1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 const struct pinctrl_pin_desc *pin) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, pin->number); 233 if (pindesc != NULL) { 234 dev_err(pctldev->dev, "pin %d already registered\n", 235 pin->number); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (pindesc == NULL) { 241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 242 return -ENOMEM; 243 } 244 245 /* Set owner */ 246 pindesc->pctldev = pctldev; 247 248 /* Copy basic pin info */ 249 if (pin->name) { 250 pindesc->name = pin->name; 251 } else { 252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number); 253 if (pindesc->name == NULL) { 254 kfree(pindesc); 255 return -ENOMEM; 256 } 257 pindesc->dynamic_name = true; 258 } 259 260 pindesc->drv_data = pin->drv_data; 261 262 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc); 263 pr_debug("registered pin %d (%s) on %s\n", 264 pin->number, pindesc->name, pctldev->desc->name); 265 return 0; 266 } 267 268 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 269 struct pinctrl_pin_desc const *pins, 270 unsigned num_descs) 271 { 272 unsigned i; 273 int ret = 0; 274 275 for (i = 0; i < num_descs; i++) { 276 ret = pinctrl_register_one_pin(pctldev, &pins[i]); 277 if (ret) 278 return ret; 279 } 280 281 return 0; 282 } 283 284 /** 285 * gpio_to_pin() - GPIO range GPIO number to pin number translation 286 * @range: GPIO range used for the translation 287 * @gpio: gpio pin to translate to a pin number 288 * 289 * Finds the pin number for a given GPIO using the specified GPIO range 290 * as a base for translation. The distinction between linear GPIO ranges 291 * and pin list based GPIO ranges is managed correctly by this function. 292 * 293 * This function assumes the gpio is part of the specified GPIO range, use 294 * only after making sure this is the case (e.g. by calling it on the 295 * result of successful pinctrl_get_device_gpio_range calls)! 296 */ 297 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 298 unsigned int gpio) 299 { 300 unsigned int offset = gpio - range->base; 301 if (range->pins) 302 return range->pins[offset]; 303 else 304 return range->pin_base + offset; 305 } 306 307 /** 308 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 309 * @pctldev: pin controller device to check 310 * @gpio: gpio pin to check taken from the global GPIO pin space 311 * 312 * Tries to match a GPIO pin number to the ranges handled by a certain pin 313 * controller, return the range or NULL 314 */ 315 static struct pinctrl_gpio_range * 316 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 317 { 318 struct pinctrl_gpio_range *range = NULL; 319 320 mutex_lock(&pctldev->mutex); 321 /* Loop over the ranges */ 322 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 323 /* Check if we're in the valid range */ 324 if (gpio >= range->base && 325 gpio < range->base + range->npins) { 326 mutex_unlock(&pctldev->mutex); 327 return range; 328 } 329 } 330 mutex_unlock(&pctldev->mutex); 331 return NULL; 332 } 333 334 /** 335 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 336 * the same GPIO chip are in range 337 * @gpio: gpio pin to check taken from the global GPIO pin space 338 * 339 * This function is complement of pinctrl_match_gpio_range(). If the return 340 * value of pinctrl_match_gpio_range() is NULL, this function could be used 341 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 342 * of the same GPIO chip don't have back-end pinctrl interface. 343 * If the return value is true, it means that pinctrl device is ready & the 344 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 345 * is false, it means that pinctrl device may not be ready. 346 */ 347 #ifdef CONFIG_GPIOLIB 348 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 349 { 350 struct pinctrl_dev *pctldev; 351 struct pinctrl_gpio_range *range = NULL; 352 struct gpio_chip *chip = gpio_to_chip(gpio); 353 354 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio)) 355 return false; 356 357 mutex_lock(&pinctrldev_list_mutex); 358 359 /* Loop over the pin controllers */ 360 list_for_each_entry(pctldev, &pinctrldev_list, node) { 361 /* Loop over the ranges */ 362 mutex_lock(&pctldev->mutex); 363 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 364 /* Check if any gpio range overlapped with gpio chip */ 365 if (range->base + range->npins - 1 < chip->base || 366 range->base > chip->base + chip->ngpio - 1) 367 continue; 368 mutex_unlock(&pctldev->mutex); 369 mutex_unlock(&pinctrldev_list_mutex); 370 return true; 371 } 372 mutex_unlock(&pctldev->mutex); 373 } 374 375 mutex_unlock(&pinctrldev_list_mutex); 376 377 return false; 378 } 379 #else 380 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 381 #endif 382 383 /** 384 * pinctrl_get_device_gpio_range() - find device for GPIO range 385 * @gpio: the pin to locate the pin controller for 386 * @outdev: the pin control device if found 387 * @outrange: the GPIO range if found 388 * 389 * Find the pin controller handling a certain GPIO pin from the pinspace of 390 * the GPIO subsystem, return the device and the matching GPIO range. Returns 391 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 392 * may still have not been registered. 393 */ 394 static int pinctrl_get_device_gpio_range(unsigned gpio, 395 struct pinctrl_dev **outdev, 396 struct pinctrl_gpio_range **outrange) 397 { 398 struct pinctrl_dev *pctldev = NULL; 399 400 mutex_lock(&pinctrldev_list_mutex); 401 402 /* Loop over the pin controllers */ 403 list_for_each_entry(pctldev, &pinctrldev_list, node) { 404 struct pinctrl_gpio_range *range; 405 406 range = pinctrl_match_gpio_range(pctldev, gpio); 407 if (range != NULL) { 408 *outdev = pctldev; 409 *outrange = range; 410 mutex_unlock(&pinctrldev_list_mutex); 411 return 0; 412 } 413 } 414 415 mutex_unlock(&pinctrldev_list_mutex); 416 417 return -EPROBE_DEFER; 418 } 419 420 /** 421 * pinctrl_add_gpio_range() - register a GPIO range for a controller 422 * @pctldev: pin controller device to add the range to 423 * @range: the GPIO range to add 424 * 425 * This adds a range of GPIOs to be handled by a certain pin controller. Call 426 * this to register handled ranges after registering your pin controller. 427 */ 428 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 429 struct pinctrl_gpio_range *range) 430 { 431 mutex_lock(&pctldev->mutex); 432 list_add_tail(&range->node, &pctldev->gpio_ranges); 433 mutex_unlock(&pctldev->mutex); 434 } 435 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 436 437 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 438 struct pinctrl_gpio_range *ranges, 439 unsigned nranges) 440 { 441 int i; 442 443 for (i = 0; i < nranges; i++) 444 pinctrl_add_gpio_range(pctldev, &ranges[i]); 445 } 446 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 447 448 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 449 struct pinctrl_gpio_range *range) 450 { 451 struct pinctrl_dev *pctldev; 452 453 pctldev = get_pinctrl_dev_from_devname(devname); 454 455 /* 456 * If we can't find this device, let's assume that is because 457 * it has not probed yet, so the driver trying to register this 458 * range need to defer probing. 459 */ 460 if (!pctldev) { 461 return ERR_PTR(-EPROBE_DEFER); 462 } 463 pinctrl_add_gpio_range(pctldev, range); 464 465 return pctldev; 466 } 467 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 468 469 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 470 const unsigned **pins, unsigned *num_pins) 471 { 472 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 473 int gs; 474 475 if (!pctlops->get_group_pins) 476 return -EINVAL; 477 478 gs = pinctrl_get_group_selector(pctldev, pin_group); 479 if (gs < 0) 480 return gs; 481 482 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 483 } 484 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 485 486 struct pinctrl_gpio_range * 487 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev, 488 unsigned int pin) 489 { 490 struct pinctrl_gpio_range *range; 491 492 /* Loop over the ranges */ 493 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 494 /* Check if we're in the valid range */ 495 if (range->pins) { 496 int a; 497 for (a = 0; a < range->npins; a++) { 498 if (range->pins[a] == pin) 499 return range; 500 } 501 } else if (pin >= range->pin_base && 502 pin < range->pin_base + range->npins) 503 return range; 504 } 505 506 return NULL; 507 } 508 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock); 509 510 /** 511 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 512 * @pctldev: the pin controller device to look in 513 * @pin: a controller-local number to find the range for 514 */ 515 struct pinctrl_gpio_range * 516 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 517 unsigned int pin) 518 { 519 struct pinctrl_gpio_range *range; 520 521 mutex_lock(&pctldev->mutex); 522 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin); 523 mutex_unlock(&pctldev->mutex); 524 525 return range; 526 } 527 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 528 529 /** 530 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 531 * @pctldev: pin controller device to remove the range from 532 * @range: the GPIO range to remove 533 */ 534 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 535 struct pinctrl_gpio_range *range) 536 { 537 mutex_lock(&pctldev->mutex); 538 list_del(&range->node); 539 mutex_unlock(&pctldev->mutex); 540 } 541 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 542 543 /** 544 * pinctrl_get_group_selector() - returns the group selector for a group 545 * @pctldev: the pin controller handling the group 546 * @pin_group: the pin group to look up 547 */ 548 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 549 const char *pin_group) 550 { 551 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 552 unsigned ngroups = pctlops->get_groups_count(pctldev); 553 unsigned group_selector = 0; 554 555 while (group_selector < ngroups) { 556 const char *gname = pctlops->get_group_name(pctldev, 557 group_selector); 558 if (!strcmp(gname, pin_group)) { 559 dev_dbg(pctldev->dev, 560 "found group selector %u for %s\n", 561 group_selector, 562 pin_group); 563 return group_selector; 564 } 565 566 group_selector++; 567 } 568 569 dev_err(pctldev->dev, "does not have pin group %s\n", 570 pin_group); 571 572 return -EINVAL; 573 } 574 575 /** 576 * pinctrl_request_gpio() - request a single pin to be used as GPIO 577 * @gpio: the GPIO pin number from the GPIO subsystem number space 578 * 579 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 580 * as part of their gpio_request() semantics, platforms and individual drivers 581 * shall *NOT* request GPIO pins to be muxed in. 582 */ 583 int pinctrl_request_gpio(unsigned gpio) 584 { 585 struct pinctrl_dev *pctldev; 586 struct pinctrl_gpio_range *range; 587 int ret; 588 int pin; 589 590 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 591 if (ret) { 592 if (pinctrl_ready_for_gpio_range(gpio)) 593 ret = 0; 594 return ret; 595 } 596 597 mutex_lock(&pctldev->mutex); 598 599 /* Convert to the pin controllers number space */ 600 pin = gpio_to_pin(range, gpio); 601 602 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 603 604 mutex_unlock(&pctldev->mutex); 605 606 return ret; 607 } 608 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 609 610 /** 611 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 612 * @gpio: the GPIO pin number from the GPIO subsystem number space 613 * 614 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 615 * as part of their gpio_free() semantics, platforms and individual drivers 616 * shall *NOT* request GPIO pins to be muxed out. 617 */ 618 void pinctrl_free_gpio(unsigned gpio) 619 { 620 struct pinctrl_dev *pctldev; 621 struct pinctrl_gpio_range *range; 622 int ret; 623 int pin; 624 625 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 626 if (ret) { 627 return; 628 } 629 mutex_lock(&pctldev->mutex); 630 631 /* Convert to the pin controllers number space */ 632 pin = gpio_to_pin(range, gpio); 633 634 pinmux_free_gpio(pctldev, pin, range); 635 636 mutex_unlock(&pctldev->mutex); 637 } 638 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 639 640 static int pinctrl_gpio_direction(unsigned gpio, bool input) 641 { 642 struct pinctrl_dev *pctldev; 643 struct pinctrl_gpio_range *range; 644 int ret; 645 int pin; 646 647 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 648 if (ret) { 649 return ret; 650 } 651 652 mutex_lock(&pctldev->mutex); 653 654 /* Convert to the pin controllers number space */ 655 pin = gpio_to_pin(range, gpio); 656 ret = pinmux_gpio_direction(pctldev, range, pin, input); 657 658 mutex_unlock(&pctldev->mutex); 659 660 return ret; 661 } 662 663 /** 664 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 665 * @gpio: the GPIO pin number from the GPIO subsystem number space 666 * 667 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 668 * as part of their gpio_direction_input() semantics, platforms and individual 669 * drivers shall *NOT* touch pin control GPIO calls. 670 */ 671 int pinctrl_gpio_direction_input(unsigned gpio) 672 { 673 return pinctrl_gpio_direction(gpio, true); 674 } 675 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 676 677 /** 678 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 679 * @gpio: the GPIO pin number from the GPIO subsystem number space 680 * 681 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 682 * as part of their gpio_direction_output() semantics, platforms and individual 683 * drivers shall *NOT* touch pin control GPIO calls. 684 */ 685 int pinctrl_gpio_direction_output(unsigned gpio) 686 { 687 return pinctrl_gpio_direction(gpio, false); 688 } 689 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 690 691 static struct pinctrl_state *find_state(struct pinctrl *p, 692 const char *name) 693 { 694 struct pinctrl_state *state; 695 696 list_for_each_entry(state, &p->states, node) 697 if (!strcmp(state->name, name)) 698 return state; 699 700 return NULL; 701 } 702 703 static struct pinctrl_state *create_state(struct pinctrl *p, 704 const char *name) 705 { 706 struct pinctrl_state *state; 707 708 state = kzalloc(sizeof(*state), GFP_KERNEL); 709 if (state == NULL) { 710 dev_err(p->dev, 711 "failed to alloc struct pinctrl_state\n"); 712 return ERR_PTR(-ENOMEM); 713 } 714 715 state->name = name; 716 INIT_LIST_HEAD(&state->settings); 717 718 list_add_tail(&state->node, &p->states); 719 720 return state; 721 } 722 723 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 724 { 725 struct pinctrl_state *state; 726 struct pinctrl_setting *setting; 727 int ret; 728 729 state = find_state(p, map->name); 730 if (!state) 731 state = create_state(p, map->name); 732 if (IS_ERR(state)) 733 return PTR_ERR(state); 734 735 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 736 return 0; 737 738 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 739 if (setting == NULL) { 740 dev_err(p->dev, 741 "failed to alloc struct pinctrl_setting\n"); 742 return -ENOMEM; 743 } 744 745 setting->type = map->type; 746 747 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 748 if (setting->pctldev == NULL) { 749 kfree(setting); 750 /* Do not defer probing of hogs (circular loop) */ 751 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 752 return -ENODEV; 753 /* 754 * OK let us guess that the driver is not there yet, and 755 * let's defer obtaining this pinctrl handle to later... 756 */ 757 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 758 map->ctrl_dev_name); 759 return -EPROBE_DEFER; 760 } 761 762 setting->dev_name = map->dev_name; 763 764 switch (map->type) { 765 case PIN_MAP_TYPE_MUX_GROUP: 766 ret = pinmux_map_to_setting(map, setting); 767 break; 768 case PIN_MAP_TYPE_CONFIGS_PIN: 769 case PIN_MAP_TYPE_CONFIGS_GROUP: 770 ret = pinconf_map_to_setting(map, setting); 771 break; 772 default: 773 ret = -EINVAL; 774 break; 775 } 776 if (ret < 0) { 777 kfree(setting); 778 return ret; 779 } 780 781 list_add_tail(&setting->node, &state->settings); 782 783 return 0; 784 } 785 786 static struct pinctrl *find_pinctrl(struct device *dev) 787 { 788 struct pinctrl *p; 789 790 mutex_lock(&pinctrl_list_mutex); 791 list_for_each_entry(p, &pinctrl_list, node) 792 if (p->dev == dev) { 793 mutex_unlock(&pinctrl_list_mutex); 794 return p; 795 } 796 797 mutex_unlock(&pinctrl_list_mutex); 798 return NULL; 799 } 800 801 static void pinctrl_free(struct pinctrl *p, bool inlist); 802 803 static struct pinctrl *create_pinctrl(struct device *dev) 804 { 805 struct pinctrl *p; 806 const char *devname; 807 struct pinctrl_maps *maps_node; 808 int i; 809 struct pinctrl_map const *map; 810 int ret; 811 812 /* 813 * create the state cookie holder struct pinctrl for each 814 * mapping, this is what consumers will get when requesting 815 * a pin control handle with pinctrl_get() 816 */ 817 p = kzalloc(sizeof(*p), GFP_KERNEL); 818 if (p == NULL) { 819 dev_err(dev, "failed to alloc struct pinctrl\n"); 820 return ERR_PTR(-ENOMEM); 821 } 822 p->dev = dev; 823 INIT_LIST_HEAD(&p->states); 824 INIT_LIST_HEAD(&p->dt_maps); 825 826 ret = pinctrl_dt_to_map(p); 827 if (ret < 0) { 828 kfree(p); 829 return ERR_PTR(ret); 830 } 831 832 devname = dev_name(dev); 833 834 mutex_lock(&pinctrl_maps_mutex); 835 /* Iterate over the pin control maps to locate the right ones */ 836 for_each_maps(maps_node, i, map) { 837 /* Map must be for this device */ 838 if (strcmp(map->dev_name, devname)) 839 continue; 840 841 ret = add_setting(p, map); 842 /* 843 * At this point the adding of a setting may: 844 * 845 * - Defer, if the pinctrl device is not yet available 846 * - Fail, if the pinctrl device is not yet available, 847 * AND the setting is a hog. We cannot defer that, since 848 * the hog will kick in immediately after the device 849 * is registered. 850 * 851 * If the error returned was not -EPROBE_DEFER then we 852 * accumulate the errors to see if we end up with 853 * an -EPROBE_DEFER later, as that is the worst case. 854 */ 855 if (ret == -EPROBE_DEFER) { 856 pinctrl_free(p, false); 857 mutex_unlock(&pinctrl_maps_mutex); 858 return ERR_PTR(ret); 859 } 860 } 861 mutex_unlock(&pinctrl_maps_mutex); 862 863 if (ret < 0) { 864 /* If some other error than deferral occured, return here */ 865 pinctrl_free(p, false); 866 return ERR_PTR(ret); 867 } 868 869 kref_init(&p->users); 870 871 /* Add the pinctrl handle to the global list */ 872 mutex_lock(&pinctrl_list_mutex); 873 list_add_tail(&p->node, &pinctrl_list); 874 mutex_unlock(&pinctrl_list_mutex); 875 876 return p; 877 } 878 879 /** 880 * pinctrl_get() - retrieves the pinctrl handle for a device 881 * @dev: the device to obtain the handle for 882 */ 883 struct pinctrl *pinctrl_get(struct device *dev) 884 { 885 struct pinctrl *p; 886 887 if (WARN_ON(!dev)) 888 return ERR_PTR(-EINVAL); 889 890 /* 891 * See if somebody else (such as the device core) has already 892 * obtained a handle to the pinctrl for this device. In that case, 893 * return another pointer to it. 894 */ 895 p = find_pinctrl(dev); 896 if (p != NULL) { 897 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 898 kref_get(&p->users); 899 return p; 900 } 901 902 return create_pinctrl(dev); 903 } 904 EXPORT_SYMBOL_GPL(pinctrl_get); 905 906 static void pinctrl_free_setting(bool disable_setting, 907 struct pinctrl_setting *setting) 908 { 909 switch (setting->type) { 910 case PIN_MAP_TYPE_MUX_GROUP: 911 if (disable_setting) 912 pinmux_disable_setting(setting); 913 pinmux_free_setting(setting); 914 break; 915 case PIN_MAP_TYPE_CONFIGS_PIN: 916 case PIN_MAP_TYPE_CONFIGS_GROUP: 917 pinconf_free_setting(setting); 918 break; 919 default: 920 break; 921 } 922 } 923 924 static void pinctrl_free(struct pinctrl *p, bool inlist) 925 { 926 struct pinctrl_state *state, *n1; 927 struct pinctrl_setting *setting, *n2; 928 929 mutex_lock(&pinctrl_list_mutex); 930 list_for_each_entry_safe(state, n1, &p->states, node) { 931 list_for_each_entry_safe(setting, n2, &state->settings, node) { 932 pinctrl_free_setting(state == p->state, setting); 933 list_del(&setting->node); 934 kfree(setting); 935 } 936 list_del(&state->node); 937 kfree(state); 938 } 939 940 pinctrl_dt_free_maps(p); 941 942 if (inlist) 943 list_del(&p->node); 944 kfree(p); 945 mutex_unlock(&pinctrl_list_mutex); 946 } 947 948 /** 949 * pinctrl_release() - release the pinctrl handle 950 * @kref: the kref in the pinctrl being released 951 */ 952 static void pinctrl_release(struct kref *kref) 953 { 954 struct pinctrl *p = container_of(kref, struct pinctrl, users); 955 956 pinctrl_free(p, true); 957 } 958 959 /** 960 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 961 * @p: the pinctrl handle to release 962 */ 963 void pinctrl_put(struct pinctrl *p) 964 { 965 kref_put(&p->users, pinctrl_release); 966 } 967 EXPORT_SYMBOL_GPL(pinctrl_put); 968 969 /** 970 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 971 * @p: the pinctrl handle to retrieve the state from 972 * @name: the state name to retrieve 973 */ 974 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 975 const char *name) 976 { 977 struct pinctrl_state *state; 978 979 state = find_state(p, name); 980 if (!state) { 981 if (pinctrl_dummy_state) { 982 /* create dummy state */ 983 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 984 name); 985 state = create_state(p, name); 986 } else 987 state = ERR_PTR(-ENODEV); 988 } 989 990 return state; 991 } 992 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 993 994 /** 995 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 996 * @p: the pinctrl handle for the device that requests configuration 997 * @state: the state handle to select/activate/program 998 */ 999 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 1000 { 1001 struct pinctrl_setting *setting, *setting2; 1002 struct pinctrl_state *old_state = p->state; 1003 int ret; 1004 1005 if (p->state == state) 1006 return 0; 1007 1008 if (p->state) { 1009 /* 1010 * For each pinmux setting in the old state, forget SW's record 1011 * of mux owner for that pingroup. Any pingroups which are 1012 * still owned by the new state will be re-acquired by the call 1013 * to pinmux_enable_setting() in the loop below. 1014 */ 1015 list_for_each_entry(setting, &p->state->settings, node) { 1016 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1017 continue; 1018 pinmux_disable_setting(setting); 1019 } 1020 } 1021 1022 p->state = NULL; 1023 1024 /* Apply all the settings for the new state */ 1025 list_for_each_entry(setting, &state->settings, node) { 1026 switch (setting->type) { 1027 case PIN_MAP_TYPE_MUX_GROUP: 1028 ret = pinmux_enable_setting(setting); 1029 break; 1030 case PIN_MAP_TYPE_CONFIGS_PIN: 1031 case PIN_MAP_TYPE_CONFIGS_GROUP: 1032 ret = pinconf_apply_setting(setting); 1033 break; 1034 default: 1035 ret = -EINVAL; 1036 break; 1037 } 1038 1039 if (ret < 0) { 1040 goto unapply_new_state; 1041 } 1042 } 1043 1044 p->state = state; 1045 1046 return 0; 1047 1048 unapply_new_state: 1049 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1050 1051 list_for_each_entry(setting2, &state->settings, node) { 1052 if (&setting2->node == &setting->node) 1053 break; 1054 /* 1055 * All we can do here is pinmux_disable_setting. 1056 * That means that some pins are muxed differently now 1057 * than they were before applying the setting (We can't 1058 * "unmux a pin"!), but it's not a big deal since the pins 1059 * are free to be muxed by another apply_setting. 1060 */ 1061 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1062 pinmux_disable_setting(setting2); 1063 } 1064 1065 /* There's no infinite recursive loop here because p->state is NULL */ 1066 if (old_state) 1067 pinctrl_select_state(p, old_state); 1068 1069 return ret; 1070 } 1071 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1072 1073 static void devm_pinctrl_release(struct device *dev, void *res) 1074 { 1075 pinctrl_put(*(struct pinctrl **)res); 1076 } 1077 1078 /** 1079 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1080 * @dev: the device to obtain the handle for 1081 * 1082 * If there is a need to explicitly destroy the returned struct pinctrl, 1083 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1084 */ 1085 struct pinctrl *devm_pinctrl_get(struct device *dev) 1086 { 1087 struct pinctrl **ptr, *p; 1088 1089 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1090 if (!ptr) 1091 return ERR_PTR(-ENOMEM); 1092 1093 p = pinctrl_get(dev); 1094 if (!IS_ERR(p)) { 1095 *ptr = p; 1096 devres_add(dev, ptr); 1097 } else { 1098 devres_free(ptr); 1099 } 1100 1101 return p; 1102 } 1103 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1104 1105 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1106 { 1107 struct pinctrl **p = res; 1108 1109 return *p == data; 1110 } 1111 1112 /** 1113 * devm_pinctrl_put() - Resource managed pinctrl_put() 1114 * @p: the pinctrl handle to release 1115 * 1116 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1117 * this function will not need to be called and the resource management 1118 * code will ensure that the resource is freed. 1119 */ 1120 void devm_pinctrl_put(struct pinctrl *p) 1121 { 1122 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1123 devm_pinctrl_match, p)); 1124 } 1125 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1126 1127 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1128 bool dup) 1129 { 1130 int i, ret; 1131 struct pinctrl_maps *maps_node; 1132 1133 pr_debug("add %u pinctrl maps\n", num_maps); 1134 1135 /* First sanity check the new mapping */ 1136 for (i = 0; i < num_maps; i++) { 1137 if (!maps[i].dev_name) { 1138 pr_err("failed to register map %s (%d): no device given\n", 1139 maps[i].name, i); 1140 return -EINVAL; 1141 } 1142 1143 if (!maps[i].name) { 1144 pr_err("failed to register map %d: no map name given\n", 1145 i); 1146 return -EINVAL; 1147 } 1148 1149 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1150 !maps[i].ctrl_dev_name) { 1151 pr_err("failed to register map %s (%d): no pin control device given\n", 1152 maps[i].name, i); 1153 return -EINVAL; 1154 } 1155 1156 switch (maps[i].type) { 1157 case PIN_MAP_TYPE_DUMMY_STATE: 1158 break; 1159 case PIN_MAP_TYPE_MUX_GROUP: 1160 ret = pinmux_validate_map(&maps[i], i); 1161 if (ret < 0) 1162 return ret; 1163 break; 1164 case PIN_MAP_TYPE_CONFIGS_PIN: 1165 case PIN_MAP_TYPE_CONFIGS_GROUP: 1166 ret = pinconf_validate_map(&maps[i], i); 1167 if (ret < 0) 1168 return ret; 1169 break; 1170 default: 1171 pr_err("failed to register map %s (%d): invalid type given\n", 1172 maps[i].name, i); 1173 return -EINVAL; 1174 } 1175 } 1176 1177 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1178 if (!maps_node) { 1179 pr_err("failed to alloc struct pinctrl_maps\n"); 1180 return -ENOMEM; 1181 } 1182 1183 maps_node->num_maps = num_maps; 1184 if (dup) { 1185 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1186 GFP_KERNEL); 1187 if (!maps_node->maps) { 1188 pr_err("failed to duplicate mapping table\n"); 1189 kfree(maps_node); 1190 return -ENOMEM; 1191 } 1192 } else { 1193 maps_node->maps = maps; 1194 } 1195 1196 mutex_lock(&pinctrl_maps_mutex); 1197 list_add_tail(&maps_node->node, &pinctrl_maps); 1198 mutex_unlock(&pinctrl_maps_mutex); 1199 1200 return 0; 1201 } 1202 1203 /** 1204 * pinctrl_register_mappings() - register a set of pin controller mappings 1205 * @maps: the pincontrol mappings table to register. This should probably be 1206 * marked with __initdata so it can be discarded after boot. This 1207 * function will perform a shallow copy for the mapping entries. 1208 * @num_maps: the number of maps in the mapping table 1209 */ 1210 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1211 unsigned num_maps) 1212 { 1213 return pinctrl_register_map(maps, num_maps, true); 1214 } 1215 1216 void pinctrl_unregister_map(struct pinctrl_map const *map) 1217 { 1218 struct pinctrl_maps *maps_node; 1219 1220 mutex_lock(&pinctrl_maps_mutex); 1221 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1222 if (maps_node->maps == map) { 1223 list_del(&maps_node->node); 1224 kfree(maps_node); 1225 mutex_unlock(&pinctrl_maps_mutex); 1226 return; 1227 } 1228 } 1229 mutex_unlock(&pinctrl_maps_mutex); 1230 } 1231 1232 /** 1233 * pinctrl_force_sleep() - turn a given controller device into sleep state 1234 * @pctldev: pin controller device 1235 */ 1236 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1237 { 1238 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1239 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1240 return 0; 1241 } 1242 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1243 1244 /** 1245 * pinctrl_force_default() - turn a given controller device into default state 1246 * @pctldev: pin controller device 1247 */ 1248 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1249 { 1250 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1251 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1252 return 0; 1253 } 1254 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1255 1256 /** 1257 * pinctrl_init_done() - tell pinctrl probe is done 1258 * 1259 * We'll use this time to switch the pins from "init" to "default" unless the 1260 * driver selected some other state. 1261 * 1262 * @dev: device to that's done probing 1263 */ 1264 int pinctrl_init_done(struct device *dev) 1265 { 1266 struct dev_pin_info *pins = dev->pins; 1267 int ret; 1268 1269 if (!pins) 1270 return 0; 1271 1272 if (IS_ERR(pins->init_state)) 1273 return 0; /* No such state */ 1274 1275 if (pins->p->state != pins->init_state) 1276 return 0; /* Not at init anyway */ 1277 1278 if (IS_ERR(pins->default_state)) 1279 return 0; /* No default state */ 1280 1281 ret = pinctrl_select_state(pins->p, pins->default_state); 1282 if (ret) 1283 dev_err(dev, "failed to activate default pinctrl state\n"); 1284 1285 return ret; 1286 } 1287 1288 #ifdef CONFIG_PM 1289 1290 /** 1291 * pinctrl_pm_select_state() - select pinctrl state for PM 1292 * @dev: device to select default state for 1293 * @state: state to set 1294 */ 1295 static int pinctrl_pm_select_state(struct device *dev, 1296 struct pinctrl_state *state) 1297 { 1298 struct dev_pin_info *pins = dev->pins; 1299 int ret; 1300 1301 if (IS_ERR(state)) 1302 return 0; /* No such state */ 1303 ret = pinctrl_select_state(pins->p, state); 1304 if (ret) 1305 dev_err(dev, "failed to activate pinctrl state %s\n", 1306 state->name); 1307 return ret; 1308 } 1309 1310 /** 1311 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1312 * @dev: device to select default state for 1313 */ 1314 int pinctrl_pm_select_default_state(struct device *dev) 1315 { 1316 if (!dev->pins) 1317 return 0; 1318 1319 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1320 } 1321 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1322 1323 /** 1324 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1325 * @dev: device to select sleep state for 1326 */ 1327 int pinctrl_pm_select_sleep_state(struct device *dev) 1328 { 1329 if (!dev->pins) 1330 return 0; 1331 1332 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1333 } 1334 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1335 1336 /** 1337 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1338 * @dev: device to select idle state for 1339 */ 1340 int pinctrl_pm_select_idle_state(struct device *dev) 1341 { 1342 if (!dev->pins) 1343 return 0; 1344 1345 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1346 } 1347 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1348 #endif 1349 1350 #ifdef CONFIG_DEBUG_FS 1351 1352 static int pinctrl_pins_show(struct seq_file *s, void *what) 1353 { 1354 struct pinctrl_dev *pctldev = s->private; 1355 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1356 unsigned i, pin; 1357 1358 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1359 1360 mutex_lock(&pctldev->mutex); 1361 1362 /* The pin number can be retrived from the pin controller descriptor */ 1363 for (i = 0; i < pctldev->desc->npins; i++) { 1364 struct pin_desc *desc; 1365 1366 pin = pctldev->desc->pins[i].number; 1367 desc = pin_desc_get(pctldev, pin); 1368 /* Pin space may be sparse */ 1369 if (desc == NULL) 1370 continue; 1371 1372 seq_printf(s, "pin %d (%s) ", pin, desc->name); 1373 1374 /* Driver-specific info per pin */ 1375 if (ops->pin_dbg_show) 1376 ops->pin_dbg_show(pctldev, s, pin); 1377 1378 seq_puts(s, "\n"); 1379 } 1380 1381 mutex_unlock(&pctldev->mutex); 1382 1383 return 0; 1384 } 1385 1386 static int pinctrl_groups_show(struct seq_file *s, void *what) 1387 { 1388 struct pinctrl_dev *pctldev = s->private; 1389 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1390 unsigned ngroups, selector = 0; 1391 1392 mutex_lock(&pctldev->mutex); 1393 1394 ngroups = ops->get_groups_count(pctldev); 1395 1396 seq_puts(s, "registered pin groups:\n"); 1397 while (selector < ngroups) { 1398 const unsigned *pins = NULL; 1399 unsigned num_pins = 0; 1400 const char *gname = ops->get_group_name(pctldev, selector); 1401 const char *pname; 1402 int ret = 0; 1403 int i; 1404 1405 if (ops->get_group_pins) 1406 ret = ops->get_group_pins(pctldev, selector, 1407 &pins, &num_pins); 1408 if (ret) 1409 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1410 gname); 1411 else { 1412 seq_printf(s, "group: %s\n", gname); 1413 for (i = 0; i < num_pins; i++) { 1414 pname = pin_get_name(pctldev, pins[i]); 1415 if (WARN_ON(!pname)) { 1416 mutex_unlock(&pctldev->mutex); 1417 return -EINVAL; 1418 } 1419 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1420 } 1421 seq_puts(s, "\n"); 1422 } 1423 selector++; 1424 } 1425 1426 mutex_unlock(&pctldev->mutex); 1427 1428 return 0; 1429 } 1430 1431 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1432 { 1433 struct pinctrl_dev *pctldev = s->private; 1434 struct pinctrl_gpio_range *range = NULL; 1435 1436 seq_puts(s, "GPIO ranges handled:\n"); 1437 1438 mutex_lock(&pctldev->mutex); 1439 1440 /* Loop over the ranges */ 1441 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1442 if (range->pins) { 1443 int a; 1444 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1445 range->id, range->name, 1446 range->base, (range->base + range->npins - 1)); 1447 for (a = 0; a < range->npins - 1; a++) 1448 seq_printf(s, "%u, ", range->pins[a]); 1449 seq_printf(s, "%u}\n", range->pins[a]); 1450 } 1451 else 1452 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1453 range->id, range->name, 1454 range->base, (range->base + range->npins - 1), 1455 range->pin_base, 1456 (range->pin_base + range->npins - 1)); 1457 } 1458 1459 mutex_unlock(&pctldev->mutex); 1460 1461 return 0; 1462 } 1463 1464 static int pinctrl_devices_show(struct seq_file *s, void *what) 1465 { 1466 struct pinctrl_dev *pctldev; 1467 1468 seq_puts(s, "name [pinmux] [pinconf]\n"); 1469 1470 mutex_lock(&pinctrldev_list_mutex); 1471 1472 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1473 seq_printf(s, "%s ", pctldev->desc->name); 1474 if (pctldev->desc->pmxops) 1475 seq_puts(s, "yes "); 1476 else 1477 seq_puts(s, "no "); 1478 if (pctldev->desc->confops) 1479 seq_puts(s, "yes"); 1480 else 1481 seq_puts(s, "no"); 1482 seq_puts(s, "\n"); 1483 } 1484 1485 mutex_unlock(&pinctrldev_list_mutex); 1486 1487 return 0; 1488 } 1489 1490 static inline const char *map_type(enum pinctrl_map_type type) 1491 { 1492 static const char * const names[] = { 1493 "INVALID", 1494 "DUMMY_STATE", 1495 "MUX_GROUP", 1496 "CONFIGS_PIN", 1497 "CONFIGS_GROUP", 1498 }; 1499 1500 if (type >= ARRAY_SIZE(names)) 1501 return "UNKNOWN"; 1502 1503 return names[type]; 1504 } 1505 1506 static int pinctrl_maps_show(struct seq_file *s, void *what) 1507 { 1508 struct pinctrl_maps *maps_node; 1509 int i; 1510 struct pinctrl_map const *map; 1511 1512 seq_puts(s, "Pinctrl maps:\n"); 1513 1514 mutex_lock(&pinctrl_maps_mutex); 1515 for_each_maps(maps_node, i, map) { 1516 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1517 map->dev_name, map->name, map_type(map->type), 1518 map->type); 1519 1520 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1521 seq_printf(s, "controlling device %s\n", 1522 map->ctrl_dev_name); 1523 1524 switch (map->type) { 1525 case PIN_MAP_TYPE_MUX_GROUP: 1526 pinmux_show_map(s, map); 1527 break; 1528 case PIN_MAP_TYPE_CONFIGS_PIN: 1529 case PIN_MAP_TYPE_CONFIGS_GROUP: 1530 pinconf_show_map(s, map); 1531 break; 1532 default: 1533 break; 1534 } 1535 1536 seq_printf(s, "\n"); 1537 } 1538 mutex_unlock(&pinctrl_maps_mutex); 1539 1540 return 0; 1541 } 1542 1543 static int pinctrl_show(struct seq_file *s, void *what) 1544 { 1545 struct pinctrl *p; 1546 struct pinctrl_state *state; 1547 struct pinctrl_setting *setting; 1548 1549 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1550 1551 mutex_lock(&pinctrl_list_mutex); 1552 1553 list_for_each_entry(p, &pinctrl_list, node) { 1554 seq_printf(s, "device: %s current state: %s\n", 1555 dev_name(p->dev), 1556 p->state ? p->state->name : "none"); 1557 1558 list_for_each_entry(state, &p->states, node) { 1559 seq_printf(s, " state: %s\n", state->name); 1560 1561 list_for_each_entry(setting, &state->settings, node) { 1562 struct pinctrl_dev *pctldev = setting->pctldev; 1563 1564 seq_printf(s, " type: %s controller %s ", 1565 map_type(setting->type), 1566 pinctrl_dev_get_name(pctldev)); 1567 1568 switch (setting->type) { 1569 case PIN_MAP_TYPE_MUX_GROUP: 1570 pinmux_show_setting(s, setting); 1571 break; 1572 case PIN_MAP_TYPE_CONFIGS_PIN: 1573 case PIN_MAP_TYPE_CONFIGS_GROUP: 1574 pinconf_show_setting(s, setting); 1575 break; 1576 default: 1577 break; 1578 } 1579 } 1580 } 1581 } 1582 1583 mutex_unlock(&pinctrl_list_mutex); 1584 1585 return 0; 1586 } 1587 1588 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1589 { 1590 return single_open(file, pinctrl_pins_show, inode->i_private); 1591 } 1592 1593 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1594 { 1595 return single_open(file, pinctrl_groups_show, inode->i_private); 1596 } 1597 1598 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1599 { 1600 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1601 } 1602 1603 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1604 { 1605 return single_open(file, pinctrl_devices_show, NULL); 1606 } 1607 1608 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1609 { 1610 return single_open(file, pinctrl_maps_show, NULL); 1611 } 1612 1613 static int pinctrl_open(struct inode *inode, struct file *file) 1614 { 1615 return single_open(file, pinctrl_show, NULL); 1616 } 1617 1618 static const struct file_operations pinctrl_pins_ops = { 1619 .open = pinctrl_pins_open, 1620 .read = seq_read, 1621 .llseek = seq_lseek, 1622 .release = single_release, 1623 }; 1624 1625 static const struct file_operations pinctrl_groups_ops = { 1626 .open = pinctrl_groups_open, 1627 .read = seq_read, 1628 .llseek = seq_lseek, 1629 .release = single_release, 1630 }; 1631 1632 static const struct file_operations pinctrl_gpioranges_ops = { 1633 .open = pinctrl_gpioranges_open, 1634 .read = seq_read, 1635 .llseek = seq_lseek, 1636 .release = single_release, 1637 }; 1638 1639 static const struct file_operations pinctrl_devices_ops = { 1640 .open = pinctrl_devices_open, 1641 .read = seq_read, 1642 .llseek = seq_lseek, 1643 .release = single_release, 1644 }; 1645 1646 static const struct file_operations pinctrl_maps_ops = { 1647 .open = pinctrl_maps_open, 1648 .read = seq_read, 1649 .llseek = seq_lseek, 1650 .release = single_release, 1651 }; 1652 1653 static const struct file_operations pinctrl_ops = { 1654 .open = pinctrl_open, 1655 .read = seq_read, 1656 .llseek = seq_lseek, 1657 .release = single_release, 1658 }; 1659 1660 static struct dentry *debugfs_root; 1661 1662 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1663 { 1664 struct dentry *device_root; 1665 1666 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1667 debugfs_root); 1668 pctldev->device_root = device_root; 1669 1670 if (IS_ERR(device_root) || !device_root) { 1671 pr_warn("failed to create debugfs directory for %s\n", 1672 dev_name(pctldev->dev)); 1673 return; 1674 } 1675 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1676 device_root, pctldev, &pinctrl_pins_ops); 1677 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1678 device_root, pctldev, &pinctrl_groups_ops); 1679 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1680 device_root, pctldev, &pinctrl_gpioranges_ops); 1681 if (pctldev->desc->pmxops) 1682 pinmux_init_device_debugfs(device_root, pctldev); 1683 if (pctldev->desc->confops) 1684 pinconf_init_device_debugfs(device_root, pctldev); 1685 } 1686 1687 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1688 { 1689 debugfs_remove_recursive(pctldev->device_root); 1690 } 1691 1692 static void pinctrl_init_debugfs(void) 1693 { 1694 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1695 if (IS_ERR(debugfs_root) || !debugfs_root) { 1696 pr_warn("failed to create debugfs directory\n"); 1697 debugfs_root = NULL; 1698 return; 1699 } 1700 1701 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1702 debugfs_root, NULL, &pinctrl_devices_ops); 1703 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1704 debugfs_root, NULL, &pinctrl_maps_ops); 1705 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1706 debugfs_root, NULL, &pinctrl_ops); 1707 } 1708 1709 #else /* CONFIG_DEBUG_FS */ 1710 1711 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1712 { 1713 } 1714 1715 static void pinctrl_init_debugfs(void) 1716 { 1717 } 1718 1719 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1720 { 1721 } 1722 1723 #endif 1724 1725 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1726 { 1727 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1728 1729 if (!ops || 1730 !ops->get_groups_count || 1731 !ops->get_group_name) 1732 return -EINVAL; 1733 1734 if (ops->dt_node_to_map && !ops->dt_free_map) 1735 return -EINVAL; 1736 1737 return 0; 1738 } 1739 1740 /** 1741 * pinctrl_register() - register a pin controller device 1742 * @pctldesc: descriptor for this pin controller 1743 * @dev: parent device for this pin controller 1744 * @driver_data: private pin controller data for this pin controller 1745 */ 1746 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1747 struct device *dev, void *driver_data) 1748 { 1749 struct pinctrl_dev *pctldev; 1750 int ret; 1751 1752 if (!pctldesc) 1753 return ERR_PTR(-EINVAL); 1754 if (!pctldesc->name) 1755 return ERR_PTR(-EINVAL); 1756 1757 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1758 if (pctldev == NULL) { 1759 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1760 return ERR_PTR(-ENOMEM); 1761 } 1762 1763 /* Initialize pin control device struct */ 1764 pctldev->owner = pctldesc->owner; 1765 pctldev->desc = pctldesc; 1766 pctldev->driver_data = driver_data; 1767 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1768 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1769 pctldev->dev = dev; 1770 mutex_init(&pctldev->mutex); 1771 1772 /* check core ops for sanity */ 1773 ret = pinctrl_check_ops(pctldev); 1774 if (ret) { 1775 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1776 goto out_err; 1777 } 1778 1779 /* If we're implementing pinmuxing, check the ops for sanity */ 1780 if (pctldesc->pmxops) { 1781 ret = pinmux_check_ops(pctldev); 1782 if (ret) 1783 goto out_err; 1784 } 1785 1786 /* If we're implementing pinconfig, check the ops for sanity */ 1787 if (pctldesc->confops) { 1788 ret = pinconf_check_ops(pctldev); 1789 if (ret) 1790 goto out_err; 1791 } 1792 1793 /* Register all the pins */ 1794 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1795 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1796 if (ret) { 1797 dev_err(dev, "error during pin registration\n"); 1798 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1799 pctldesc->npins); 1800 goto out_err; 1801 } 1802 1803 mutex_lock(&pinctrldev_list_mutex); 1804 list_add_tail(&pctldev->node, &pinctrldev_list); 1805 mutex_unlock(&pinctrldev_list_mutex); 1806 1807 pctldev->p = pinctrl_get(pctldev->dev); 1808 1809 if (!IS_ERR(pctldev->p)) { 1810 pctldev->hog_default = 1811 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1812 if (IS_ERR(pctldev->hog_default)) { 1813 dev_dbg(dev, "failed to lookup the default state\n"); 1814 } else { 1815 if (pinctrl_select_state(pctldev->p, 1816 pctldev->hog_default)) 1817 dev_err(dev, 1818 "failed to select default state\n"); 1819 } 1820 1821 pctldev->hog_sleep = 1822 pinctrl_lookup_state(pctldev->p, 1823 PINCTRL_STATE_SLEEP); 1824 if (IS_ERR(pctldev->hog_sleep)) 1825 dev_dbg(dev, "failed to lookup the sleep state\n"); 1826 } 1827 1828 pinctrl_init_device_debugfs(pctldev); 1829 1830 return pctldev; 1831 1832 out_err: 1833 mutex_destroy(&pctldev->mutex); 1834 kfree(pctldev); 1835 return ERR_PTR(ret); 1836 } 1837 EXPORT_SYMBOL_GPL(pinctrl_register); 1838 1839 /** 1840 * pinctrl_unregister() - unregister pinmux 1841 * @pctldev: pin controller to unregister 1842 * 1843 * Called by pinmux drivers to unregister a pinmux. 1844 */ 1845 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1846 { 1847 struct pinctrl_gpio_range *range, *n; 1848 if (pctldev == NULL) 1849 return; 1850 1851 mutex_lock(&pctldev->mutex); 1852 pinctrl_remove_device_debugfs(pctldev); 1853 mutex_unlock(&pctldev->mutex); 1854 1855 if (!IS_ERR(pctldev->p)) 1856 pinctrl_put(pctldev->p); 1857 1858 mutex_lock(&pinctrldev_list_mutex); 1859 mutex_lock(&pctldev->mutex); 1860 /* TODO: check that no pinmuxes are still active? */ 1861 list_del(&pctldev->node); 1862 /* Destroy descriptor tree */ 1863 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1864 pctldev->desc->npins); 1865 /* remove gpio ranges map */ 1866 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1867 list_del(&range->node); 1868 1869 mutex_unlock(&pctldev->mutex); 1870 mutex_destroy(&pctldev->mutex); 1871 kfree(pctldev); 1872 mutex_unlock(&pinctrldev_list_mutex); 1873 } 1874 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1875 1876 static void devm_pinctrl_dev_release(struct device *dev, void *res) 1877 { 1878 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res; 1879 1880 pinctrl_unregister(pctldev); 1881 } 1882 1883 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data) 1884 { 1885 struct pctldev **r = res; 1886 1887 if (WARN_ON(!r || !*r)) 1888 return 0; 1889 1890 return *r == data; 1891 } 1892 1893 /** 1894 * devm_pinctrl_register() - Resource managed version of pinctrl_register(). 1895 * @dev: parent device for this pin controller 1896 * @pctldesc: descriptor for this pin controller 1897 * @driver_data: private pin controller data for this pin controller 1898 * 1899 * Returns an error pointer if pincontrol register failed. Otherwise 1900 * it returns valid pinctrl handle. 1901 * 1902 * The pinctrl device will be automatically released when the device is unbound. 1903 */ 1904 struct pinctrl_dev *devm_pinctrl_register(struct device *dev, 1905 struct pinctrl_desc *pctldesc, 1906 void *driver_data) 1907 { 1908 struct pinctrl_dev **ptr, *pctldev; 1909 1910 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL); 1911 if (!ptr) 1912 return ERR_PTR(-ENOMEM); 1913 1914 pctldev = pinctrl_register(pctldesc, dev, driver_data); 1915 if (IS_ERR(pctldev)) { 1916 devres_free(ptr); 1917 return pctldev; 1918 } 1919 1920 *ptr = pctldev; 1921 devres_add(dev, ptr); 1922 1923 return pctldev; 1924 } 1925 EXPORT_SYMBOL_GPL(devm_pinctrl_register); 1926 1927 /** 1928 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister(). 1929 * @dev: device for which which resource was allocated 1930 * @pctldev: the pinctrl device to unregister. 1931 */ 1932 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev) 1933 { 1934 WARN_ON(devres_release(dev, devm_pinctrl_dev_release, 1935 devm_pinctrl_dev_match, pctldev)); 1936 } 1937 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister); 1938 1939 static int __init pinctrl_init(void) 1940 { 1941 pr_info("initialized pinctrl subsystem\n"); 1942 pinctrl_init_debugfs(); 1943 return 0; 1944 } 1945 1946 /* init early since many drivers really need to initialized pinmux early */ 1947 core_initcall(pinctrl_init); 1948