xref: /openbmc/linux/drivers/pinctrl/core.c (revision 12eb4683)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    unsigned number, const char *name)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, number);
233 	if (pindesc != NULL) {
234 		pr_err("pin %d already registered on %s\n", number,
235 		       pctldev->desc->name);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (pindesc == NULL) {
241 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 		return -ENOMEM;
243 	}
244 
245 	/* Set owner */
246 	pindesc->pctldev = pctldev;
247 
248 	/* Copy basic pin info */
249 	if (name) {
250 		pindesc->name = name;
251 	} else {
252 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 		if (pindesc->name == NULL) {
254 			kfree(pindesc);
255 			return -ENOMEM;
256 		}
257 		pindesc->dynamic_name = true;
258 	}
259 
260 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 	pr_debug("registered pin %d (%s) on %s\n",
262 		 number, pindesc->name, pctldev->desc->name);
263 	return 0;
264 }
265 
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 				 struct pinctrl_pin_desc const *pins,
268 				 unsigned num_descs)
269 {
270 	unsigned i;
271 	int ret = 0;
272 
273 	for (i = 0; i < num_descs; i++) {
274 		ret = pinctrl_register_one_pin(pctldev,
275 					       pins[i].number, pins[i].name);
276 		if (ret)
277 			return ret;
278 	}
279 
280 	return 0;
281 }
282 
283 /**
284  * gpio_to_pin() - GPIO range GPIO number to pin number translation
285  * @range: GPIO range used for the translation
286  * @gpio: gpio pin to translate to a pin number
287  *
288  * Finds the pin number for a given GPIO using the specified GPIO range
289  * as a base for translation. The distinction between linear GPIO ranges
290  * and pin list based GPIO ranges is managed correctly by this function.
291  *
292  * This function assumes the gpio is part of the specified GPIO range, use
293  * only after making sure this is the case (e.g. by calling it on the
294  * result of successful pinctrl_get_device_gpio_range calls)!
295  */
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 				unsigned int gpio)
298 {
299 	unsigned int offset = gpio - range->base;
300 	if (range->pins)
301 		return range->pins[offset];
302 	else
303 		return range->pin_base + offset;
304 }
305 
306 /**
307  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308  * @pctldev: pin controller device to check
309  * @gpio: gpio pin to check taken from the global GPIO pin space
310  *
311  * Tries to match a GPIO pin number to the ranges handled by a certain pin
312  * controller, return the range or NULL
313  */
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 {
317 	struct pinctrl_gpio_range *range = NULL;
318 
319 	mutex_lock(&pctldev->mutex);
320 	/* Loop over the ranges */
321 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 		/* Check if we're in the valid range */
323 		if (gpio >= range->base &&
324 		    gpio < range->base + range->npins) {
325 			mutex_unlock(&pctldev->mutex);
326 			return range;
327 		}
328 	}
329 	mutex_unlock(&pctldev->mutex);
330 	return NULL;
331 }
332 
333 /**
334  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335  * the same GPIO chip are in range
336  * @gpio: gpio pin to check taken from the global GPIO pin space
337  *
338  * This function is complement of pinctrl_match_gpio_range(). If the return
339  * value of pinctrl_match_gpio_range() is NULL, this function could be used
340  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341  * of the same GPIO chip don't have back-end pinctrl interface.
342  * If the return value is true, it means that pinctrl device is ready & the
343  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344  * is false, it means that pinctrl device may not be ready.
345  */
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 {
349 	struct pinctrl_dev *pctldev;
350 	struct pinctrl_gpio_range *range = NULL;
351 	struct gpio_chip *chip = gpio_to_chip(gpio);
352 
353 	mutex_lock(&pinctrldev_list_mutex);
354 
355 	/* Loop over the pin controllers */
356 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 		/* Loop over the ranges */
358 		mutex_lock(&pctldev->mutex);
359 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 			/* Check if any gpio range overlapped with gpio chip */
361 			if (range->base + range->npins - 1 < chip->base ||
362 			    range->base > chip->base + chip->ngpio - 1)
363 				continue;
364 			mutex_unlock(&pctldev->mutex);
365 			mutex_unlock(&pinctrldev_list_mutex);
366 			return true;
367 		}
368 		mutex_unlock(&pctldev->mutex);
369 	}
370 
371 	mutex_unlock(&pinctrldev_list_mutex);
372 
373 	return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378 
379 /**
380  * pinctrl_get_device_gpio_range() - find device for GPIO range
381  * @gpio: the pin to locate the pin controller for
382  * @outdev: the pin control device if found
383  * @outrange: the GPIO range if found
384  *
385  * Find the pin controller handling a certain GPIO pin from the pinspace of
386  * the GPIO subsystem, return the device and the matching GPIO range. Returns
387  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388  * may still have not been registered.
389  */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 					 struct pinctrl_dev **outdev,
392 					 struct pinctrl_gpio_range **outrange)
393 {
394 	struct pinctrl_dev *pctldev = NULL;
395 
396 	mutex_lock(&pinctrldev_list_mutex);
397 
398 	/* Loop over the pin controllers */
399 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 		struct pinctrl_gpio_range *range;
401 
402 		range = pinctrl_match_gpio_range(pctldev, gpio);
403 		if (range != NULL) {
404 			*outdev = pctldev;
405 			*outrange = range;
406 			mutex_unlock(&pinctrldev_list_mutex);
407 			return 0;
408 		}
409 	}
410 
411 	mutex_unlock(&pinctrldev_list_mutex);
412 
413 	return -EPROBE_DEFER;
414 }
415 
416 /**
417  * pinctrl_add_gpio_range() - register a GPIO range for a controller
418  * @pctldev: pin controller device to add the range to
419  * @range: the GPIO range to add
420  *
421  * This adds a range of GPIOs to be handled by a certain pin controller. Call
422  * this to register handled ranges after registering your pin controller.
423  */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 			    struct pinctrl_gpio_range *range)
426 {
427 	mutex_lock(&pctldev->mutex);
428 	list_add_tail(&range->node, &pctldev->gpio_ranges);
429 	mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432 
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 			     struct pinctrl_gpio_range *ranges,
435 			     unsigned nranges)
436 {
437 	int i;
438 
439 	for (i = 0; i < nranges; i++)
440 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443 
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 		struct pinctrl_gpio_range *range)
446 {
447 	struct pinctrl_dev *pctldev;
448 
449 	pctldev = get_pinctrl_dev_from_devname(devname);
450 
451 	/*
452 	 * If we can't find this device, let's assume that is because
453 	 * it has not probed yet, so the driver trying to register this
454 	 * range need to defer probing.
455 	 */
456 	if (!pctldev) {
457 		return ERR_PTR(-EPROBE_DEFER);
458 	}
459 	pinctrl_add_gpio_range(pctldev, range);
460 
461 	return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464 
465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
466 				const unsigned **pins, unsigned *num_pins)
467 {
468 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
469 	int gs;
470 
471 	gs = pinctrl_get_group_selector(pctldev, pin_group);
472 	if (gs < 0)
473 		return gs;
474 
475 	return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
476 }
477 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
478 
479 /**
480  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
481  * @pctldev: the pin controller device to look in
482  * @pin: a controller-local number to find the range for
483  */
484 struct pinctrl_gpio_range *
485 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
486 				 unsigned int pin)
487 {
488 	struct pinctrl_gpio_range *range;
489 
490 	mutex_lock(&pctldev->mutex);
491 	/* Loop over the ranges */
492 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
493 		/* Check if we're in the valid range */
494 		if (range->pins) {
495 			int a;
496 			for (a = 0; a < range->npins; a++) {
497 				if (range->pins[a] == pin)
498 					goto out;
499 			}
500 		} else if (pin >= range->pin_base &&
501 			   pin < range->pin_base + range->npins)
502 			goto out;
503 	}
504 	range = NULL;
505 out:
506 	mutex_unlock(&pctldev->mutex);
507 	return range;
508 }
509 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
510 
511 /**
512  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
513  * @pctldev: pin controller device to remove the range from
514  * @range: the GPIO range to remove
515  */
516 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
517 			       struct pinctrl_gpio_range *range)
518 {
519 	mutex_lock(&pctldev->mutex);
520 	list_del(&range->node);
521 	mutex_unlock(&pctldev->mutex);
522 }
523 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
524 
525 /**
526  * pinctrl_get_group_selector() - returns the group selector for a group
527  * @pctldev: the pin controller handling the group
528  * @pin_group: the pin group to look up
529  */
530 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
531 			       const char *pin_group)
532 {
533 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
534 	unsigned ngroups = pctlops->get_groups_count(pctldev);
535 	unsigned group_selector = 0;
536 
537 	while (group_selector < ngroups) {
538 		const char *gname = pctlops->get_group_name(pctldev,
539 							    group_selector);
540 		if (!strcmp(gname, pin_group)) {
541 			dev_dbg(pctldev->dev,
542 				"found group selector %u for %s\n",
543 				group_selector,
544 				pin_group);
545 			return group_selector;
546 		}
547 
548 		group_selector++;
549 	}
550 
551 	dev_err(pctldev->dev, "does not have pin group %s\n",
552 		pin_group);
553 
554 	return -EINVAL;
555 }
556 
557 /**
558  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
559  * @gpio: the GPIO pin number from the GPIO subsystem number space
560  *
561  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
562  * as part of their gpio_request() semantics, platforms and individual drivers
563  * shall *NOT* request GPIO pins to be muxed in.
564  */
565 int pinctrl_request_gpio(unsigned gpio)
566 {
567 	struct pinctrl_dev *pctldev;
568 	struct pinctrl_gpio_range *range;
569 	int ret;
570 	int pin;
571 
572 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
573 	if (ret) {
574 		if (pinctrl_ready_for_gpio_range(gpio))
575 			ret = 0;
576 		return ret;
577 	}
578 
579 	mutex_lock(&pctldev->mutex);
580 
581 	/* Convert to the pin controllers number space */
582 	pin = gpio_to_pin(range, gpio);
583 
584 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
585 
586 	mutex_unlock(&pctldev->mutex);
587 
588 	return ret;
589 }
590 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
591 
592 /**
593  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
594  * @gpio: the GPIO pin number from the GPIO subsystem number space
595  *
596  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
597  * as part of their gpio_free() semantics, platforms and individual drivers
598  * shall *NOT* request GPIO pins to be muxed out.
599  */
600 void pinctrl_free_gpio(unsigned gpio)
601 {
602 	struct pinctrl_dev *pctldev;
603 	struct pinctrl_gpio_range *range;
604 	int ret;
605 	int pin;
606 
607 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
608 	if (ret) {
609 		return;
610 	}
611 	mutex_lock(&pctldev->mutex);
612 
613 	/* Convert to the pin controllers number space */
614 	pin = gpio_to_pin(range, gpio);
615 
616 	pinmux_free_gpio(pctldev, pin, range);
617 
618 	mutex_unlock(&pctldev->mutex);
619 }
620 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
621 
622 static int pinctrl_gpio_direction(unsigned gpio, bool input)
623 {
624 	struct pinctrl_dev *pctldev;
625 	struct pinctrl_gpio_range *range;
626 	int ret;
627 	int pin;
628 
629 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
630 	if (ret) {
631 		return ret;
632 	}
633 
634 	mutex_lock(&pctldev->mutex);
635 
636 	/* Convert to the pin controllers number space */
637 	pin = gpio_to_pin(range, gpio);
638 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
639 
640 	mutex_unlock(&pctldev->mutex);
641 
642 	return ret;
643 }
644 
645 /**
646  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
647  * @gpio: the GPIO pin number from the GPIO subsystem number space
648  *
649  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
650  * as part of their gpio_direction_input() semantics, platforms and individual
651  * drivers shall *NOT* touch pin control GPIO calls.
652  */
653 int pinctrl_gpio_direction_input(unsigned gpio)
654 {
655 	return pinctrl_gpio_direction(gpio, true);
656 }
657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
658 
659 /**
660  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
661  * @gpio: the GPIO pin number from the GPIO subsystem number space
662  *
663  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
664  * as part of their gpio_direction_output() semantics, platforms and individual
665  * drivers shall *NOT* touch pin control GPIO calls.
666  */
667 int pinctrl_gpio_direction_output(unsigned gpio)
668 {
669 	return pinctrl_gpio_direction(gpio, false);
670 }
671 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
672 
673 static struct pinctrl_state *find_state(struct pinctrl *p,
674 					const char *name)
675 {
676 	struct pinctrl_state *state;
677 
678 	list_for_each_entry(state, &p->states, node)
679 		if (!strcmp(state->name, name))
680 			return state;
681 
682 	return NULL;
683 }
684 
685 static struct pinctrl_state *create_state(struct pinctrl *p,
686 					  const char *name)
687 {
688 	struct pinctrl_state *state;
689 
690 	state = kzalloc(sizeof(*state), GFP_KERNEL);
691 	if (state == NULL) {
692 		dev_err(p->dev,
693 			"failed to alloc struct pinctrl_state\n");
694 		return ERR_PTR(-ENOMEM);
695 	}
696 
697 	state->name = name;
698 	INIT_LIST_HEAD(&state->settings);
699 
700 	list_add_tail(&state->node, &p->states);
701 
702 	return state;
703 }
704 
705 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
706 {
707 	struct pinctrl_state *state;
708 	struct pinctrl_setting *setting;
709 	int ret;
710 
711 	state = find_state(p, map->name);
712 	if (!state)
713 		state = create_state(p, map->name);
714 	if (IS_ERR(state))
715 		return PTR_ERR(state);
716 
717 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
718 		return 0;
719 
720 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
721 	if (setting == NULL) {
722 		dev_err(p->dev,
723 			"failed to alloc struct pinctrl_setting\n");
724 		return -ENOMEM;
725 	}
726 
727 	setting->type = map->type;
728 
729 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
730 	if (setting->pctldev == NULL) {
731 		kfree(setting);
732 		/* Do not defer probing of hogs (circular loop) */
733 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
734 			return -ENODEV;
735 		/*
736 		 * OK let us guess that the driver is not there yet, and
737 		 * let's defer obtaining this pinctrl handle to later...
738 		 */
739 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
740 			map->ctrl_dev_name);
741 		return -EPROBE_DEFER;
742 	}
743 
744 	setting->dev_name = map->dev_name;
745 
746 	switch (map->type) {
747 	case PIN_MAP_TYPE_MUX_GROUP:
748 		ret = pinmux_map_to_setting(map, setting);
749 		break;
750 	case PIN_MAP_TYPE_CONFIGS_PIN:
751 	case PIN_MAP_TYPE_CONFIGS_GROUP:
752 		ret = pinconf_map_to_setting(map, setting);
753 		break;
754 	default:
755 		ret = -EINVAL;
756 		break;
757 	}
758 	if (ret < 0) {
759 		kfree(setting);
760 		return ret;
761 	}
762 
763 	list_add_tail(&setting->node, &state->settings);
764 
765 	return 0;
766 }
767 
768 static struct pinctrl *find_pinctrl(struct device *dev)
769 {
770 	struct pinctrl *p;
771 
772 	mutex_lock(&pinctrl_list_mutex);
773 	list_for_each_entry(p, &pinctrl_list, node)
774 		if (p->dev == dev) {
775 			mutex_unlock(&pinctrl_list_mutex);
776 			return p;
777 		}
778 
779 	mutex_unlock(&pinctrl_list_mutex);
780 	return NULL;
781 }
782 
783 static void pinctrl_free(struct pinctrl *p, bool inlist);
784 
785 static struct pinctrl *create_pinctrl(struct device *dev)
786 {
787 	struct pinctrl *p;
788 	const char *devname;
789 	struct pinctrl_maps *maps_node;
790 	int i;
791 	struct pinctrl_map const *map;
792 	int ret;
793 
794 	/*
795 	 * create the state cookie holder struct pinctrl for each
796 	 * mapping, this is what consumers will get when requesting
797 	 * a pin control handle with pinctrl_get()
798 	 */
799 	p = kzalloc(sizeof(*p), GFP_KERNEL);
800 	if (p == NULL) {
801 		dev_err(dev, "failed to alloc struct pinctrl\n");
802 		return ERR_PTR(-ENOMEM);
803 	}
804 	p->dev = dev;
805 	INIT_LIST_HEAD(&p->states);
806 	INIT_LIST_HEAD(&p->dt_maps);
807 
808 	ret = pinctrl_dt_to_map(p);
809 	if (ret < 0) {
810 		kfree(p);
811 		return ERR_PTR(ret);
812 	}
813 
814 	devname = dev_name(dev);
815 
816 	mutex_lock(&pinctrl_maps_mutex);
817 	/* Iterate over the pin control maps to locate the right ones */
818 	for_each_maps(maps_node, i, map) {
819 		/* Map must be for this device */
820 		if (strcmp(map->dev_name, devname))
821 			continue;
822 
823 		ret = add_setting(p, map);
824 		/*
825 		 * At this point the adding of a setting may:
826 		 *
827 		 * - Defer, if the pinctrl device is not yet available
828 		 * - Fail, if the pinctrl device is not yet available,
829 		 *   AND the setting is a hog. We cannot defer that, since
830 		 *   the hog will kick in immediately after the device
831 		 *   is registered.
832 		 *
833 		 * If the error returned was not -EPROBE_DEFER then we
834 		 * accumulate the errors to see if we end up with
835 		 * an -EPROBE_DEFER later, as that is the worst case.
836 		 */
837 		if (ret == -EPROBE_DEFER) {
838 			pinctrl_free(p, false);
839 			mutex_unlock(&pinctrl_maps_mutex);
840 			return ERR_PTR(ret);
841 		}
842 	}
843 	mutex_unlock(&pinctrl_maps_mutex);
844 
845 	if (ret < 0) {
846 		/* If some other error than deferral occured, return here */
847 		pinctrl_free(p, false);
848 		return ERR_PTR(ret);
849 	}
850 
851 	kref_init(&p->users);
852 
853 	/* Add the pinctrl handle to the global list */
854 	list_add_tail(&p->node, &pinctrl_list);
855 
856 	return p;
857 }
858 
859 /**
860  * pinctrl_get() - retrieves the pinctrl handle for a device
861  * @dev: the device to obtain the handle for
862  */
863 struct pinctrl *pinctrl_get(struct device *dev)
864 {
865 	struct pinctrl *p;
866 
867 	if (WARN_ON(!dev))
868 		return ERR_PTR(-EINVAL);
869 
870 	/*
871 	 * See if somebody else (such as the device core) has already
872 	 * obtained a handle to the pinctrl for this device. In that case,
873 	 * return another pointer to it.
874 	 */
875 	p = find_pinctrl(dev);
876 	if (p != NULL) {
877 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
878 		kref_get(&p->users);
879 		return p;
880 	}
881 
882 	return create_pinctrl(dev);
883 }
884 EXPORT_SYMBOL_GPL(pinctrl_get);
885 
886 static void pinctrl_free_setting(bool disable_setting,
887 				 struct pinctrl_setting *setting)
888 {
889 	switch (setting->type) {
890 	case PIN_MAP_TYPE_MUX_GROUP:
891 		if (disable_setting)
892 			pinmux_disable_setting(setting);
893 		pinmux_free_setting(setting);
894 		break;
895 	case PIN_MAP_TYPE_CONFIGS_PIN:
896 	case PIN_MAP_TYPE_CONFIGS_GROUP:
897 		pinconf_free_setting(setting);
898 		break;
899 	default:
900 		break;
901 	}
902 }
903 
904 static void pinctrl_free(struct pinctrl *p, bool inlist)
905 {
906 	struct pinctrl_state *state, *n1;
907 	struct pinctrl_setting *setting, *n2;
908 
909 	mutex_lock(&pinctrl_list_mutex);
910 	list_for_each_entry_safe(state, n1, &p->states, node) {
911 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
912 			pinctrl_free_setting(state == p->state, setting);
913 			list_del(&setting->node);
914 			kfree(setting);
915 		}
916 		list_del(&state->node);
917 		kfree(state);
918 	}
919 
920 	pinctrl_dt_free_maps(p);
921 
922 	if (inlist)
923 		list_del(&p->node);
924 	kfree(p);
925 	mutex_unlock(&pinctrl_list_mutex);
926 }
927 
928 /**
929  * pinctrl_release() - release the pinctrl handle
930  * @kref: the kref in the pinctrl being released
931  */
932 static void pinctrl_release(struct kref *kref)
933 {
934 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
935 
936 	pinctrl_free(p, true);
937 }
938 
939 /**
940  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
941  * @p: the pinctrl handle to release
942  */
943 void pinctrl_put(struct pinctrl *p)
944 {
945 	kref_put(&p->users, pinctrl_release);
946 }
947 EXPORT_SYMBOL_GPL(pinctrl_put);
948 
949 /**
950  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
951  * @p: the pinctrl handle to retrieve the state from
952  * @name: the state name to retrieve
953  */
954 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
955 						 const char *name)
956 {
957 	struct pinctrl_state *state;
958 
959 	state = find_state(p, name);
960 	if (!state) {
961 		if (pinctrl_dummy_state) {
962 			/* create dummy state */
963 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
964 				name);
965 			state = create_state(p, name);
966 		} else
967 			state = ERR_PTR(-ENODEV);
968 	}
969 
970 	return state;
971 }
972 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
973 
974 /**
975  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
976  * @p: the pinctrl handle for the device that requests configuration
977  * @state: the state handle to select/activate/program
978  */
979 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
980 {
981 	struct pinctrl_setting *setting, *setting2;
982 	struct pinctrl_state *old_state = p->state;
983 	int ret;
984 
985 	if (p->state == state)
986 		return 0;
987 
988 	if (p->state) {
989 		/*
990 		 * The set of groups with a mux configuration in the old state
991 		 * may not be identical to the set of groups with a mux setting
992 		 * in the new state. While this might be unusual, it's entirely
993 		 * possible for the "user"-supplied mapping table to be written
994 		 * that way. For each group that was configured in the old state
995 		 * but not in the new state, this code puts that group into a
996 		 * safe/disabled state.
997 		 */
998 		list_for_each_entry(setting, &p->state->settings, node) {
999 			bool found = false;
1000 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1001 				continue;
1002 			list_for_each_entry(setting2, &state->settings, node) {
1003 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
1004 					continue;
1005 				if (setting2->data.mux.group ==
1006 						setting->data.mux.group) {
1007 					found = true;
1008 					break;
1009 				}
1010 			}
1011 			if (!found)
1012 				pinmux_disable_setting(setting);
1013 		}
1014 	}
1015 
1016 	p->state = NULL;
1017 
1018 	/* Apply all the settings for the new state */
1019 	list_for_each_entry(setting, &state->settings, node) {
1020 		switch (setting->type) {
1021 		case PIN_MAP_TYPE_MUX_GROUP:
1022 			ret = pinmux_enable_setting(setting);
1023 			break;
1024 		case PIN_MAP_TYPE_CONFIGS_PIN:
1025 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1026 			ret = pinconf_apply_setting(setting);
1027 			break;
1028 		default:
1029 			ret = -EINVAL;
1030 			break;
1031 		}
1032 
1033 		if (ret < 0) {
1034 			goto unapply_new_state;
1035 		}
1036 	}
1037 
1038 	p->state = state;
1039 
1040 	return 0;
1041 
1042 unapply_new_state:
1043 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1044 
1045 	list_for_each_entry(setting2, &state->settings, node) {
1046 		if (&setting2->node == &setting->node)
1047 			break;
1048 		/*
1049 		 * All we can do here is pinmux_disable_setting.
1050 		 * That means that some pins are muxed differently now
1051 		 * than they were before applying the setting (We can't
1052 		 * "unmux a pin"!), but it's not a big deal since the pins
1053 		 * are free to be muxed by another apply_setting.
1054 		 */
1055 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1056 			pinmux_disable_setting(setting2);
1057 	}
1058 
1059 	/* There's no infinite recursive loop here because p->state is NULL */
1060 	if (old_state)
1061 		pinctrl_select_state(p, old_state);
1062 
1063 	return ret;
1064 }
1065 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1066 
1067 static void devm_pinctrl_release(struct device *dev, void *res)
1068 {
1069 	pinctrl_put(*(struct pinctrl **)res);
1070 }
1071 
1072 /**
1073  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1074  * @dev: the device to obtain the handle for
1075  *
1076  * If there is a need to explicitly destroy the returned struct pinctrl,
1077  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1078  */
1079 struct pinctrl *devm_pinctrl_get(struct device *dev)
1080 {
1081 	struct pinctrl **ptr, *p;
1082 
1083 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1084 	if (!ptr)
1085 		return ERR_PTR(-ENOMEM);
1086 
1087 	p = pinctrl_get(dev);
1088 	if (!IS_ERR(p)) {
1089 		*ptr = p;
1090 		devres_add(dev, ptr);
1091 	} else {
1092 		devres_free(ptr);
1093 	}
1094 
1095 	return p;
1096 }
1097 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1098 
1099 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1100 {
1101 	struct pinctrl **p = res;
1102 
1103 	return *p == data;
1104 }
1105 
1106 /**
1107  * devm_pinctrl_put() - Resource managed pinctrl_put()
1108  * @p: the pinctrl handle to release
1109  *
1110  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1111  * this function will not need to be called and the resource management
1112  * code will ensure that the resource is freed.
1113  */
1114 void devm_pinctrl_put(struct pinctrl *p)
1115 {
1116 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1117 			       devm_pinctrl_match, p));
1118 }
1119 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1120 
1121 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1122 			 bool dup, bool locked)
1123 {
1124 	int i, ret;
1125 	struct pinctrl_maps *maps_node;
1126 
1127 	pr_debug("add %d pinmux maps\n", num_maps);
1128 
1129 	/* First sanity check the new mapping */
1130 	for (i = 0; i < num_maps; i++) {
1131 		if (!maps[i].dev_name) {
1132 			pr_err("failed to register map %s (%d): no device given\n",
1133 			       maps[i].name, i);
1134 			return -EINVAL;
1135 		}
1136 
1137 		if (!maps[i].name) {
1138 			pr_err("failed to register map %d: no map name given\n",
1139 			       i);
1140 			return -EINVAL;
1141 		}
1142 
1143 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1144 				!maps[i].ctrl_dev_name) {
1145 			pr_err("failed to register map %s (%d): no pin control device given\n",
1146 			       maps[i].name, i);
1147 			return -EINVAL;
1148 		}
1149 
1150 		switch (maps[i].type) {
1151 		case PIN_MAP_TYPE_DUMMY_STATE:
1152 			break;
1153 		case PIN_MAP_TYPE_MUX_GROUP:
1154 			ret = pinmux_validate_map(&maps[i], i);
1155 			if (ret < 0)
1156 				return ret;
1157 			break;
1158 		case PIN_MAP_TYPE_CONFIGS_PIN:
1159 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1160 			ret = pinconf_validate_map(&maps[i], i);
1161 			if (ret < 0)
1162 				return ret;
1163 			break;
1164 		default:
1165 			pr_err("failed to register map %s (%d): invalid type given\n",
1166 			       maps[i].name, i);
1167 			return -EINVAL;
1168 		}
1169 	}
1170 
1171 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1172 	if (!maps_node) {
1173 		pr_err("failed to alloc struct pinctrl_maps\n");
1174 		return -ENOMEM;
1175 	}
1176 
1177 	maps_node->num_maps = num_maps;
1178 	if (dup) {
1179 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1180 					  GFP_KERNEL);
1181 		if (!maps_node->maps) {
1182 			pr_err("failed to duplicate mapping table\n");
1183 			kfree(maps_node);
1184 			return -ENOMEM;
1185 		}
1186 	} else {
1187 		maps_node->maps = maps;
1188 	}
1189 
1190 	if (!locked)
1191 		mutex_lock(&pinctrl_maps_mutex);
1192 	list_add_tail(&maps_node->node, &pinctrl_maps);
1193 	if (!locked)
1194 		mutex_unlock(&pinctrl_maps_mutex);
1195 
1196 	return 0;
1197 }
1198 
1199 /**
1200  * pinctrl_register_mappings() - register a set of pin controller mappings
1201  * @maps: the pincontrol mappings table to register. This should probably be
1202  *	marked with __initdata so it can be discarded after boot. This
1203  *	function will perform a shallow copy for the mapping entries.
1204  * @num_maps: the number of maps in the mapping table
1205  */
1206 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1207 			      unsigned num_maps)
1208 {
1209 	return pinctrl_register_map(maps, num_maps, true, false);
1210 }
1211 
1212 void pinctrl_unregister_map(struct pinctrl_map const *map)
1213 {
1214 	struct pinctrl_maps *maps_node;
1215 
1216 	mutex_lock(&pinctrl_maps_mutex);
1217 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1218 		if (maps_node->maps == map) {
1219 			list_del(&maps_node->node);
1220 			kfree(maps_node);
1221 			mutex_unlock(&pinctrl_maps_mutex);
1222 			return;
1223 		}
1224 	}
1225 	mutex_unlock(&pinctrl_maps_mutex);
1226 }
1227 
1228 /**
1229  * pinctrl_force_sleep() - turn a given controller device into sleep state
1230  * @pctldev: pin controller device
1231  */
1232 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1233 {
1234 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1235 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1236 	return 0;
1237 }
1238 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1239 
1240 /**
1241  * pinctrl_force_default() - turn a given controller device into default state
1242  * @pctldev: pin controller device
1243  */
1244 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1245 {
1246 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1247 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1248 	return 0;
1249 }
1250 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1251 
1252 #ifdef CONFIG_PM
1253 
1254 /**
1255  * pinctrl_pm_select_state() - select pinctrl state for PM
1256  * @dev: device to select default state for
1257  * @state: state to set
1258  */
1259 static int pinctrl_pm_select_state(struct device *dev,
1260 				   struct pinctrl_state *state)
1261 {
1262 	struct dev_pin_info *pins = dev->pins;
1263 	int ret;
1264 
1265 	if (IS_ERR(state))
1266 		return 0; /* No such state */
1267 	ret = pinctrl_select_state(pins->p, state);
1268 	if (ret)
1269 		dev_err(dev, "failed to activate pinctrl state %s\n",
1270 			state->name);
1271 	return ret;
1272 }
1273 
1274 /**
1275  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1276  * @dev: device to select default state for
1277  */
1278 int pinctrl_pm_select_default_state(struct device *dev)
1279 {
1280 	if (!dev->pins)
1281 		return 0;
1282 
1283 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1284 }
1285 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1286 
1287 /**
1288  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1289  * @dev: device to select sleep state for
1290  */
1291 int pinctrl_pm_select_sleep_state(struct device *dev)
1292 {
1293 	if (!dev->pins)
1294 		return 0;
1295 
1296 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1297 }
1298 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1299 
1300 /**
1301  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1302  * @dev: device to select idle state for
1303  */
1304 int pinctrl_pm_select_idle_state(struct device *dev)
1305 {
1306 	if (!dev->pins)
1307 		return 0;
1308 
1309 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1310 }
1311 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1312 #endif
1313 
1314 #ifdef CONFIG_DEBUG_FS
1315 
1316 static int pinctrl_pins_show(struct seq_file *s, void *what)
1317 {
1318 	struct pinctrl_dev *pctldev = s->private;
1319 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1320 	unsigned i, pin;
1321 
1322 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1323 
1324 	mutex_lock(&pctldev->mutex);
1325 
1326 	/* The pin number can be retrived from the pin controller descriptor */
1327 	for (i = 0; i < pctldev->desc->npins; i++) {
1328 		struct pin_desc *desc;
1329 
1330 		pin = pctldev->desc->pins[i].number;
1331 		desc = pin_desc_get(pctldev, pin);
1332 		/* Pin space may be sparse */
1333 		if (desc == NULL)
1334 			continue;
1335 
1336 		seq_printf(s, "pin %d (%s) ", pin,
1337 			   desc->name ? desc->name : "unnamed");
1338 
1339 		/* Driver-specific info per pin */
1340 		if (ops->pin_dbg_show)
1341 			ops->pin_dbg_show(pctldev, s, pin);
1342 
1343 		seq_puts(s, "\n");
1344 	}
1345 
1346 	mutex_unlock(&pctldev->mutex);
1347 
1348 	return 0;
1349 }
1350 
1351 static int pinctrl_groups_show(struct seq_file *s, void *what)
1352 {
1353 	struct pinctrl_dev *pctldev = s->private;
1354 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1355 	unsigned ngroups, selector = 0;
1356 
1357 	mutex_lock(&pctldev->mutex);
1358 
1359 	ngroups = ops->get_groups_count(pctldev);
1360 
1361 	seq_puts(s, "registered pin groups:\n");
1362 	while (selector < ngroups) {
1363 		const unsigned *pins;
1364 		unsigned num_pins;
1365 		const char *gname = ops->get_group_name(pctldev, selector);
1366 		const char *pname;
1367 		int ret;
1368 		int i;
1369 
1370 		ret = ops->get_group_pins(pctldev, selector,
1371 					  &pins, &num_pins);
1372 		if (ret)
1373 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1374 				   gname);
1375 		else {
1376 			seq_printf(s, "group: %s\n", gname);
1377 			for (i = 0; i < num_pins; i++) {
1378 				pname = pin_get_name(pctldev, pins[i]);
1379 				if (WARN_ON(!pname)) {
1380 					mutex_unlock(&pctldev->mutex);
1381 					return -EINVAL;
1382 				}
1383 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1384 			}
1385 			seq_puts(s, "\n");
1386 		}
1387 		selector++;
1388 	}
1389 
1390 	mutex_unlock(&pctldev->mutex);
1391 
1392 	return 0;
1393 }
1394 
1395 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1396 {
1397 	struct pinctrl_dev *pctldev = s->private;
1398 	struct pinctrl_gpio_range *range = NULL;
1399 
1400 	seq_puts(s, "GPIO ranges handled:\n");
1401 
1402 	mutex_lock(&pctldev->mutex);
1403 
1404 	/* Loop over the ranges */
1405 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1406 		if (range->pins) {
1407 			int a;
1408 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1409 				range->id, range->name,
1410 				range->base, (range->base + range->npins - 1));
1411 			for (a = 0; a < range->npins - 1; a++)
1412 				seq_printf(s, "%u, ", range->pins[a]);
1413 			seq_printf(s, "%u}\n", range->pins[a]);
1414 		}
1415 		else
1416 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1417 				range->id, range->name,
1418 				range->base, (range->base + range->npins - 1),
1419 				range->pin_base,
1420 				(range->pin_base + range->npins - 1));
1421 	}
1422 
1423 	mutex_unlock(&pctldev->mutex);
1424 
1425 	return 0;
1426 }
1427 
1428 static int pinctrl_devices_show(struct seq_file *s, void *what)
1429 {
1430 	struct pinctrl_dev *pctldev;
1431 
1432 	seq_puts(s, "name [pinmux] [pinconf]\n");
1433 
1434 	mutex_lock(&pinctrldev_list_mutex);
1435 
1436 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1437 		seq_printf(s, "%s ", pctldev->desc->name);
1438 		if (pctldev->desc->pmxops)
1439 			seq_puts(s, "yes ");
1440 		else
1441 			seq_puts(s, "no ");
1442 		if (pctldev->desc->confops)
1443 			seq_puts(s, "yes");
1444 		else
1445 			seq_puts(s, "no");
1446 		seq_puts(s, "\n");
1447 	}
1448 
1449 	mutex_unlock(&pinctrldev_list_mutex);
1450 
1451 	return 0;
1452 }
1453 
1454 static inline const char *map_type(enum pinctrl_map_type type)
1455 {
1456 	static const char * const names[] = {
1457 		"INVALID",
1458 		"DUMMY_STATE",
1459 		"MUX_GROUP",
1460 		"CONFIGS_PIN",
1461 		"CONFIGS_GROUP",
1462 	};
1463 
1464 	if (type >= ARRAY_SIZE(names))
1465 		return "UNKNOWN";
1466 
1467 	return names[type];
1468 }
1469 
1470 static int pinctrl_maps_show(struct seq_file *s, void *what)
1471 {
1472 	struct pinctrl_maps *maps_node;
1473 	int i;
1474 	struct pinctrl_map const *map;
1475 
1476 	seq_puts(s, "Pinctrl maps:\n");
1477 
1478 	mutex_lock(&pinctrl_maps_mutex);
1479 	for_each_maps(maps_node, i, map) {
1480 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1481 			   map->dev_name, map->name, map_type(map->type),
1482 			   map->type);
1483 
1484 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1485 			seq_printf(s, "controlling device %s\n",
1486 				   map->ctrl_dev_name);
1487 
1488 		switch (map->type) {
1489 		case PIN_MAP_TYPE_MUX_GROUP:
1490 			pinmux_show_map(s, map);
1491 			break;
1492 		case PIN_MAP_TYPE_CONFIGS_PIN:
1493 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1494 			pinconf_show_map(s, map);
1495 			break;
1496 		default:
1497 			break;
1498 		}
1499 
1500 		seq_printf(s, "\n");
1501 	}
1502 	mutex_unlock(&pinctrl_maps_mutex);
1503 
1504 	return 0;
1505 }
1506 
1507 static int pinctrl_show(struct seq_file *s, void *what)
1508 {
1509 	struct pinctrl *p;
1510 	struct pinctrl_state *state;
1511 	struct pinctrl_setting *setting;
1512 
1513 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1514 
1515 	mutex_lock(&pinctrl_list_mutex);
1516 
1517 	list_for_each_entry(p, &pinctrl_list, node) {
1518 		seq_printf(s, "device: %s current state: %s\n",
1519 			   dev_name(p->dev),
1520 			   p->state ? p->state->name : "none");
1521 
1522 		list_for_each_entry(state, &p->states, node) {
1523 			seq_printf(s, "  state: %s\n", state->name);
1524 
1525 			list_for_each_entry(setting, &state->settings, node) {
1526 				struct pinctrl_dev *pctldev = setting->pctldev;
1527 
1528 				seq_printf(s, "    type: %s controller %s ",
1529 					   map_type(setting->type),
1530 					   pinctrl_dev_get_name(pctldev));
1531 
1532 				switch (setting->type) {
1533 				case PIN_MAP_TYPE_MUX_GROUP:
1534 					pinmux_show_setting(s, setting);
1535 					break;
1536 				case PIN_MAP_TYPE_CONFIGS_PIN:
1537 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1538 					pinconf_show_setting(s, setting);
1539 					break;
1540 				default:
1541 					break;
1542 				}
1543 			}
1544 		}
1545 	}
1546 
1547 	mutex_unlock(&pinctrl_list_mutex);
1548 
1549 	return 0;
1550 }
1551 
1552 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1553 {
1554 	return single_open(file, pinctrl_pins_show, inode->i_private);
1555 }
1556 
1557 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1558 {
1559 	return single_open(file, pinctrl_groups_show, inode->i_private);
1560 }
1561 
1562 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1563 {
1564 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1565 }
1566 
1567 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1568 {
1569 	return single_open(file, pinctrl_devices_show, NULL);
1570 }
1571 
1572 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1573 {
1574 	return single_open(file, pinctrl_maps_show, NULL);
1575 }
1576 
1577 static int pinctrl_open(struct inode *inode, struct file *file)
1578 {
1579 	return single_open(file, pinctrl_show, NULL);
1580 }
1581 
1582 static const struct file_operations pinctrl_pins_ops = {
1583 	.open		= pinctrl_pins_open,
1584 	.read		= seq_read,
1585 	.llseek		= seq_lseek,
1586 	.release	= single_release,
1587 };
1588 
1589 static const struct file_operations pinctrl_groups_ops = {
1590 	.open		= pinctrl_groups_open,
1591 	.read		= seq_read,
1592 	.llseek		= seq_lseek,
1593 	.release	= single_release,
1594 };
1595 
1596 static const struct file_operations pinctrl_gpioranges_ops = {
1597 	.open		= pinctrl_gpioranges_open,
1598 	.read		= seq_read,
1599 	.llseek		= seq_lseek,
1600 	.release	= single_release,
1601 };
1602 
1603 static const struct file_operations pinctrl_devices_ops = {
1604 	.open		= pinctrl_devices_open,
1605 	.read		= seq_read,
1606 	.llseek		= seq_lseek,
1607 	.release	= single_release,
1608 };
1609 
1610 static const struct file_operations pinctrl_maps_ops = {
1611 	.open		= pinctrl_maps_open,
1612 	.read		= seq_read,
1613 	.llseek		= seq_lseek,
1614 	.release	= single_release,
1615 };
1616 
1617 static const struct file_operations pinctrl_ops = {
1618 	.open		= pinctrl_open,
1619 	.read		= seq_read,
1620 	.llseek		= seq_lseek,
1621 	.release	= single_release,
1622 };
1623 
1624 static struct dentry *debugfs_root;
1625 
1626 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1627 {
1628 	struct dentry *device_root;
1629 
1630 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1631 					 debugfs_root);
1632 	pctldev->device_root = device_root;
1633 
1634 	if (IS_ERR(device_root) || !device_root) {
1635 		pr_warn("failed to create debugfs directory for %s\n",
1636 			dev_name(pctldev->dev));
1637 		return;
1638 	}
1639 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1640 			    device_root, pctldev, &pinctrl_pins_ops);
1641 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1642 			    device_root, pctldev, &pinctrl_groups_ops);
1643 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1644 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1645 	pinmux_init_device_debugfs(device_root, pctldev);
1646 	pinconf_init_device_debugfs(device_root, pctldev);
1647 }
1648 
1649 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1650 {
1651 	debugfs_remove_recursive(pctldev->device_root);
1652 }
1653 
1654 static void pinctrl_init_debugfs(void)
1655 {
1656 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1657 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1658 		pr_warn("failed to create debugfs directory\n");
1659 		debugfs_root = NULL;
1660 		return;
1661 	}
1662 
1663 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1664 			    debugfs_root, NULL, &pinctrl_devices_ops);
1665 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1666 			    debugfs_root, NULL, &pinctrl_maps_ops);
1667 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1668 			    debugfs_root, NULL, &pinctrl_ops);
1669 }
1670 
1671 #else /* CONFIG_DEBUG_FS */
1672 
1673 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1674 {
1675 }
1676 
1677 static void pinctrl_init_debugfs(void)
1678 {
1679 }
1680 
1681 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1682 {
1683 }
1684 
1685 #endif
1686 
1687 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1688 {
1689 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1690 
1691 	if (!ops ||
1692 	    !ops->get_groups_count ||
1693 	    !ops->get_group_name ||
1694 	    !ops->get_group_pins)
1695 		return -EINVAL;
1696 
1697 	if (ops->dt_node_to_map && !ops->dt_free_map)
1698 		return -EINVAL;
1699 
1700 	return 0;
1701 }
1702 
1703 /**
1704  * pinctrl_register() - register a pin controller device
1705  * @pctldesc: descriptor for this pin controller
1706  * @dev: parent device for this pin controller
1707  * @driver_data: private pin controller data for this pin controller
1708  */
1709 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1710 				    struct device *dev, void *driver_data)
1711 {
1712 	struct pinctrl_dev *pctldev;
1713 	int ret;
1714 
1715 	if (!pctldesc)
1716 		return NULL;
1717 	if (!pctldesc->name)
1718 		return NULL;
1719 
1720 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1721 	if (pctldev == NULL) {
1722 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1723 		return NULL;
1724 	}
1725 
1726 	/* Initialize pin control device struct */
1727 	pctldev->owner = pctldesc->owner;
1728 	pctldev->desc = pctldesc;
1729 	pctldev->driver_data = driver_data;
1730 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1731 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1732 	pctldev->dev = dev;
1733 	mutex_init(&pctldev->mutex);
1734 
1735 	/* check core ops for sanity */
1736 	if (pinctrl_check_ops(pctldev)) {
1737 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1738 		goto out_err;
1739 	}
1740 
1741 	/* If we're implementing pinmuxing, check the ops for sanity */
1742 	if (pctldesc->pmxops) {
1743 		if (pinmux_check_ops(pctldev))
1744 			goto out_err;
1745 	}
1746 
1747 	/* If we're implementing pinconfig, check the ops for sanity */
1748 	if (pctldesc->confops) {
1749 		if (pinconf_check_ops(pctldev))
1750 			goto out_err;
1751 	}
1752 
1753 	/* Register all the pins */
1754 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1755 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1756 	if (ret) {
1757 		dev_err(dev, "error during pin registration\n");
1758 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1759 				      pctldesc->npins);
1760 		goto out_err;
1761 	}
1762 
1763 	mutex_lock(&pinctrldev_list_mutex);
1764 	list_add_tail(&pctldev->node, &pinctrldev_list);
1765 	mutex_unlock(&pinctrldev_list_mutex);
1766 
1767 	pctldev->p = pinctrl_get(pctldev->dev);
1768 
1769 	if (!IS_ERR(pctldev->p)) {
1770 		pctldev->hog_default =
1771 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1772 		if (IS_ERR(pctldev->hog_default)) {
1773 			dev_dbg(dev, "failed to lookup the default state\n");
1774 		} else {
1775 			if (pinctrl_select_state(pctldev->p,
1776 						pctldev->hog_default))
1777 				dev_err(dev,
1778 					"failed to select default state\n");
1779 		}
1780 
1781 		pctldev->hog_sleep =
1782 			pinctrl_lookup_state(pctldev->p,
1783 						    PINCTRL_STATE_SLEEP);
1784 		if (IS_ERR(pctldev->hog_sleep))
1785 			dev_dbg(dev, "failed to lookup the sleep state\n");
1786 	}
1787 
1788 	pinctrl_init_device_debugfs(pctldev);
1789 
1790 	return pctldev;
1791 
1792 out_err:
1793 	mutex_destroy(&pctldev->mutex);
1794 	kfree(pctldev);
1795 	return NULL;
1796 }
1797 EXPORT_SYMBOL_GPL(pinctrl_register);
1798 
1799 /**
1800  * pinctrl_unregister() - unregister pinmux
1801  * @pctldev: pin controller to unregister
1802  *
1803  * Called by pinmux drivers to unregister a pinmux.
1804  */
1805 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1806 {
1807 	struct pinctrl_gpio_range *range, *n;
1808 	if (pctldev == NULL)
1809 		return;
1810 
1811 	mutex_lock(&pinctrldev_list_mutex);
1812 	mutex_lock(&pctldev->mutex);
1813 
1814 	pinctrl_remove_device_debugfs(pctldev);
1815 
1816 	if (!IS_ERR(pctldev->p))
1817 		pinctrl_put(pctldev->p);
1818 
1819 	/* TODO: check that no pinmuxes are still active? */
1820 	list_del(&pctldev->node);
1821 	/* Destroy descriptor tree */
1822 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1823 			      pctldev->desc->npins);
1824 	/* remove gpio ranges map */
1825 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1826 		list_del(&range->node);
1827 
1828 	mutex_unlock(&pctldev->mutex);
1829 	mutex_destroy(&pctldev->mutex);
1830 	kfree(pctldev);
1831 	mutex_unlock(&pinctrldev_list_mutex);
1832 }
1833 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1834 
1835 static int __init pinctrl_init(void)
1836 {
1837 	pr_info("initialized pinctrl subsystem\n");
1838 	pinctrl_init_debugfs();
1839 	return 0;
1840 }
1841 
1842 /* init early since many drivers really need to initialized pinmux early */
1843 core_initcall(pinctrl_init);
1844