl_put() 1407 * @p: the pinctrl handle to release 1408 * 1409 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1410 * this function will not need to be called and the resource management 1411 * code will ensure that the resource is freed. 1412 */ 1413 void devm_pinctrl_put(struct pinctrl *p) 1414 { 1415 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1416 devm_pinctrl_match, p)); 1417 } 1418 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1419 1420 /** 1421 * pinctrl_register_mappings() - register a set of pin controller mappings 1422 * @maps: the pincontrol mappings table to register. Note the pinctrl-core 1423 * keeps a reference to the passed in maps, so they should _not_ be 1424 * marked with __initdata. 1425 * @num_maps: the number of maps in the mapping table 1426 */ 1427 int pinctrl_register_mappings(const struct pinctrl_map *maps, 1428 unsigned num_maps) 1429 { 1430 int i, ret; 1431 struct pinctrl_maps *maps_node; 1432 1433 pr_debug("add %u pinctrl maps\n", num_maps); 1434 1435 /* First sanity check the new mapping */ 1436 for (i = 0; i < num_maps; i++) { 1437 if (!maps[i].dev_name) { 1438 pr_err("failed to register map %s (%d): no device given\n", 1439 maps[i].name, i); 1440 return -EINVAL; 1441 } 1442 1443 if (!maps[i].name) { 1444 pr_err("failed to register map %d: no map name given\n", 1445 i); 1446 return -EINVAL; 1447 } 1448 1449 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1450 !maps[i].ctrl_dev_name) { 1451 pr_err("failed to register map %s (%d): no pin control device given\n", 1452 maps[i].name, i); 1453 return -EINVAL; 1454 } 1455 1456 switch (maps[i].type) { 1457 case PIN_MAP_TYPE_DUMMY_STATE: 1458 break; 1459 case PIN_MAP_TYPE_MUX_GROUP: 1460 ret = pinmux_validate_map(&maps[i], i); 1461 if (ret < 0) 1462 return ret; 1463 break; 1464 case PIN_MAP_TYPE_CONFIGS_PIN: 1465 case PIN_MAP_TYPE_CONFIGS_GROUP: 1466 ret = pinconf_validate_map(&maps[i], i); 1467 if (ret < 0) 1468 return ret; 1469 break; 1470 default: 1471 pr_err("failed to register map %s (%d): invalid type given\n", 1472 maps[i].name, i); 1473 return -EINVAL; 1474 } 1475 } 1476 1477 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1478 if (!maps_node) 1479 return -ENOMEM; 1480 1481 maps_node->maps = maps; 1482 maps_node->num_maps = num_maps; 1483 1484 mutex_lock(&pinctrl_maps_mutex); 1485 list_add_tail(&maps_node->node, &pinctrl_maps); 1486 mutex_unlock(&pinctrl_maps_mutex); 1487 1488 return 0; 1489 } 1490 EXPORT_SYMBOL_GPL(pinctrl_register_mappings); 1491 1492 /** 1493 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings 1494 * @map: the pincontrol mappings table passed to pinctrl_register_mappings() 1495 * when registering the mappings. 1496 */ 1497 void pinctrl_unregister_mappings(const struct pinctrl_map *map) 1498 { 1499 struct pinctrl_maps *maps_node; 1500 1501 mutex_lock(&pinctrl_maps_mutex); 1502 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1503 if (maps_node->maps == map) { 1504 list_del(&maps_node->node); 1505 kfree(maps_node); 1506 mutex_unlock(&pinctrl_maps_mutex); 1507 return; 1508 } 1509 } 1510 mutex_unlock(&pinctrl_maps_mutex); 1511 } 1512 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings); 1513 1514 /** 1515 * pinctrl_force_sleep() - turn a given controller device into sleep state 1516 * @pctldev: pin controller device 1517 */ 1518 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1519 { 1520 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1521 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep); 1522 return 0; 1523 } 1524 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1525 1526 /** 1527 * pinctrl_force_default() - turn a given controller device into default state 1528 * @pctldev: pin controller device 1529 */ 1530 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1531 { 1532 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1533 return pinctrl_commit_state(pctldev->p, pctldev->hog_default); 1534 return 0; 1535 } 1536 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1537 1538 /** 1539 * pinctrl_init_done() - tell pinctrl probe is done 1540 * 1541 * We'll use this time to switch the pins from "init" to "default" unless the 1542 * driver selected some other state. 1543 * 1544 * @dev: device to that's done probing 1545 */ 1546 int pinctrl_init_done(struct device *dev) 1547 { 1548 struct dev_pin_info *pins = dev->pins; 1549 int ret; 1550 1551 if (!pins) 1552 return 0; 1553 1554 if (IS_ERR(pins->init_state)) 1555 return 0; /* No such state */ 1556 1557 if (pins->p->state != pins->init_state) 1558 return 0; /* Not at init anyway */ 1559 1560 if (IS_ERR(pins->default_state)) 1561 return 0; /* No default state */ 1562 1563 ret = pinctrl_select_state(pins->p, pins->default_state); 1564 if (ret) 1565 dev_err(dev, "failed to activate default pinctrl state\n"); 1566 1567 return ret; 1568 } 1569 1570 static int pinctrl_select_bound_state(struct device *dev, 1571 struct pinctrl_state *state) 1572 { 1573 struct dev_pin_info *pins = dev->pins; 1574 int ret; 1575 1576 if (IS_ERR(state)) 1577 return 0; /* No such state */ 1578 ret = pinctrl_select_state(pins->p, state); 1579 if (ret) 1580 dev_err(dev, "failed to activate pinctrl state %s\n", 1581 state->name); 1582 return ret; 1583 } 1584 1585 /** 1586 * pinctrl_select_default_state() - select default pinctrl state 1587 * @dev: device to select default state for 1588 */ 1589 int pinctrl_select_default_state(struct device *dev) 1590 { 1591 if (!dev->pins) 1592 return 0; 1593 1594 return pinctrl_select_bound_state(dev, dev->pins->default_state); 1595 } 1596 EXPORT_SYMBOL_GPL(pinctrl_select_default_state); 1597 1598 #ifdef CONFIG_PM 1599 1600 /** 1601 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1602 * @dev: device to select default state for 1603 */ 1604 int pinctrl_pm_select_default_state(struct device *dev) 1605 { 1606 return pinctrl_select_default_state(dev); 1607 } 1608 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1609 1610 /** 1611 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1612 * @dev: device to select sleep state for 1613 */ 1614 int pinctrl_pm_select_sleep_state(struct device *dev) 1615 { 1616 if (!dev->pins) 1617 return 0; 1618 1619 return pinctrl_select_bound_state(dev, dev->pins->sleep_state); 1620 } 1621 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1622 1623 /** 1624 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1625 * @dev: device to select idle state for 1626 */ 1627 int pinctrl_pm_select_idle_state(struct device *dev) 1628 { 1629 if (!dev->pins) 1630 return 0; 1631 1632 return pinctrl_select_bound_state(dev, dev->pins->idle_state); 1633 } 1634 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1635 #endif 1636 1637 #ifdef CONFIG_DEBUG_FS 1638 1639 static int pinctrl_pins_show(struct seq_file *s, void *what) 1640 { 1641 struct pinctrl_dev *pctldev = s->private; 1642 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1643 unsigned i, pin; 1644 #ifdef CONFIG_GPIOLIB 1645 struct pinctrl_gpio_range *range; 1646 struct gpio_chip *chip; 1647 int gpio_num; 1648 #endif 1649 1650 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1651 1652 mutex_lock(&pctldev->mutex); 1653 1654 /* The pin number can be retrived from the pin controller descriptor */ 1655 for (i = 0; i < pctldev->desc->npins; i++) { 1656 struct pin_desc *desc; 1657 1658 pin = pctldev->desc->pins[i].number; 1659 desc = pin_desc_get(pctldev, pin); 1660 /* Pin space may be sparse */ 1661 if (!desc) 1662 continue; 1663 1664 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1665 1666 #ifdef CONFIG_GPIOLIB 1667 gpio_num = -1; 1668 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1669 if ((pin >= range->pin_base) && 1670 (pin < (range->pin_base + range->npins))) { 1671 gpio_num = range->base + (pin - range->pin_base); 1672 break; 1673 } 1674 } 1675 if (gpio_num >= 0) 1676 /* 1677 * FIXME: gpio_num comes from the global GPIO numberspace. 1678 * we need to get rid of the range->base eventually and 1679 * get the descriptor directly from the gpio_chip. 1680 */ 1681 chip = gpiod_to_chip(gpio_to_desc(gpio_num)); 1682 else 1683 chip = NULL; 1684 if (chip) 1685 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label); 1686 else 1687 seq_puts(s, "0:? "); 1688 #endif 1689 1690 /* Driver-specific info per pin */ 1691 if (ops->pin_dbg_show) 1692 ops->pin_dbg_show(pctldev, s, pin); 1693 1694 seq_puts(s, "\n"); 1695 } 1696 1697 mutex_unlock(&pctldev->mutex); 1698 1699 return 0; 1700 } 1701 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins); 1702 1703 static int pinctrl_groups_show(struct seq_file *s, void *what) 1704 { 1705 struct pinctrl_dev *pctldev = s->private; 1706 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1707 unsigned ngroups, selector = 0; 1708 1709 mutex_lock(&pctldev->mutex); 1710 1711 ngroups = ops->get_groups_count(pctldev); 1712 1713 seq_puts(s, "registered pin groups:\n"); 1714 while (selector < ngroups) { 1715 const unsigned *pins = NULL; 1716 unsigned num_pins = 0; 1717 const char *gname = ops->get_group_name(pctldev, selector); 1718 const char *pname; 1719 int ret = 0; 1720 int i; 1721 1722 if (ops->get_group_pins) 1723 ret = ops->get_group_pins(pctldev, selector, 1724 &pins, &num_pins); 1725 if (ret) 1726 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1727 gname); 1728 else { 1729 seq_printf(s, "group: %s\n", gname); 1730 for (i = 0; i < num_pins; i++) { 1731 pname = pin_get_name(pctldev, pins[i]); 1732 if (WARN_ON(!pname)) { 1733 mutex_unlock(&pctldev->mutex); 1734 return -EINVAL; 1735 } 1736 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1737 } 1738 seq_puts(s, "\n"); 1739 } 1740 selector++; 1741 } 1742 1743 mutex_unlock(&pctldev->mutex); 1744 1745 return 0; 1746 } 1747 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups); 1748 1749 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1750 { 1751 struct pinctrl_dev *pctldev = s->private; 1752 struct pinctrl_gpio_range *range; 1753 1754 seq_puts(s, "GPIO ranges handled:\n"); 1755 1756 mutex_lock(&pctldev->mutex); 1757 1758 /* Loop over the ranges */ 1759 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1760 if (range->pins) { 1761 int a; 1762 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1763 range->id, range->name, 1764 range->base, (range->base + range->npins - 1)); 1765 for (a = 0; a < range->npins - 1; a++) 1766 seq_printf(s, "%u, ", range->pins[a]); 1767 seq_printf(s, "%u}\n", range->pins[a]); 1768 } 1769 else 1770 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1771 range->id, range->name, 1772 range->base, (range->base + range->npins - 1), 1773 range->pin_base, 1774 (range->pin_base + range->npins - 1)); 1775 } 1776 1777 mutex_unlock(&pctldev->mutex); 1778 1779 return 0; 1780 } 1781 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges); 1782 1783 static int pinctrl_devices_show(struct seq_file *s, void *what) 1784 { 1785 struct pinctrl_dev *pctldev; 1786 1787 seq_puts(s, "name [pinmux] [pinconf]\n"); 1788 1789 mutex_lock(&pinctrldev_list_mutex); 1790 1791 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1792 seq_printf(s, "%s ", pctldev->desc->name); 1793 if (pctldev->desc->pmxops) 1794 seq_puts(s, "yes "); 1795 else 1796 seq_puts(s, "no "); 1797 if (pctldev->desc->confops) 1798 seq_puts(s, "yes"); 1799 else 1800 seq_puts(s, "no"); 1801 seq_puts(s, "\n"); 1802 } 1803 1804 mutex_unlock(&pinctrldev_list_mutex); 1805 1806 return 0; 1807 } 1808 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices); 1809 1810 static inline const char *map_type(enum pinctrl_map_type type) 1811 { 1812 static const char * const names[] = { 1813 "INVALID", 1814 "DUMMY_STATE", 1815 "MUX_GROUP", 1816 "CONFIGS_PIN", 1817 "CONFIGS_GROUP", 1818 }; 1819 1820 if (type >= ARRAY_SIZE(names)) 1821 return "UNKNOWN"; 1822 1823 return names[type]; 1824 } 1825 1826 static int pinctrl_maps_show(struct seq_file *s, void *what) 1827 { 1828 struct pinctrl_maps *maps_node; 1829 const struct pinctrl_map *map; 1830 1831 seq_puts(s, "Pinctrl maps:\n"); 1832 1833 mutex_lock(&pinctrl_maps_mutex); 1834 for_each_pin_map(maps_node, map) { 1835 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1836 map->dev_name, map->name, map_type(map->type), 1837 map->type); 1838 1839 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1840 seq_printf(s, "controlling device %s\n", 1841 map->ctrl_dev_name); 1842 1843 switch (map->type) { 1844 case PIN_MAP_TYPE_MUX_GROUP: 1845 pinmux_show_map(s, map); 1846 break; 1847 case PIN_MAP_TYPE_CONFIGS_PIN: 1848 case PIN_MAP_TYPE_CONFIGS_GROUP: 1849 pinconf_show_map(s, map); 1850 break; 1851 default: 1852 break; 1853 } 1854 1855 seq_putc(s, '\n'); 1856 } 1857 mutex_unlock(&pinctrl_maps_mutex); 1858 1859 return 0; 1860 } 1861 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps); 1862 1863 static int pinctrl_show(struct seq_file *s, void *what) 1864 { 1865 struct pinctrl *p; 1866 struct pinctrl_state *state; 1867 struct pinctrl_setting *setting; 1868 1869 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1870 1871 mutex_lock(&pinctrl_list_mutex); 1872 1873 list_for_each_entry(p, &pinctrl_list, node) { 1874 seq_printf(s, "device: %s current state: %s\n", 1875 dev_name(p->dev), 1876 p->state ? p->state->name : "none"); 1877 1878 list_for_each_entry(state, &p->states, node) { 1879 seq_printf(s, " state: %s\n", state->name); 1880 1881 list_for_each_entry(setting, &state->settings, node) { 1882 struct pinctrl_dev *pctldev = setting->pctldev; 1883 1884 seq_printf(s, " type: %s controller %s ", 1885 map_type(setting->type), 1886 pinctrl_dev_get_name(pctldev)); 1887 1888 switch (setting->type) { 1889 case PIN_MAP_TYPE_MUX_GROUP: 1890 pinmux_show_setting(s, setting); 1891 break; 1892 case PIN_MAP_TYPE_CONFIGS_PIN: 1893 case PIN_MAP_TYPE_CONFIGS_GROUP: 1894 pinconf_show_setting(s, setting); 1895 break; 1896 default: 1897 break; 1898 } 1899 } 1900 } 1901 } 1902 1903 mutex_unlock(&pinctrl_list_mutex); 1904 1905 return 0; 1906 } 1907 DEFINE_SHOW_ATTRIBUTE(pinctrl); 1908 1909 static struct dentry *debugfs_root; 1910 1911 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1912 { 1913 struct dentry *device_root; 1914 const char *debugfs_name; 1915 1916 if (pctldev->desc->name && 1917 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) { 1918 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL, 1919 "%s-%s", dev_name(pctldev->dev), 1920 pctldev->desc->name); 1921 if (!debugfs_name) { 1922 pr_warn("failed to determine debugfs dir name for %s\n", 1923 dev_name(pctldev->dev)); 1924 return; 1925 } 1926 } else { 1927 debugfs_name = dev_name(pctldev->dev); 1928 } 1929 1930 device_root = debugfs_create_dir(debugfs_name, debugfs_root); 1931 pctldev->device_root = device_root; 1932 1933 if (IS_ERR(device_root) || !device_root) { 1934 pr_warn("failed to create debugfs directory for %s\n", 1935 dev_name(pctldev->dev)); 1936 return; 1937 } 1938 debugfs_create_file("pins", 0444, 1939 device_root, pctldev, &pinctrl_pins_fops); 1940 debugfs_create_file("pingroups", 0444, 1941 device_root, pctldev, &pinctrl_groups_fops); 1942 debugfs_create_file("gpio-ranges", 0444, 1943 device_root, pctldev, &pinctrl_gpioranges_fops); 1944 if (pctldev->desc->pmxops) 1945 pinmux_init_device_debugfs(device_root, pctldev); 1946 if (pctldev->desc->confops) 1947 pinconf_init_device_debugfs(device_root, pctldev); 1948 } 1949 1950 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1951 { 1952 debugfs_remove_recursive(pctldev->device_root); 1953 } 1954 1955 static void pinctrl_init_debugfs(void) 1956 { 1957 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1958 if (IS_ERR(debugfs_root) || !debugfs_root) { 1959 pr_warn("failed to create debugfs directory\n"); 1960 debugfs_root = NULL; 1961 return; 1962 } 1963 1964 debugfs_create_file("pinctrl-devices", 0444, 1965 debugfs_root, NULL, &pinctrl_devices_fops); 1966 debugfs_create_file("pinctrl-maps", 0444, 1967 debugfs_root, NULL, &pinctrl_maps_fops); 1968 debugfs_create_file("pinctrl-handles", 0444, 1969 debugfs_root, NULL, &pinctrl_fops); 1970 } 1971 1972 #else /* CONFIG_DEBUG_FS */ 1973 1974 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1975 { 1976 } 1977 1978 static void pinctrl_init_debugfs(void) 1979 { 1980 } 1981 1982 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1983 { 1984 } 1985 1986 #endif 1987 1988 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1989 { 1990 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1991 1992 if (!ops || 1993 !ops->get_groups_count || 1994 !ops->get_group_name) 1995 return -EINVAL; 1996 1997 return 0; 1998 } 1999 2000 /** 2001 * pinctrl_init_controller() - init a pin controller device 2002 * @pctldesc: descriptor for this pin controller 2003 * @dev: parent device for this pin controller 2004 * @driver_data: private pin controller data for this pin controller 2005 */ 2006 static struct pinctrl_dev * 2007 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev, 2008 void *driver_data) 2009 { 2010 struct pinctrl_dev *pctldev; 2011 int ret; 2012 2013 if (!pctldesc) 2014 return ERR_PTR(-EINVAL); 2015 if (!pctldesc->name) 2016 return ERR_PTR(-EINVAL); 2017 2018 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 2019 if (!pctldev) 2020 return ERR_PTR(-ENOMEM); 2021 2022 /* Initialize pin control device struct */ 2023 pctldev->owner = pctldesc->owner; 2024 pctldev->desc = pctldesc; 2025 pctldev->driver_data = driver_data; 2026 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 2027 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS 2028 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL); 2029 #endif 2030 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS 2031 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL); 2032 #endif 2033 INIT_LIST_HEAD(&pctldev->gpio_ranges); 2034 INIT_LIST_HEAD(&pctldev->node); 2035 pctldev->dev = dev; 2036 mutex_init(&pctldev->mutex); 2037 2038 /* check core ops for sanity */ 2039 ret = pinctrl_check_ops(pctldev); 2040 if (ret) { 2041 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 2042 goto out_err; 2043 } 2044 2045 /* If we're implementing pinmuxing, check the ops for sanity */ 2046 if (pctldesc->pmxops) { 2047 ret = pinmux_check_ops(pctldev); 2048 if (ret) 2049 goto out_err; 2050 } 2051 2052 /* If we're implementing pinconfig, check the ops for sanity */ 2053 if (pctldesc->confops) { 2054 ret = pinconf_check_ops(pctldev); 2055 if (ret) 2056 goto out_err; 2057 } 2058 2059 /* Register all the pins */ 2060 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 2061 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 2062 if (ret) { 2063 dev_err(dev, "error during pin registration\n"); 2064 pinctrl_free_pindescs(pctldev, pctldesc->pins, 2065 pctldesc->npins); 2066 goto out_err; 2067 } 2068 2069 return pctldev; 2070 2071 out_err: 2072 mutex_destroy(&pctldev->mutex); 2073 kfree(pctldev); 2074 return ERR_PTR(ret); 2075 } 2076 2077 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev) 2078 { 2079 pctldev->p = create_pinctrl(pctldev->dev, pctldev); 2080 if (PTR_ERR(pctldev->p) == -ENODEV) { 2081 dev_dbg(pctldev->dev, "no hogs found\n"); 2082 2083 return 0; 2084 } 2085 2086 if (IS_ERR(pctldev->p)) { 2087 dev_err(pctldev->dev, "error claiming hogs: %li\n", 2088 PTR_ERR(pctldev->p)); 2089 2090 return PTR_ERR(pctldev->p); 2091 } 2092 2093 pctldev->hog_default = 2094 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 2095 if (IS_ERR(pctldev->hog_default)) { 2096 dev_dbg(pctldev->dev, 2097 "failed to lookup the default state\n"); 2098 } else { 2099 if (pinctrl_select_state(pctldev->p, 2100 pctldev->hog_default)) 2101 dev_err(pctldev->dev, 2102 "failed to select default state\n"); 2103 } 2104 2105 pctldev->hog_sleep = 2106 pinctrl_lookup_state(pctldev->p, 2107 PINCTRL_STATE_SLEEP); 2108 if (IS_ERR(pctldev->hog_sleep)) 2109 dev_dbg(pctldev->dev, 2110 "failed to lookup the sleep state\n"); 2111 2112 return 0; 2113 } 2114 2115 int pinctrl_enable(struct pinctrl_dev *pctldev) 2116 { 2117 int error; 2118 2119 error = pinctrl_claim_hogs(pctldev); 2120 if (error) { 2121 dev_err(pctldev->dev, "could not claim hogs: %i\n", 2122 error); 2123 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2124 pctldev->desc->npins); 2125 mutex_destroy(&pctldev->mutex); 2126 kfree(pctldev); 2127 2128 return error; 2129 } 2130 2131 mutex_lock(&pinctrldev_list_mutex); 2132 list_add_tail(&pctldev->node, &pinctrldev_list); 2133 mutex_unlock(&pinctrldev_list_mutex); 2134 2135 pinctrl_init_device_debugfs(pctldev); 2136 2137 return 0; 2138 } 2139 EXPORT_SYMBOL_GPL(pinctrl_enable); 2140 2141 /** 2142 * pinctrl_register() - register a pin controller device 2143 * @pctldesc: descriptor for this pin controller 2144 * @dev: parent device for this pin controller 2145 * @driver_data: private pin controller data for this pin controller 2146 * 2147 * Note that pinctrl_register() is known to have problems as the pin 2148 * controller driver functions are called before the driver has a 2149 * struct pinctrl_dev handle. To avoid issues later on, please use the 2150 * new pinctrl_register_and_init() below instead. 2151 */ 2152 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 2153 struct device *dev, void *driver_data) 2154 { 2155 struct pinctrl_dev *pctldev; 2156 int error; 2157 2158 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data); 2159 if (IS_ERR(pctldev)) 2160 return pctldev; 2161 2162 error = pinctrl_enable(pctldev); 2163 if (error) 2164 return ERR_PTR(error); 2165 2166 return pctldev; 2167 } 2168 EXPORT_SYMBOL_GPL(pinctrl_register); 2169 2170 /** 2171 * pinctrl_register_and_init() - register and init pin controller device 2172 * @pctldesc: descriptor for this pin controller 2173 * @dev: parent device for this pin controller 2174 * @driver_data: private pin controller data for this pin controller 2175 * @pctldev: pin controller device 2176 * 2177 * Note that pinctrl_enable() still needs to be manually called after 2178 * this once the driver is ready. 2179 */ 2180 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc, 2181 struct device *dev, void *driver_data, 2182 struct pinctrl_dev **pctldev) 2183 { 2184 struct pinctrl_dev *p; 2185 2186 p = pinctrl_init_controller(pctldesc, dev, driver_data); 2187 if (IS_ERR(p)) 2188 return PTR_ERR(p); 2189 2190 /* 2191 * We have pinctrl_start() call functions in the pin controller 2192 * driver with create_pinctrl() for at least dt_node_to_map(). So 2193 * let's make sure pctldev is properly initialized for the 2194 * pin controller driver before we do anything. 2195 */ 2196 *pctldev = p; 2197 2198 return 0; 2199 } 2200 EXPORT_SYMBOL_GPL(pinctrl_register_and_init); 2201 2202 /** 2203 * pinctrl_unregister() - unregister pinmux 2204 * @pctldev: pin controller to unregister 2205 * 2206 * Called by pinmux drivers to unregister a pinmux. 2207 */ 2208 void pinctrl_unregister(struct pinctrl_dev *pctldev) 2209 { 2210 struct pinctrl_gpio_range *range, *n; 2211 2212 if (!pctldev) 2213 return; 2214 2215 mutex_lock(&pctldev->mutex); 2216 pinctrl_remove_device_debugfs(pctldev); 2217 mutex_unlock(&pctldev->mutex); 2218 2219 if (!IS_ERR_OR_NULL(pctldev->p)) 2220 pinctrl_put(pctldev->p); 2221 2222 mutex_lock(&pinctrldev_list_mutex); 2223 mutex_lock(&pctldev->mutex); 2224 /* TODO: check that no pinmuxes are still active? */ 2225 list_del(&pctldev->node); 2226 pinmux_generic_free_functions(pctldev); 2227 pinctrl_generic_free_groups(pctldev); 2228 /* Destroy descriptor tree */ 2229 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 2230 pctldev->desc->npins); 2231 /* remove gpio ranges map */ 2232 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 2233 list_del(&range->node); 2234 2235 mutex_unlock(&pctldev->mutex); 2236 mutex_destroy(&pctldev->mutex); 2237 kfree(pctldev); 2238 mutex_unlock(&pinctrldev_list_mutex); 2239 } 2240 EXPORT_SYMBOL_GPL(pinctrl_unregister); 2241 2242 static void devm_pinctrl_dev_release(struct device *dev, void *res) 2243 { 2244 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 2245 2246 pinctrl_unregister(pctldev); 2247 } 2248 2249 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 2250 { 2251 struct pctldev **r = res; 2252 2253 if (WARN_ON(!r || !*r)) 2254 return 0; 2255 2256 return *r == data; 2257 } 2258 2259 /** 2260 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 2261 * @dev: parent device for this pin controller 2262 * @pctldesc: descriptor for this pin controller 2263 * @driver_data: private pin controller data for this pin controller 2264 * 2265 * Returns an error pointer if pincontrol register failed. Otherwise 2266 * it returns valid pinctrl handle. 2267 * 2268 * The pinctrl device will be automatically released when the device is unbound. 2269 */ 2270 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 2271 struct pinctrl_desc *pctldesc, 2272 void *driver_data) 2273 { 2274 struct pinctrl_dev **ptr, *pctldev; 2275 2276 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2277 if (!ptr) 2278 return ERR_PTR(-ENOMEM); 2279 2280 pctldev = pinctrl_register(pctldesc, dev, driver_data); 2281 if (IS_ERR(pctldev)) { 2282 devres_free(ptr); 2283 return pctldev; 2284 } 2285 2286 *ptr = pctldev; 2287 devres_add(dev, ptr); 2288 2289 return pctldev; 2290 } 2291 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 2292 2293 /** 2294 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init 2295 * @dev: parent device for this pin controller 2296 * @pctldesc: descriptor for this pin controller 2297 * @driver_data: private pin controller data for this pin controller 2298 * @pctldev: pin controller device 2299 * 2300 * Returns zero on success or an error number on failure. 2301 * 2302 * The pinctrl device will be automatically released when the device is unbound. 2303 */ 2304 int devm_pinctrl_register_and_init(struct device *dev, 2305 struct pinctrl_desc *pctldesc, 2306 void *driver_data, 2307 struct pinctrl_dev **pctldev) 2308 { 2309 struct pinctrl_dev **ptr; 2310 int error; 2311 2312 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 2313 if (!ptr) 2314 return -ENOMEM; 2315 2316 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev); 2317 if (error) { 2318 devres_free(ptr); 2319 return error; 2320 } 2321 2322 *ptr = *pctldev; 2323 devres_add(dev, ptr); 2324 2325 return 0; 2326 } 2327 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init); 2328 2329 /** 2330 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 2331 * @dev: device for which resource was allocated 2332 * @pctldev: the pinctrl device to unregister. 2333 */ 2334 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 2335 { 2336 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 2337 devm_pinctrl_dev_match, pctldev)); 2338 } 2339 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 2340 2341 static int __init pinctrl_init(void) 2342 { 2343 pr_info("initialized pinctrl subsystem\n"); 2344 pinctrl_init_debugfs(); 2345 return 0; 2346 } 2347 2348 /* init early since many drivers really need to initialized pinmux early */ 2349 core_initcall(pinctrl_init); 2350