1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 pr_err("pin %d already registered on %s\n", number, 235 pctldev->desc->name); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (pindesc == NULL) { 241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 242 return -ENOMEM; 243 } 244 245 /* Set owner */ 246 pindesc->pctldev = pctldev; 247 248 /* Copy basic pin info */ 249 if (name) { 250 pindesc->name = name; 251 } else { 252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 253 if (pindesc->name == NULL) { 254 kfree(pindesc); 255 return -ENOMEM; 256 } 257 pindesc->dynamic_name = true; 258 } 259 260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 struct pinctrl_pin_desc const *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, 275 pins[i].number, pins[i].name); 276 if (ret) 277 return ret; 278 } 279 280 return 0; 281 } 282 283 /** 284 * gpio_to_pin() - GPIO range GPIO number to pin number translation 285 * @range: GPIO range used for the translation 286 * @gpio: gpio pin to translate to a pin number 287 * 288 * Finds the pin number for a given GPIO using the specified GPIO range 289 * as a base for translation. The distinction between linear GPIO ranges 290 * and pin list based GPIO ranges is managed correctly by this function. 291 * 292 * This function assumes the gpio is part of the specified GPIO range, use 293 * only after making sure this is the case (e.g. by calling it on the 294 * result of successful pinctrl_get_device_gpio_range calls)! 295 */ 296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 297 unsigned int gpio) 298 { 299 unsigned int offset = gpio - range->base; 300 if (range->pins) 301 return range->pins[offset]; 302 else 303 return range->pin_base + offset; 304 } 305 306 /** 307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 308 * @pctldev: pin controller device to check 309 * @gpio: gpio pin to check taken from the global GPIO pin space 310 * 311 * Tries to match a GPIO pin number to the ranges handled by a certain pin 312 * controller, return the range or NULL 313 */ 314 static struct pinctrl_gpio_range * 315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 316 { 317 struct pinctrl_gpio_range *range = NULL; 318 319 mutex_lock(&pctldev->mutex); 320 /* Loop over the ranges */ 321 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 322 /* Check if we're in the valid range */ 323 if (gpio >= range->base && 324 gpio < range->base + range->npins) { 325 mutex_unlock(&pctldev->mutex); 326 return range; 327 } 328 } 329 mutex_unlock(&pctldev->mutex); 330 return NULL; 331 } 332 333 /** 334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 335 * the same GPIO chip are in range 336 * @gpio: gpio pin to check taken from the global GPIO pin space 337 * 338 * This function is complement of pinctrl_match_gpio_range(). If the return 339 * value of pinctrl_match_gpio_range() is NULL, this function could be used 340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 341 * of the same GPIO chip don't have back-end pinctrl interface. 342 * If the return value is true, it means that pinctrl device is ready & the 343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 344 * is false, it means that pinctrl device may not be ready. 345 */ 346 #ifdef CONFIG_GPIOLIB 347 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 348 { 349 struct pinctrl_dev *pctldev; 350 struct pinctrl_gpio_range *range = NULL; 351 struct gpio_chip *chip = gpio_to_chip(gpio); 352 353 mutex_lock(&pinctrldev_list_mutex); 354 355 /* Loop over the pin controllers */ 356 list_for_each_entry(pctldev, &pinctrldev_list, node) { 357 /* Loop over the ranges */ 358 mutex_lock(&pctldev->mutex); 359 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 360 /* Check if any gpio range overlapped with gpio chip */ 361 if (range->base + range->npins - 1 < chip->base || 362 range->base > chip->base + chip->ngpio - 1) 363 continue; 364 mutex_unlock(&pctldev->mutex); 365 mutex_unlock(&pinctrldev_list_mutex); 366 return true; 367 } 368 mutex_unlock(&pctldev->mutex); 369 } 370 371 mutex_unlock(&pinctrldev_list_mutex); 372 373 return false; 374 } 375 #else 376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 377 #endif 378 379 /** 380 * pinctrl_get_device_gpio_range() - find device for GPIO range 381 * @gpio: the pin to locate the pin controller for 382 * @outdev: the pin control device if found 383 * @outrange: the GPIO range if found 384 * 385 * Find the pin controller handling a certain GPIO pin from the pinspace of 386 * the GPIO subsystem, return the device and the matching GPIO range. Returns 387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 388 * may still have not been registered. 389 */ 390 static int pinctrl_get_device_gpio_range(unsigned gpio, 391 struct pinctrl_dev **outdev, 392 struct pinctrl_gpio_range **outrange) 393 { 394 struct pinctrl_dev *pctldev = NULL; 395 396 mutex_lock(&pinctrldev_list_mutex); 397 398 /* Loop over the pin controllers */ 399 list_for_each_entry(pctldev, &pinctrldev_list, node) { 400 struct pinctrl_gpio_range *range; 401 402 range = pinctrl_match_gpio_range(pctldev, gpio); 403 if (range != NULL) { 404 *outdev = pctldev; 405 *outrange = range; 406 mutex_unlock(&pinctrldev_list_mutex); 407 return 0; 408 } 409 } 410 411 mutex_unlock(&pinctrldev_list_mutex); 412 413 return -EPROBE_DEFER; 414 } 415 416 /** 417 * pinctrl_add_gpio_range() - register a GPIO range for a controller 418 * @pctldev: pin controller device to add the range to 419 * @range: the GPIO range to add 420 * 421 * This adds a range of GPIOs to be handled by a certain pin controller. Call 422 * this to register handled ranges after registering your pin controller. 423 */ 424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 425 struct pinctrl_gpio_range *range) 426 { 427 mutex_lock(&pctldev->mutex); 428 list_add_tail(&range->node, &pctldev->gpio_ranges); 429 mutex_unlock(&pctldev->mutex); 430 } 431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 432 433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 434 struct pinctrl_gpio_range *ranges, 435 unsigned nranges) 436 { 437 int i; 438 439 for (i = 0; i < nranges; i++) 440 pinctrl_add_gpio_range(pctldev, &ranges[i]); 441 } 442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 443 444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 445 struct pinctrl_gpio_range *range) 446 { 447 struct pinctrl_dev *pctldev; 448 449 pctldev = get_pinctrl_dev_from_devname(devname); 450 451 /* 452 * If we can't find this device, let's assume that is because 453 * it has not probed yet, so the driver trying to register this 454 * range need to defer probing. 455 */ 456 if (!pctldev) { 457 return ERR_PTR(-EPROBE_DEFER); 458 } 459 pinctrl_add_gpio_range(pctldev, range); 460 461 return pctldev; 462 } 463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 464 465 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group, 466 const unsigned **pins, unsigned *num_pins) 467 { 468 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 469 int gs; 470 471 gs = pinctrl_get_group_selector(pctldev, pin_group); 472 if (gs < 0) 473 return gs; 474 475 return pctlops->get_group_pins(pctldev, gs, pins, num_pins); 476 } 477 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins); 478 479 /** 480 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 481 * @pctldev: the pin controller device to look in 482 * @pin: a controller-local number to find the range for 483 */ 484 struct pinctrl_gpio_range * 485 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 486 unsigned int pin) 487 { 488 struct pinctrl_gpio_range *range; 489 490 mutex_lock(&pctldev->mutex); 491 /* Loop over the ranges */ 492 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 493 /* Check if we're in the valid range */ 494 if (range->pins) { 495 int a; 496 for (a = 0; a < range->npins; a++) { 497 if (range->pins[a] == pin) 498 goto out; 499 } 500 } else if (pin >= range->pin_base && 501 pin < range->pin_base + range->npins) 502 goto out; 503 } 504 range = NULL; 505 out: 506 mutex_unlock(&pctldev->mutex); 507 return range; 508 } 509 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 510 511 /** 512 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 513 * @pctldev: pin controller device to remove the range from 514 * @range: the GPIO range to remove 515 */ 516 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 517 struct pinctrl_gpio_range *range) 518 { 519 mutex_lock(&pctldev->mutex); 520 list_del(&range->node); 521 mutex_unlock(&pctldev->mutex); 522 } 523 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 524 525 /** 526 * pinctrl_get_group_selector() - returns the group selector for a group 527 * @pctldev: the pin controller handling the group 528 * @pin_group: the pin group to look up 529 */ 530 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 531 const char *pin_group) 532 { 533 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 534 unsigned ngroups = pctlops->get_groups_count(pctldev); 535 unsigned group_selector = 0; 536 537 while (group_selector < ngroups) { 538 const char *gname = pctlops->get_group_name(pctldev, 539 group_selector); 540 if (!strcmp(gname, pin_group)) { 541 dev_dbg(pctldev->dev, 542 "found group selector %u for %s\n", 543 group_selector, 544 pin_group); 545 return group_selector; 546 } 547 548 group_selector++; 549 } 550 551 dev_err(pctldev->dev, "does not have pin group %s\n", 552 pin_group); 553 554 return -EINVAL; 555 } 556 557 /** 558 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 559 * @gpio: the GPIO pin number from the GPIO subsystem number space 560 * 561 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 562 * as part of their gpio_request() semantics, platforms and individual drivers 563 * shall *NOT* request GPIO pins to be muxed in. 564 */ 565 int pinctrl_request_gpio(unsigned gpio) 566 { 567 struct pinctrl_dev *pctldev; 568 struct pinctrl_gpio_range *range; 569 int ret; 570 int pin; 571 572 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 573 if (ret) { 574 if (pinctrl_ready_for_gpio_range(gpio)) 575 ret = 0; 576 return ret; 577 } 578 579 mutex_lock(&pctldev->mutex); 580 581 /* Convert to the pin controllers number space */ 582 pin = gpio_to_pin(range, gpio); 583 584 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 585 586 mutex_unlock(&pctldev->mutex); 587 588 return ret; 589 } 590 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 591 592 /** 593 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 594 * @gpio: the GPIO pin number from the GPIO subsystem number space 595 * 596 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 597 * as part of their gpio_free() semantics, platforms and individual drivers 598 * shall *NOT* request GPIO pins to be muxed out. 599 */ 600 void pinctrl_free_gpio(unsigned gpio) 601 { 602 struct pinctrl_dev *pctldev; 603 struct pinctrl_gpio_range *range; 604 int ret; 605 int pin; 606 607 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 608 if (ret) { 609 return; 610 } 611 mutex_lock(&pctldev->mutex); 612 613 /* Convert to the pin controllers number space */ 614 pin = gpio_to_pin(range, gpio); 615 616 pinmux_free_gpio(pctldev, pin, range); 617 618 mutex_unlock(&pctldev->mutex); 619 } 620 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 621 622 static int pinctrl_gpio_direction(unsigned gpio, bool input) 623 { 624 struct pinctrl_dev *pctldev; 625 struct pinctrl_gpio_range *range; 626 int ret; 627 int pin; 628 629 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 630 if (ret) { 631 return ret; 632 } 633 634 mutex_lock(&pctldev->mutex); 635 636 /* Convert to the pin controllers number space */ 637 pin = gpio_to_pin(range, gpio); 638 ret = pinmux_gpio_direction(pctldev, range, pin, input); 639 640 mutex_unlock(&pctldev->mutex); 641 642 return ret; 643 } 644 645 /** 646 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 647 * @gpio: the GPIO pin number from the GPIO subsystem number space 648 * 649 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 650 * as part of their gpio_direction_input() semantics, platforms and individual 651 * drivers shall *NOT* touch pin control GPIO calls. 652 */ 653 int pinctrl_gpio_direction_input(unsigned gpio) 654 { 655 return pinctrl_gpio_direction(gpio, true); 656 } 657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 658 659 /** 660 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 661 * @gpio: the GPIO pin number from the GPIO subsystem number space 662 * 663 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 664 * as part of their gpio_direction_output() semantics, platforms and individual 665 * drivers shall *NOT* touch pin control GPIO calls. 666 */ 667 int pinctrl_gpio_direction_output(unsigned gpio) 668 { 669 return pinctrl_gpio_direction(gpio, false); 670 } 671 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 672 673 static struct pinctrl_state *find_state(struct pinctrl *p, 674 const char *name) 675 { 676 struct pinctrl_state *state; 677 678 list_for_each_entry(state, &p->states, node) 679 if (!strcmp(state->name, name)) 680 return state; 681 682 return NULL; 683 } 684 685 static struct pinctrl_state *create_state(struct pinctrl *p, 686 const char *name) 687 { 688 struct pinctrl_state *state; 689 690 state = kzalloc(sizeof(*state), GFP_KERNEL); 691 if (state == NULL) { 692 dev_err(p->dev, 693 "failed to alloc struct pinctrl_state\n"); 694 return ERR_PTR(-ENOMEM); 695 } 696 697 state->name = name; 698 INIT_LIST_HEAD(&state->settings); 699 700 list_add_tail(&state->node, &p->states); 701 702 return state; 703 } 704 705 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 706 { 707 struct pinctrl_state *state; 708 struct pinctrl_setting *setting; 709 int ret; 710 711 state = find_state(p, map->name); 712 if (!state) 713 state = create_state(p, map->name); 714 if (IS_ERR(state)) 715 return PTR_ERR(state); 716 717 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 718 return 0; 719 720 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 721 if (setting == NULL) { 722 dev_err(p->dev, 723 "failed to alloc struct pinctrl_setting\n"); 724 return -ENOMEM; 725 } 726 727 setting->type = map->type; 728 729 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 730 if (setting->pctldev == NULL) { 731 kfree(setting); 732 /* Do not defer probing of hogs (circular loop) */ 733 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 734 return -ENODEV; 735 /* 736 * OK let us guess that the driver is not there yet, and 737 * let's defer obtaining this pinctrl handle to later... 738 */ 739 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 740 map->ctrl_dev_name); 741 return -EPROBE_DEFER; 742 } 743 744 setting->dev_name = map->dev_name; 745 746 switch (map->type) { 747 case PIN_MAP_TYPE_MUX_GROUP: 748 ret = pinmux_map_to_setting(map, setting); 749 break; 750 case PIN_MAP_TYPE_CONFIGS_PIN: 751 case PIN_MAP_TYPE_CONFIGS_GROUP: 752 ret = pinconf_map_to_setting(map, setting); 753 break; 754 default: 755 ret = -EINVAL; 756 break; 757 } 758 if (ret < 0) { 759 kfree(setting); 760 return ret; 761 } 762 763 list_add_tail(&setting->node, &state->settings); 764 765 return 0; 766 } 767 768 static struct pinctrl *find_pinctrl(struct device *dev) 769 { 770 struct pinctrl *p; 771 772 mutex_lock(&pinctrl_list_mutex); 773 list_for_each_entry(p, &pinctrl_list, node) 774 if (p->dev == dev) { 775 mutex_unlock(&pinctrl_list_mutex); 776 return p; 777 } 778 779 mutex_unlock(&pinctrl_list_mutex); 780 return NULL; 781 } 782 783 static void pinctrl_free(struct pinctrl *p, bool inlist); 784 785 static struct pinctrl *create_pinctrl(struct device *dev) 786 { 787 struct pinctrl *p; 788 const char *devname; 789 struct pinctrl_maps *maps_node; 790 int i; 791 struct pinctrl_map const *map; 792 int ret; 793 794 /* 795 * create the state cookie holder struct pinctrl for each 796 * mapping, this is what consumers will get when requesting 797 * a pin control handle with pinctrl_get() 798 */ 799 p = kzalloc(sizeof(*p), GFP_KERNEL); 800 if (p == NULL) { 801 dev_err(dev, "failed to alloc struct pinctrl\n"); 802 return ERR_PTR(-ENOMEM); 803 } 804 p->dev = dev; 805 INIT_LIST_HEAD(&p->states); 806 INIT_LIST_HEAD(&p->dt_maps); 807 808 ret = pinctrl_dt_to_map(p); 809 if (ret < 0) { 810 kfree(p); 811 return ERR_PTR(ret); 812 } 813 814 devname = dev_name(dev); 815 816 mutex_lock(&pinctrl_maps_mutex); 817 /* Iterate over the pin control maps to locate the right ones */ 818 for_each_maps(maps_node, i, map) { 819 /* Map must be for this device */ 820 if (strcmp(map->dev_name, devname)) 821 continue; 822 823 ret = add_setting(p, map); 824 /* 825 * At this point the adding of a setting may: 826 * 827 * - Defer, if the pinctrl device is not yet available 828 * - Fail, if the pinctrl device is not yet available, 829 * AND the setting is a hog. We cannot defer that, since 830 * the hog will kick in immediately after the device 831 * is registered. 832 * 833 * If the error returned was not -EPROBE_DEFER then we 834 * accumulate the errors to see if we end up with 835 * an -EPROBE_DEFER later, as that is the worst case. 836 */ 837 if (ret == -EPROBE_DEFER) { 838 pinctrl_free(p, false); 839 mutex_unlock(&pinctrl_maps_mutex); 840 return ERR_PTR(ret); 841 } 842 } 843 mutex_unlock(&pinctrl_maps_mutex); 844 845 if (ret < 0) { 846 /* If some other error than deferral occured, return here */ 847 pinctrl_free(p, false); 848 return ERR_PTR(ret); 849 } 850 851 kref_init(&p->users); 852 853 /* Add the pinctrl handle to the global list */ 854 list_add_tail(&p->node, &pinctrl_list); 855 856 return p; 857 } 858 859 /** 860 * pinctrl_get() - retrieves the pinctrl handle for a device 861 * @dev: the device to obtain the handle for 862 */ 863 struct pinctrl *pinctrl_get(struct device *dev) 864 { 865 struct pinctrl *p; 866 867 if (WARN_ON(!dev)) 868 return ERR_PTR(-EINVAL); 869 870 /* 871 * See if somebody else (such as the device core) has already 872 * obtained a handle to the pinctrl for this device. In that case, 873 * return another pointer to it. 874 */ 875 p = find_pinctrl(dev); 876 if (p != NULL) { 877 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 878 kref_get(&p->users); 879 return p; 880 } 881 882 return create_pinctrl(dev); 883 } 884 EXPORT_SYMBOL_GPL(pinctrl_get); 885 886 static void pinctrl_free_setting(bool disable_setting, 887 struct pinctrl_setting *setting) 888 { 889 switch (setting->type) { 890 case PIN_MAP_TYPE_MUX_GROUP: 891 if (disable_setting) 892 pinmux_disable_setting(setting); 893 pinmux_free_setting(setting); 894 break; 895 case PIN_MAP_TYPE_CONFIGS_PIN: 896 case PIN_MAP_TYPE_CONFIGS_GROUP: 897 pinconf_free_setting(setting); 898 break; 899 default: 900 break; 901 } 902 } 903 904 static void pinctrl_free(struct pinctrl *p, bool inlist) 905 { 906 struct pinctrl_state *state, *n1; 907 struct pinctrl_setting *setting, *n2; 908 909 mutex_lock(&pinctrl_list_mutex); 910 list_for_each_entry_safe(state, n1, &p->states, node) { 911 list_for_each_entry_safe(setting, n2, &state->settings, node) { 912 pinctrl_free_setting(state == p->state, setting); 913 list_del(&setting->node); 914 kfree(setting); 915 } 916 list_del(&state->node); 917 kfree(state); 918 } 919 920 pinctrl_dt_free_maps(p); 921 922 if (inlist) 923 list_del(&p->node); 924 kfree(p); 925 mutex_unlock(&pinctrl_list_mutex); 926 } 927 928 /** 929 * pinctrl_release() - release the pinctrl handle 930 * @kref: the kref in the pinctrl being released 931 */ 932 static void pinctrl_release(struct kref *kref) 933 { 934 struct pinctrl *p = container_of(kref, struct pinctrl, users); 935 936 pinctrl_free(p, true); 937 } 938 939 /** 940 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 941 * @p: the pinctrl handle to release 942 */ 943 void pinctrl_put(struct pinctrl *p) 944 { 945 kref_put(&p->users, pinctrl_release); 946 } 947 EXPORT_SYMBOL_GPL(pinctrl_put); 948 949 /** 950 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 951 * @p: the pinctrl handle to retrieve the state from 952 * @name: the state name to retrieve 953 */ 954 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 955 const char *name) 956 { 957 struct pinctrl_state *state; 958 959 state = find_state(p, name); 960 if (!state) { 961 if (pinctrl_dummy_state) { 962 /* create dummy state */ 963 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 964 name); 965 state = create_state(p, name); 966 } else 967 state = ERR_PTR(-ENODEV); 968 } 969 970 return state; 971 } 972 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 973 974 /** 975 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 976 * @p: the pinctrl handle for the device that requests configuration 977 * @state: the state handle to select/activate/program 978 */ 979 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 980 { 981 struct pinctrl_setting *setting, *setting2; 982 struct pinctrl_state *old_state = p->state; 983 int ret; 984 985 if (p->state == state) 986 return 0; 987 988 if (p->state) { 989 /* 990 * The set of groups with a mux configuration in the old state 991 * may not be identical to the set of groups with a mux setting 992 * in the new state. While this might be unusual, it's entirely 993 * possible for the "user"-supplied mapping table to be written 994 * that way. For each group that was configured in the old state 995 * but not in the new state, this code puts that group into a 996 * safe/disabled state. 997 */ 998 list_for_each_entry(setting, &p->state->settings, node) { 999 bool found = false; 1000 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 1001 continue; 1002 list_for_each_entry(setting2, &state->settings, node) { 1003 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 1004 continue; 1005 if (setting2->data.mux.group == 1006 setting->data.mux.group) { 1007 found = true; 1008 break; 1009 } 1010 } 1011 if (!found) 1012 pinmux_disable_setting(setting); 1013 } 1014 } 1015 1016 p->state = NULL; 1017 1018 /* Apply all the settings for the new state */ 1019 list_for_each_entry(setting, &state->settings, node) { 1020 switch (setting->type) { 1021 case PIN_MAP_TYPE_MUX_GROUP: 1022 ret = pinmux_enable_setting(setting); 1023 break; 1024 case PIN_MAP_TYPE_CONFIGS_PIN: 1025 case PIN_MAP_TYPE_CONFIGS_GROUP: 1026 ret = pinconf_apply_setting(setting); 1027 break; 1028 default: 1029 ret = -EINVAL; 1030 break; 1031 } 1032 1033 if (ret < 0) { 1034 goto unapply_new_state; 1035 } 1036 } 1037 1038 p->state = state; 1039 1040 return 0; 1041 1042 unapply_new_state: 1043 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1044 1045 list_for_each_entry(setting2, &state->settings, node) { 1046 if (&setting2->node == &setting->node) 1047 break; 1048 /* 1049 * All we can do here is pinmux_disable_setting. 1050 * That means that some pins are muxed differently now 1051 * than they were before applying the setting (We can't 1052 * "unmux a pin"!), but it's not a big deal since the pins 1053 * are free to be muxed by another apply_setting. 1054 */ 1055 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1056 pinmux_disable_setting(setting2); 1057 } 1058 1059 /* There's no infinite recursive loop here because p->state is NULL */ 1060 if (old_state) 1061 pinctrl_select_state(p, old_state); 1062 1063 return ret; 1064 } 1065 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1066 1067 static void devm_pinctrl_release(struct device *dev, void *res) 1068 { 1069 pinctrl_put(*(struct pinctrl **)res); 1070 } 1071 1072 /** 1073 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1074 * @dev: the device to obtain the handle for 1075 * 1076 * If there is a need to explicitly destroy the returned struct pinctrl, 1077 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1078 */ 1079 struct pinctrl *devm_pinctrl_get(struct device *dev) 1080 { 1081 struct pinctrl **ptr, *p; 1082 1083 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1084 if (!ptr) 1085 return ERR_PTR(-ENOMEM); 1086 1087 p = pinctrl_get(dev); 1088 if (!IS_ERR(p)) { 1089 *ptr = p; 1090 devres_add(dev, ptr); 1091 } else { 1092 devres_free(ptr); 1093 } 1094 1095 return p; 1096 } 1097 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1098 1099 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1100 { 1101 struct pinctrl **p = res; 1102 1103 return *p == data; 1104 } 1105 1106 /** 1107 * devm_pinctrl_put() - Resource managed pinctrl_put() 1108 * @p: the pinctrl handle to release 1109 * 1110 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1111 * this function will not need to be called and the resource management 1112 * code will ensure that the resource is freed. 1113 */ 1114 void devm_pinctrl_put(struct pinctrl *p) 1115 { 1116 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1117 devm_pinctrl_match, p)); 1118 } 1119 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1120 1121 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1122 bool dup, bool locked) 1123 { 1124 int i, ret; 1125 struct pinctrl_maps *maps_node; 1126 1127 pr_debug("add %d pinmux maps\n", num_maps); 1128 1129 /* First sanity check the new mapping */ 1130 for (i = 0; i < num_maps; i++) { 1131 if (!maps[i].dev_name) { 1132 pr_err("failed to register map %s (%d): no device given\n", 1133 maps[i].name, i); 1134 return -EINVAL; 1135 } 1136 1137 if (!maps[i].name) { 1138 pr_err("failed to register map %d: no map name given\n", 1139 i); 1140 return -EINVAL; 1141 } 1142 1143 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1144 !maps[i].ctrl_dev_name) { 1145 pr_err("failed to register map %s (%d): no pin control device given\n", 1146 maps[i].name, i); 1147 return -EINVAL; 1148 } 1149 1150 switch (maps[i].type) { 1151 case PIN_MAP_TYPE_DUMMY_STATE: 1152 break; 1153 case PIN_MAP_TYPE_MUX_GROUP: 1154 ret = pinmux_validate_map(&maps[i], i); 1155 if (ret < 0) 1156 return ret; 1157 break; 1158 case PIN_MAP_TYPE_CONFIGS_PIN: 1159 case PIN_MAP_TYPE_CONFIGS_GROUP: 1160 ret = pinconf_validate_map(&maps[i], i); 1161 if (ret < 0) 1162 return ret; 1163 break; 1164 default: 1165 pr_err("failed to register map %s (%d): invalid type given\n", 1166 maps[i].name, i); 1167 return -EINVAL; 1168 } 1169 } 1170 1171 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1172 if (!maps_node) { 1173 pr_err("failed to alloc struct pinctrl_maps\n"); 1174 return -ENOMEM; 1175 } 1176 1177 maps_node->num_maps = num_maps; 1178 if (dup) { 1179 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1180 GFP_KERNEL); 1181 if (!maps_node->maps) { 1182 pr_err("failed to duplicate mapping table\n"); 1183 kfree(maps_node); 1184 return -ENOMEM; 1185 } 1186 } else { 1187 maps_node->maps = maps; 1188 } 1189 1190 if (!locked) 1191 mutex_lock(&pinctrl_maps_mutex); 1192 list_add_tail(&maps_node->node, &pinctrl_maps); 1193 if (!locked) 1194 mutex_unlock(&pinctrl_maps_mutex); 1195 1196 return 0; 1197 } 1198 1199 /** 1200 * pinctrl_register_mappings() - register a set of pin controller mappings 1201 * @maps: the pincontrol mappings table to register. This should probably be 1202 * marked with __initdata so it can be discarded after boot. This 1203 * function will perform a shallow copy for the mapping entries. 1204 * @num_maps: the number of maps in the mapping table 1205 */ 1206 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1207 unsigned num_maps) 1208 { 1209 return pinctrl_register_map(maps, num_maps, true, false); 1210 } 1211 1212 void pinctrl_unregister_map(struct pinctrl_map const *map) 1213 { 1214 struct pinctrl_maps *maps_node; 1215 1216 mutex_lock(&pinctrl_maps_mutex); 1217 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1218 if (maps_node->maps == map) { 1219 list_del(&maps_node->node); 1220 kfree(maps_node); 1221 mutex_unlock(&pinctrl_maps_mutex); 1222 return; 1223 } 1224 } 1225 mutex_unlock(&pinctrl_maps_mutex); 1226 } 1227 1228 /** 1229 * pinctrl_force_sleep() - turn a given controller device into sleep state 1230 * @pctldev: pin controller device 1231 */ 1232 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1233 { 1234 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1235 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1236 return 0; 1237 } 1238 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1239 1240 /** 1241 * pinctrl_force_default() - turn a given controller device into default state 1242 * @pctldev: pin controller device 1243 */ 1244 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1245 { 1246 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1247 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1248 return 0; 1249 } 1250 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1251 1252 #ifdef CONFIG_PM 1253 1254 /** 1255 * pinctrl_pm_select_state() - select pinctrl state for PM 1256 * @dev: device to select default state for 1257 * @state: state to set 1258 */ 1259 static int pinctrl_pm_select_state(struct device *dev, 1260 struct pinctrl_state *state) 1261 { 1262 struct dev_pin_info *pins = dev->pins; 1263 int ret; 1264 1265 if (IS_ERR(state)) 1266 return 0; /* No such state */ 1267 ret = pinctrl_select_state(pins->p, state); 1268 if (ret) 1269 dev_err(dev, "failed to activate pinctrl state %s\n", 1270 state->name); 1271 return ret; 1272 } 1273 1274 /** 1275 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1276 * @dev: device to select default state for 1277 */ 1278 int pinctrl_pm_select_default_state(struct device *dev) 1279 { 1280 if (!dev->pins) 1281 return 0; 1282 1283 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1284 } 1285 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1286 1287 /** 1288 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1289 * @dev: device to select sleep state for 1290 */ 1291 int pinctrl_pm_select_sleep_state(struct device *dev) 1292 { 1293 if (!dev->pins) 1294 return 0; 1295 1296 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1297 } 1298 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1299 1300 /** 1301 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1302 * @dev: device to select idle state for 1303 */ 1304 int pinctrl_pm_select_idle_state(struct device *dev) 1305 { 1306 if (!dev->pins) 1307 return 0; 1308 1309 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1310 } 1311 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1312 #endif 1313 1314 #ifdef CONFIG_DEBUG_FS 1315 1316 static int pinctrl_pins_show(struct seq_file *s, void *what) 1317 { 1318 struct pinctrl_dev *pctldev = s->private; 1319 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1320 unsigned i, pin; 1321 1322 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1323 1324 mutex_lock(&pctldev->mutex); 1325 1326 /* The pin number can be retrived from the pin controller descriptor */ 1327 for (i = 0; i < pctldev->desc->npins; i++) { 1328 struct pin_desc *desc; 1329 1330 pin = pctldev->desc->pins[i].number; 1331 desc = pin_desc_get(pctldev, pin); 1332 /* Pin space may be sparse */ 1333 if (desc == NULL) 1334 continue; 1335 1336 seq_printf(s, "pin %d (%s) ", pin, 1337 desc->name ? desc->name : "unnamed"); 1338 1339 /* Driver-specific info per pin */ 1340 if (ops->pin_dbg_show) 1341 ops->pin_dbg_show(pctldev, s, pin); 1342 1343 seq_puts(s, "\n"); 1344 } 1345 1346 mutex_unlock(&pctldev->mutex); 1347 1348 return 0; 1349 } 1350 1351 static int pinctrl_groups_show(struct seq_file *s, void *what) 1352 { 1353 struct pinctrl_dev *pctldev = s->private; 1354 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1355 unsigned ngroups, selector = 0; 1356 1357 mutex_lock(&pctldev->mutex); 1358 1359 ngroups = ops->get_groups_count(pctldev); 1360 1361 seq_puts(s, "registered pin groups:\n"); 1362 while (selector < ngroups) { 1363 const unsigned *pins; 1364 unsigned num_pins; 1365 const char *gname = ops->get_group_name(pctldev, selector); 1366 const char *pname; 1367 int ret; 1368 int i; 1369 1370 ret = ops->get_group_pins(pctldev, selector, 1371 &pins, &num_pins); 1372 if (ret) 1373 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1374 gname); 1375 else { 1376 seq_printf(s, "group: %s\n", gname); 1377 for (i = 0; i < num_pins; i++) { 1378 pname = pin_get_name(pctldev, pins[i]); 1379 if (WARN_ON(!pname)) { 1380 mutex_unlock(&pctldev->mutex); 1381 return -EINVAL; 1382 } 1383 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1384 } 1385 seq_puts(s, "\n"); 1386 } 1387 selector++; 1388 } 1389 1390 mutex_unlock(&pctldev->mutex); 1391 1392 return 0; 1393 } 1394 1395 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1396 { 1397 struct pinctrl_dev *pctldev = s->private; 1398 struct pinctrl_gpio_range *range = NULL; 1399 1400 seq_puts(s, "GPIO ranges handled:\n"); 1401 1402 mutex_lock(&pctldev->mutex); 1403 1404 /* Loop over the ranges */ 1405 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1406 if (range->pins) { 1407 int a; 1408 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1409 range->id, range->name, 1410 range->base, (range->base + range->npins - 1)); 1411 for (a = 0; a < range->npins - 1; a++) 1412 seq_printf(s, "%u, ", range->pins[a]); 1413 seq_printf(s, "%u}\n", range->pins[a]); 1414 } 1415 else 1416 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1417 range->id, range->name, 1418 range->base, (range->base + range->npins - 1), 1419 range->pin_base, 1420 (range->pin_base + range->npins - 1)); 1421 } 1422 1423 mutex_unlock(&pctldev->mutex); 1424 1425 return 0; 1426 } 1427 1428 static int pinctrl_devices_show(struct seq_file *s, void *what) 1429 { 1430 struct pinctrl_dev *pctldev; 1431 1432 seq_puts(s, "name [pinmux] [pinconf]\n"); 1433 1434 mutex_lock(&pinctrldev_list_mutex); 1435 1436 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1437 seq_printf(s, "%s ", pctldev->desc->name); 1438 if (pctldev->desc->pmxops) 1439 seq_puts(s, "yes "); 1440 else 1441 seq_puts(s, "no "); 1442 if (pctldev->desc->confops) 1443 seq_puts(s, "yes"); 1444 else 1445 seq_puts(s, "no"); 1446 seq_puts(s, "\n"); 1447 } 1448 1449 mutex_unlock(&pinctrldev_list_mutex); 1450 1451 return 0; 1452 } 1453 1454 static inline const char *map_type(enum pinctrl_map_type type) 1455 { 1456 static const char * const names[] = { 1457 "INVALID", 1458 "DUMMY_STATE", 1459 "MUX_GROUP", 1460 "CONFIGS_PIN", 1461 "CONFIGS_GROUP", 1462 }; 1463 1464 if (type >= ARRAY_SIZE(names)) 1465 return "UNKNOWN"; 1466 1467 return names[type]; 1468 } 1469 1470 static int pinctrl_maps_show(struct seq_file *s, void *what) 1471 { 1472 struct pinctrl_maps *maps_node; 1473 int i; 1474 struct pinctrl_map const *map; 1475 1476 seq_puts(s, "Pinctrl maps:\n"); 1477 1478 mutex_lock(&pinctrl_maps_mutex); 1479 for_each_maps(maps_node, i, map) { 1480 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1481 map->dev_name, map->name, map_type(map->type), 1482 map->type); 1483 1484 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1485 seq_printf(s, "controlling device %s\n", 1486 map->ctrl_dev_name); 1487 1488 switch (map->type) { 1489 case PIN_MAP_TYPE_MUX_GROUP: 1490 pinmux_show_map(s, map); 1491 break; 1492 case PIN_MAP_TYPE_CONFIGS_PIN: 1493 case PIN_MAP_TYPE_CONFIGS_GROUP: 1494 pinconf_show_map(s, map); 1495 break; 1496 default: 1497 break; 1498 } 1499 1500 seq_printf(s, "\n"); 1501 } 1502 mutex_unlock(&pinctrl_maps_mutex); 1503 1504 return 0; 1505 } 1506 1507 static int pinctrl_show(struct seq_file *s, void *what) 1508 { 1509 struct pinctrl *p; 1510 struct pinctrl_state *state; 1511 struct pinctrl_setting *setting; 1512 1513 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1514 1515 mutex_lock(&pinctrl_list_mutex); 1516 1517 list_for_each_entry(p, &pinctrl_list, node) { 1518 seq_printf(s, "device: %s current state: %s\n", 1519 dev_name(p->dev), 1520 p->state ? p->state->name : "none"); 1521 1522 list_for_each_entry(state, &p->states, node) { 1523 seq_printf(s, " state: %s\n", state->name); 1524 1525 list_for_each_entry(setting, &state->settings, node) { 1526 struct pinctrl_dev *pctldev = setting->pctldev; 1527 1528 seq_printf(s, " type: %s controller %s ", 1529 map_type(setting->type), 1530 pinctrl_dev_get_name(pctldev)); 1531 1532 switch (setting->type) { 1533 case PIN_MAP_TYPE_MUX_GROUP: 1534 pinmux_show_setting(s, setting); 1535 break; 1536 case PIN_MAP_TYPE_CONFIGS_PIN: 1537 case PIN_MAP_TYPE_CONFIGS_GROUP: 1538 pinconf_show_setting(s, setting); 1539 break; 1540 default: 1541 break; 1542 } 1543 } 1544 } 1545 } 1546 1547 mutex_unlock(&pinctrl_list_mutex); 1548 1549 return 0; 1550 } 1551 1552 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1553 { 1554 return single_open(file, pinctrl_pins_show, inode->i_private); 1555 } 1556 1557 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1558 { 1559 return single_open(file, pinctrl_groups_show, inode->i_private); 1560 } 1561 1562 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1563 { 1564 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1565 } 1566 1567 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1568 { 1569 return single_open(file, pinctrl_devices_show, NULL); 1570 } 1571 1572 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1573 { 1574 return single_open(file, pinctrl_maps_show, NULL); 1575 } 1576 1577 static int pinctrl_open(struct inode *inode, struct file *file) 1578 { 1579 return single_open(file, pinctrl_show, NULL); 1580 } 1581 1582 static const struct file_operations pinctrl_pins_ops = { 1583 .open = pinctrl_pins_open, 1584 .read = seq_read, 1585 .llseek = seq_lseek, 1586 .release = single_release, 1587 }; 1588 1589 static const struct file_operations pinctrl_groups_ops = { 1590 .open = pinctrl_groups_open, 1591 .read = seq_read, 1592 .llseek = seq_lseek, 1593 .release = single_release, 1594 }; 1595 1596 static const struct file_operations pinctrl_gpioranges_ops = { 1597 .open = pinctrl_gpioranges_open, 1598 .read = seq_read, 1599 .llseek = seq_lseek, 1600 .release = single_release, 1601 }; 1602 1603 static const struct file_operations pinctrl_devices_ops = { 1604 .open = pinctrl_devices_open, 1605 .read = seq_read, 1606 .llseek = seq_lseek, 1607 .release = single_release, 1608 }; 1609 1610 static const struct file_operations pinctrl_maps_ops = { 1611 .open = pinctrl_maps_open, 1612 .read = seq_read, 1613 .llseek = seq_lseek, 1614 .release = single_release, 1615 }; 1616 1617 static const struct file_operations pinctrl_ops = { 1618 .open = pinctrl_open, 1619 .read = seq_read, 1620 .llseek = seq_lseek, 1621 .release = single_release, 1622 }; 1623 1624 static struct dentry *debugfs_root; 1625 1626 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1627 { 1628 struct dentry *device_root; 1629 1630 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1631 debugfs_root); 1632 pctldev->device_root = device_root; 1633 1634 if (IS_ERR(device_root) || !device_root) { 1635 pr_warn("failed to create debugfs directory for %s\n", 1636 dev_name(pctldev->dev)); 1637 return; 1638 } 1639 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1640 device_root, pctldev, &pinctrl_pins_ops); 1641 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1642 device_root, pctldev, &pinctrl_groups_ops); 1643 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1644 device_root, pctldev, &pinctrl_gpioranges_ops); 1645 pinmux_init_device_debugfs(device_root, pctldev); 1646 pinconf_init_device_debugfs(device_root, pctldev); 1647 } 1648 1649 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1650 { 1651 debugfs_remove_recursive(pctldev->device_root); 1652 } 1653 1654 static void pinctrl_init_debugfs(void) 1655 { 1656 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1657 if (IS_ERR(debugfs_root) || !debugfs_root) { 1658 pr_warn("failed to create debugfs directory\n"); 1659 debugfs_root = NULL; 1660 return; 1661 } 1662 1663 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1664 debugfs_root, NULL, &pinctrl_devices_ops); 1665 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1666 debugfs_root, NULL, &pinctrl_maps_ops); 1667 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1668 debugfs_root, NULL, &pinctrl_ops); 1669 } 1670 1671 #else /* CONFIG_DEBUG_FS */ 1672 1673 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1674 { 1675 } 1676 1677 static void pinctrl_init_debugfs(void) 1678 { 1679 } 1680 1681 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1682 { 1683 } 1684 1685 #endif 1686 1687 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1688 { 1689 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1690 1691 if (!ops || 1692 !ops->get_groups_count || 1693 !ops->get_group_name || 1694 !ops->get_group_pins) 1695 return -EINVAL; 1696 1697 if (ops->dt_node_to_map && !ops->dt_free_map) 1698 return -EINVAL; 1699 1700 return 0; 1701 } 1702 1703 /** 1704 * pinctrl_register() - register a pin controller device 1705 * @pctldesc: descriptor for this pin controller 1706 * @dev: parent device for this pin controller 1707 * @driver_data: private pin controller data for this pin controller 1708 */ 1709 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1710 struct device *dev, void *driver_data) 1711 { 1712 struct pinctrl_dev *pctldev; 1713 int ret; 1714 1715 if (!pctldesc) 1716 return NULL; 1717 if (!pctldesc->name) 1718 return NULL; 1719 1720 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1721 if (pctldev == NULL) { 1722 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1723 return NULL; 1724 } 1725 1726 /* Initialize pin control device struct */ 1727 pctldev->owner = pctldesc->owner; 1728 pctldev->desc = pctldesc; 1729 pctldev->driver_data = driver_data; 1730 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1731 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1732 pctldev->dev = dev; 1733 mutex_init(&pctldev->mutex); 1734 1735 /* check core ops for sanity */ 1736 if (pinctrl_check_ops(pctldev)) { 1737 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1738 goto out_err; 1739 } 1740 1741 /* If we're implementing pinmuxing, check the ops for sanity */ 1742 if (pctldesc->pmxops) { 1743 if (pinmux_check_ops(pctldev)) 1744 goto out_err; 1745 } 1746 1747 /* If we're implementing pinconfig, check the ops for sanity */ 1748 if (pctldesc->confops) { 1749 if (pinconf_check_ops(pctldev)) 1750 goto out_err; 1751 } 1752 1753 /* Register all the pins */ 1754 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1755 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1756 if (ret) { 1757 dev_err(dev, "error during pin registration\n"); 1758 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1759 pctldesc->npins); 1760 goto out_err; 1761 } 1762 1763 mutex_lock(&pinctrldev_list_mutex); 1764 list_add_tail(&pctldev->node, &pinctrldev_list); 1765 mutex_unlock(&pinctrldev_list_mutex); 1766 1767 pctldev->p = pinctrl_get(pctldev->dev); 1768 1769 if (!IS_ERR(pctldev->p)) { 1770 pctldev->hog_default = 1771 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1772 if (IS_ERR(pctldev->hog_default)) { 1773 dev_dbg(dev, "failed to lookup the default state\n"); 1774 } else { 1775 if (pinctrl_select_state(pctldev->p, 1776 pctldev->hog_default)) 1777 dev_err(dev, 1778 "failed to select default state\n"); 1779 } 1780 1781 pctldev->hog_sleep = 1782 pinctrl_lookup_state(pctldev->p, 1783 PINCTRL_STATE_SLEEP); 1784 if (IS_ERR(pctldev->hog_sleep)) 1785 dev_dbg(dev, "failed to lookup the sleep state\n"); 1786 } 1787 1788 pinctrl_init_device_debugfs(pctldev); 1789 1790 return pctldev; 1791 1792 out_err: 1793 mutex_destroy(&pctldev->mutex); 1794 kfree(pctldev); 1795 return NULL; 1796 } 1797 EXPORT_SYMBOL_GPL(pinctrl_register); 1798 1799 /** 1800 * pinctrl_unregister() - unregister pinmux 1801 * @pctldev: pin controller to unregister 1802 * 1803 * Called by pinmux drivers to unregister a pinmux. 1804 */ 1805 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1806 { 1807 struct pinctrl_gpio_range *range, *n; 1808 if (pctldev == NULL) 1809 return; 1810 1811 mutex_lock(&pinctrldev_list_mutex); 1812 mutex_lock(&pctldev->mutex); 1813 1814 pinctrl_remove_device_debugfs(pctldev); 1815 1816 if (!IS_ERR(pctldev->p)) 1817 pinctrl_put(pctldev->p); 1818 1819 /* TODO: check that no pinmuxes are still active? */ 1820 list_del(&pctldev->node); 1821 /* Destroy descriptor tree */ 1822 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1823 pctldev->desc->npins); 1824 /* remove gpio ranges map */ 1825 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1826 list_del(&range->node); 1827 1828 mutex_unlock(&pctldev->mutex); 1829 mutex_destroy(&pctldev->mutex); 1830 kfree(pctldev); 1831 mutex_unlock(&pinctrldev_list_mutex); 1832 } 1833 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1834 1835 static int __init pinctrl_init(void) 1836 { 1837 pr_info("initialized pinctrl subsystem\n"); 1838 pinctrl_init_debugfs(); 1839 return 0; 1840 } 1841 1842 /* init early since many drivers really need to initialized pinmux early */ 1843 core_initcall(pinctrl_init); 1844