xref: /openbmc/linux/drivers/pinctrl/core.c (revision 089a49b6)
1 /*
2  * Core driver for the pin control subsystem
3  *
4  * Copyright (C) 2011-2012 ST-Ericsson SA
5  * Written on behalf of Linaro for ST-Ericsson
6  * Based on bits of regulator core, gpio core and clk core
7  *
8  * Author: Linus Walleij <linus.walleij@linaro.org>
9  *
10  * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
11  *
12  * License terms: GNU General Public License (GPL) version 2
13  */
14 #define pr_fmt(fmt) "pinctrl core: " fmt
15 
16 #include <linux/kernel.h>
17 #include <linux/kref.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/device.h>
21 #include <linux/slab.h>
22 #include <linux/err.h>
23 #include <linux/list.h>
24 #include <linux/sysfs.h>
25 #include <linux/debugfs.h>
26 #include <linux/seq_file.h>
27 #include <linux/pinctrl/consumer.h>
28 #include <linux/pinctrl/pinctrl.h>
29 #include <linux/pinctrl/machine.h>
30 
31 #ifdef CONFIG_GPIOLIB
32 #include <asm-generic/gpio.h>
33 #endif
34 
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinmux.h"
38 #include "pinconf.h"
39 
40 
41 static bool pinctrl_dummy_state;
42 
43 /* Mutex taken to protect pinctrl_list */
44 static DEFINE_MUTEX(pinctrl_list_mutex);
45 
46 /* Mutex taken to protect pinctrl_maps */
47 DEFINE_MUTEX(pinctrl_maps_mutex);
48 
49 /* Mutex taken to protect pinctrldev_list */
50 static DEFINE_MUTEX(pinctrldev_list_mutex);
51 
52 /* Global list of pin control devices (struct pinctrl_dev) */
53 static LIST_HEAD(pinctrldev_list);
54 
55 /* List of pin controller handles (struct pinctrl) */
56 static LIST_HEAD(pinctrl_list);
57 
58 /* List of pinctrl maps (struct pinctrl_maps) */
59 LIST_HEAD(pinctrl_maps);
60 
61 
62 /**
63  * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
64  *
65  * Usually this function is called by platforms without pinctrl driver support
66  * but run with some shared drivers using pinctrl APIs.
67  * After calling this function, the pinctrl core will return successfully
68  * with creating a dummy state for the driver to keep going smoothly.
69  */
70 void pinctrl_provide_dummies(void)
71 {
72 	pinctrl_dummy_state = true;
73 }
74 
75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
76 {
77 	/* We're not allowed to register devices without name */
78 	return pctldev->desc->name;
79 }
80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
81 
82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
83 {
84 	return dev_name(pctldev->dev);
85 }
86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
87 
88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
89 {
90 	return pctldev->driver_data;
91 }
92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 
94 /**
95  * get_pinctrl_dev_from_devname() - look up pin controller device
96  * @devname: the name of a device instance, as returned by dev_name()
97  *
98  * Looks up a pin control device matching a certain device name or pure device
99  * pointer, the pure device pointer will take precedence.
100  */
101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
102 {
103 	struct pinctrl_dev *pctldev = NULL;
104 
105 	if (!devname)
106 		return NULL;
107 
108 	mutex_lock(&pinctrldev_list_mutex);
109 
110 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
111 		if (!strcmp(dev_name(pctldev->dev), devname)) {
112 			/* Matched on device name */
113 			mutex_unlock(&pinctrldev_list_mutex);
114 			return pctldev;
115 		}
116 	}
117 
118 	mutex_unlock(&pinctrldev_list_mutex);
119 
120 	return NULL;
121 }
122 
123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
124 {
125 	struct pinctrl_dev *pctldev;
126 
127 	mutex_lock(&pinctrldev_list_mutex);
128 
129 	list_for_each_entry(pctldev, &pinctrldev_list, node)
130 		if (pctldev->dev->of_node == np) {
131 			mutex_unlock(&pinctrldev_list_mutex);
132 			return pctldev;
133 		}
134 
135 	mutex_unlock(&pinctrldev_list_mutex);
136 
137 	return NULL;
138 }
139 
140 /**
141  * pin_get_from_name() - look up a pin number from a name
142  * @pctldev: the pin control device to lookup the pin on
143  * @name: the name of the pin to look up
144  */
145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
146 {
147 	unsigned i, pin;
148 
149 	/* The pin number can be retrived from the pin controller descriptor */
150 	for (i = 0; i < pctldev->desc->npins; i++) {
151 		struct pin_desc *desc;
152 
153 		pin = pctldev->desc->pins[i].number;
154 		desc = pin_desc_get(pctldev, pin);
155 		/* Pin space may be sparse */
156 		if (desc && !strcmp(name, desc->name))
157 			return pin;
158 	}
159 
160 	return -EINVAL;
161 }
162 
163 /**
164  * pin_get_name_from_id() - look up a pin name from a pin id
165  * @pctldev: the pin control device to lookup the pin on
166  * @name: the name of the pin to look up
167  */
168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
169 {
170 	const struct pin_desc *desc;
171 
172 	desc = pin_desc_get(pctldev, pin);
173 	if (desc == NULL) {
174 		dev_err(pctldev->dev, "failed to get pin(%d) name\n",
175 			pin);
176 		return NULL;
177 	}
178 
179 	return desc->name;
180 }
181 
182 /**
183  * pin_is_valid() - check if pin exists on controller
184  * @pctldev: the pin control device to check the pin on
185  * @pin: pin to check, use the local pin controller index number
186  *
187  * This tells us whether a certain pin exist on a certain pin controller or
188  * not. Pin lists may be sparse, so some pins may not exist.
189  */
190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin)
191 {
192 	struct pin_desc *pindesc;
193 
194 	if (pin < 0)
195 		return false;
196 
197 	mutex_lock(&pctldev->mutex);
198 	pindesc = pin_desc_get(pctldev, pin);
199 	mutex_unlock(&pctldev->mutex);
200 
201 	return pindesc != NULL;
202 }
203 EXPORT_SYMBOL_GPL(pin_is_valid);
204 
205 /* Deletes a range of pin descriptors */
206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
207 				  const struct pinctrl_pin_desc *pins,
208 				  unsigned num_pins)
209 {
210 	int i;
211 
212 	for (i = 0; i < num_pins; i++) {
213 		struct pin_desc *pindesc;
214 
215 		pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
216 					    pins[i].number);
217 		if (pindesc != NULL) {
218 			radix_tree_delete(&pctldev->pin_desc_tree,
219 					  pins[i].number);
220 			if (pindesc->dynamic_name)
221 				kfree(pindesc->name);
222 		}
223 		kfree(pindesc);
224 	}
225 }
226 
227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
228 				    unsigned number, const char *name)
229 {
230 	struct pin_desc *pindesc;
231 
232 	pindesc = pin_desc_get(pctldev, number);
233 	if (pindesc != NULL) {
234 		pr_err("pin %d already registered on %s\n", number,
235 		       pctldev->desc->name);
236 		return -EINVAL;
237 	}
238 
239 	pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
240 	if (pindesc == NULL) {
241 		dev_err(pctldev->dev, "failed to alloc struct pin_desc\n");
242 		return -ENOMEM;
243 	}
244 
245 	/* Set owner */
246 	pindesc->pctldev = pctldev;
247 
248 	/* Copy basic pin info */
249 	if (name) {
250 		pindesc->name = name;
251 	} else {
252 		pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number);
253 		if (pindesc->name == NULL) {
254 			kfree(pindesc);
255 			return -ENOMEM;
256 		}
257 		pindesc->dynamic_name = true;
258 	}
259 
260 	radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc);
261 	pr_debug("registered pin %d (%s) on %s\n",
262 		 number, pindesc->name, pctldev->desc->name);
263 	return 0;
264 }
265 
266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
267 				 struct pinctrl_pin_desc const *pins,
268 				 unsigned num_descs)
269 {
270 	unsigned i;
271 	int ret = 0;
272 
273 	for (i = 0; i < num_descs; i++) {
274 		ret = pinctrl_register_one_pin(pctldev,
275 					       pins[i].number, pins[i].name);
276 		if (ret)
277 			return ret;
278 	}
279 
280 	return 0;
281 }
282 
283 /**
284  * gpio_to_pin() - GPIO range GPIO number to pin number translation
285  * @range: GPIO range used for the translation
286  * @gpio: gpio pin to translate to a pin number
287  *
288  * Finds the pin number for a given GPIO using the specified GPIO range
289  * as a base for translation. The distinction between linear GPIO ranges
290  * and pin list based GPIO ranges is managed correctly by this function.
291  *
292  * This function assumes the gpio is part of the specified GPIO range, use
293  * only after making sure this is the case (e.g. by calling it on the
294  * result of successful pinctrl_get_device_gpio_range calls)!
295  */
296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
297 				unsigned int gpio)
298 {
299 	unsigned int offset = gpio - range->base;
300 	if (range->pins)
301 		return range->pins[offset];
302 	else
303 		return range->pin_base + offset;
304 }
305 
306 /**
307  * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
308  * @pctldev: pin controller device to check
309  * @gpio: gpio pin to check taken from the global GPIO pin space
310  *
311  * Tries to match a GPIO pin number to the ranges handled by a certain pin
312  * controller, return the range or NULL
313  */
314 static struct pinctrl_gpio_range *
315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
316 {
317 	struct pinctrl_gpio_range *range = NULL;
318 
319 	mutex_lock(&pctldev->mutex);
320 	/* Loop over the ranges */
321 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
322 		/* Check if we're in the valid range */
323 		if (gpio >= range->base &&
324 		    gpio < range->base + range->npins) {
325 			mutex_unlock(&pctldev->mutex);
326 			return range;
327 		}
328 	}
329 	mutex_unlock(&pctldev->mutex);
330 	return NULL;
331 }
332 
333 /**
334  * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
335  * the same GPIO chip are in range
336  * @gpio: gpio pin to check taken from the global GPIO pin space
337  *
338  * This function is complement of pinctrl_match_gpio_range(). If the return
339  * value of pinctrl_match_gpio_range() is NULL, this function could be used
340  * to check whether pinctrl device is ready or not. Maybe some GPIO pins
341  * of the same GPIO chip don't have back-end pinctrl interface.
342  * If the return value is true, it means that pinctrl device is ready & the
343  * certain GPIO pin doesn't have back-end pinctrl device. If the return value
344  * is false, it means that pinctrl device may not be ready.
345  */
346 #ifdef CONFIG_GPIOLIB
347 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
348 {
349 	struct pinctrl_dev *pctldev;
350 	struct pinctrl_gpio_range *range = NULL;
351 	struct gpio_chip *chip = gpio_to_chip(gpio);
352 
353 	mutex_lock(&pinctrldev_list_mutex);
354 
355 	/* Loop over the pin controllers */
356 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
357 		/* Loop over the ranges */
358 		mutex_lock(&pctldev->mutex);
359 		list_for_each_entry(range, &pctldev->gpio_ranges, node) {
360 			/* Check if any gpio range overlapped with gpio chip */
361 			if (range->base + range->npins - 1 < chip->base ||
362 			    range->base > chip->base + chip->ngpio - 1)
363 				continue;
364 			mutex_unlock(&pctldev->mutex);
365 			mutex_unlock(&pinctrldev_list_mutex);
366 			return true;
367 		}
368 		mutex_unlock(&pctldev->mutex);
369 	}
370 
371 	mutex_unlock(&pinctrldev_list_mutex);
372 
373 	return false;
374 }
375 #else
376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
377 #endif
378 
379 /**
380  * pinctrl_get_device_gpio_range() - find device for GPIO range
381  * @gpio: the pin to locate the pin controller for
382  * @outdev: the pin control device if found
383  * @outrange: the GPIO range if found
384  *
385  * Find the pin controller handling a certain GPIO pin from the pinspace of
386  * the GPIO subsystem, return the device and the matching GPIO range. Returns
387  * -EPROBE_DEFER if the GPIO range could not be found in any device since it
388  * may still have not been registered.
389  */
390 static int pinctrl_get_device_gpio_range(unsigned gpio,
391 					 struct pinctrl_dev **outdev,
392 					 struct pinctrl_gpio_range **outrange)
393 {
394 	struct pinctrl_dev *pctldev = NULL;
395 
396 	mutex_lock(&pinctrldev_list_mutex);
397 
398 	/* Loop over the pin controllers */
399 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
400 		struct pinctrl_gpio_range *range;
401 
402 		range = pinctrl_match_gpio_range(pctldev, gpio);
403 		if (range != NULL) {
404 			*outdev = pctldev;
405 			*outrange = range;
406 			mutex_unlock(&pinctrldev_list_mutex);
407 			return 0;
408 		}
409 	}
410 
411 	mutex_unlock(&pinctrldev_list_mutex);
412 
413 	return -EPROBE_DEFER;
414 }
415 
416 /**
417  * pinctrl_add_gpio_range() - register a GPIO range for a controller
418  * @pctldev: pin controller device to add the range to
419  * @range: the GPIO range to add
420  *
421  * This adds a range of GPIOs to be handled by a certain pin controller. Call
422  * this to register handled ranges after registering your pin controller.
423  */
424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
425 			    struct pinctrl_gpio_range *range)
426 {
427 	mutex_lock(&pctldev->mutex);
428 	list_add_tail(&range->node, &pctldev->gpio_ranges);
429 	mutex_unlock(&pctldev->mutex);
430 }
431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
432 
433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
434 			     struct pinctrl_gpio_range *ranges,
435 			     unsigned nranges)
436 {
437 	int i;
438 
439 	for (i = 0; i < nranges; i++)
440 		pinctrl_add_gpio_range(pctldev, &ranges[i]);
441 }
442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
443 
444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
445 		struct pinctrl_gpio_range *range)
446 {
447 	struct pinctrl_dev *pctldev;
448 
449 	pctldev = get_pinctrl_dev_from_devname(devname);
450 
451 	/*
452 	 * If we can't find this device, let's assume that is because
453 	 * it has not probed yet, so the driver trying to register this
454 	 * range need to defer probing.
455 	 */
456 	if (!pctldev) {
457 		return ERR_PTR(-EPROBE_DEFER);
458 	}
459 	pinctrl_add_gpio_range(pctldev, range);
460 
461 	return pctldev;
462 }
463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
464 
465 /**
466  * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
467  * @pctldev: the pin controller device to look in
468  * @pin: a controller-local number to find the range for
469  */
470 struct pinctrl_gpio_range *
471 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
472 				 unsigned int pin)
473 {
474 	struct pinctrl_gpio_range *range;
475 
476 	mutex_lock(&pctldev->mutex);
477 	/* Loop over the ranges */
478 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
479 		/* Check if we're in the valid range */
480 		if (range->pins) {
481 			int a;
482 			for (a = 0; a < range->npins; a++) {
483 				if (range->pins[a] == pin)
484 					goto out;
485 			}
486 		} else if (pin >= range->pin_base &&
487 			   pin < range->pin_base + range->npins)
488 			goto out;
489 	}
490 	range = NULL;
491 out:
492 	mutex_unlock(&pctldev->mutex);
493 	return range;
494 }
495 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
496 
497 /**
498  * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller
499  * @pctldev: pin controller device to remove the range from
500  * @range: the GPIO range to remove
501  */
502 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
503 			       struct pinctrl_gpio_range *range)
504 {
505 	mutex_lock(&pctldev->mutex);
506 	list_del(&range->node);
507 	mutex_unlock(&pctldev->mutex);
508 }
509 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
510 
511 /**
512  * pinctrl_get_group_selector() - returns the group selector for a group
513  * @pctldev: the pin controller handling the group
514  * @pin_group: the pin group to look up
515  */
516 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
517 			       const char *pin_group)
518 {
519 	const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
520 	unsigned ngroups = pctlops->get_groups_count(pctldev);
521 	unsigned group_selector = 0;
522 
523 	while (group_selector < ngroups) {
524 		const char *gname = pctlops->get_group_name(pctldev,
525 							    group_selector);
526 		if (!strcmp(gname, pin_group)) {
527 			dev_dbg(pctldev->dev,
528 				"found group selector %u for %s\n",
529 				group_selector,
530 				pin_group);
531 			return group_selector;
532 		}
533 
534 		group_selector++;
535 	}
536 
537 	dev_err(pctldev->dev, "does not have pin group %s\n",
538 		pin_group);
539 
540 	return -EINVAL;
541 }
542 
543 /**
544  * pinctrl_request_gpio() - request a single pin to be used in as GPIO
545  * @gpio: the GPIO pin number from the GPIO subsystem number space
546  *
547  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
548  * as part of their gpio_request() semantics, platforms and individual drivers
549  * shall *NOT* request GPIO pins to be muxed in.
550  */
551 int pinctrl_request_gpio(unsigned gpio)
552 {
553 	struct pinctrl_dev *pctldev;
554 	struct pinctrl_gpio_range *range;
555 	int ret;
556 	int pin;
557 
558 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
559 	if (ret) {
560 		if (pinctrl_ready_for_gpio_range(gpio))
561 			ret = 0;
562 		return ret;
563 	}
564 
565 	mutex_lock(&pctldev->mutex);
566 
567 	/* Convert to the pin controllers number space */
568 	pin = gpio_to_pin(range, gpio);
569 
570 	ret = pinmux_request_gpio(pctldev, range, pin, gpio);
571 
572 	mutex_unlock(&pctldev->mutex);
573 
574 	return ret;
575 }
576 EXPORT_SYMBOL_GPL(pinctrl_request_gpio);
577 
578 /**
579  * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO
580  * @gpio: the GPIO pin number from the GPIO subsystem number space
581  *
582  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
583  * as part of their gpio_free() semantics, platforms and individual drivers
584  * shall *NOT* request GPIO pins to be muxed out.
585  */
586 void pinctrl_free_gpio(unsigned gpio)
587 {
588 	struct pinctrl_dev *pctldev;
589 	struct pinctrl_gpio_range *range;
590 	int ret;
591 	int pin;
592 
593 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
594 	if (ret) {
595 		return;
596 	}
597 	mutex_lock(&pctldev->mutex);
598 
599 	/* Convert to the pin controllers number space */
600 	pin = gpio_to_pin(range, gpio);
601 
602 	pinmux_free_gpio(pctldev, pin, range);
603 
604 	mutex_unlock(&pctldev->mutex);
605 }
606 EXPORT_SYMBOL_GPL(pinctrl_free_gpio);
607 
608 static int pinctrl_gpio_direction(unsigned gpio, bool input)
609 {
610 	struct pinctrl_dev *pctldev;
611 	struct pinctrl_gpio_range *range;
612 	int ret;
613 	int pin;
614 
615 	ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
616 	if (ret) {
617 		return ret;
618 	}
619 
620 	mutex_lock(&pctldev->mutex);
621 
622 	/* Convert to the pin controllers number space */
623 	pin = gpio_to_pin(range, gpio);
624 	ret = pinmux_gpio_direction(pctldev, range, pin, input);
625 
626 	mutex_unlock(&pctldev->mutex);
627 
628 	return ret;
629 }
630 
631 /**
632  * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
633  * @gpio: the GPIO pin number from the GPIO subsystem number space
634  *
635  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
636  * as part of their gpio_direction_input() semantics, platforms and individual
637  * drivers shall *NOT* touch pin control GPIO calls.
638  */
639 int pinctrl_gpio_direction_input(unsigned gpio)
640 {
641 	return pinctrl_gpio_direction(gpio, true);
642 }
643 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
644 
645 /**
646  * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
647  * @gpio: the GPIO pin number from the GPIO subsystem number space
648  *
649  * This function should *ONLY* be used from gpiolib-based GPIO drivers,
650  * as part of their gpio_direction_output() semantics, platforms and individual
651  * drivers shall *NOT* touch pin control GPIO calls.
652  */
653 int pinctrl_gpio_direction_output(unsigned gpio)
654 {
655 	return pinctrl_gpio_direction(gpio, false);
656 }
657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
658 
659 static struct pinctrl_state *find_state(struct pinctrl *p,
660 					const char *name)
661 {
662 	struct pinctrl_state *state;
663 
664 	list_for_each_entry(state, &p->states, node)
665 		if (!strcmp(state->name, name))
666 			return state;
667 
668 	return NULL;
669 }
670 
671 static struct pinctrl_state *create_state(struct pinctrl *p,
672 					  const char *name)
673 {
674 	struct pinctrl_state *state;
675 
676 	state = kzalloc(sizeof(*state), GFP_KERNEL);
677 	if (state == NULL) {
678 		dev_err(p->dev,
679 			"failed to alloc struct pinctrl_state\n");
680 		return ERR_PTR(-ENOMEM);
681 	}
682 
683 	state->name = name;
684 	INIT_LIST_HEAD(&state->settings);
685 
686 	list_add_tail(&state->node, &p->states);
687 
688 	return state;
689 }
690 
691 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map)
692 {
693 	struct pinctrl_state *state;
694 	struct pinctrl_setting *setting;
695 	int ret;
696 
697 	state = find_state(p, map->name);
698 	if (!state)
699 		state = create_state(p, map->name);
700 	if (IS_ERR(state))
701 		return PTR_ERR(state);
702 
703 	if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
704 		return 0;
705 
706 	setting = kzalloc(sizeof(*setting), GFP_KERNEL);
707 	if (setting == NULL) {
708 		dev_err(p->dev,
709 			"failed to alloc struct pinctrl_setting\n");
710 		return -ENOMEM;
711 	}
712 
713 	setting->type = map->type;
714 
715 	setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name);
716 	if (setting->pctldev == NULL) {
717 		kfree(setting);
718 		/* Do not defer probing of hogs (circular loop) */
719 		if (!strcmp(map->ctrl_dev_name, map->dev_name))
720 			return -ENODEV;
721 		/*
722 		 * OK let us guess that the driver is not there yet, and
723 		 * let's defer obtaining this pinctrl handle to later...
724 		 */
725 		dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
726 			map->ctrl_dev_name);
727 		return -EPROBE_DEFER;
728 	}
729 
730 	setting->dev_name = map->dev_name;
731 
732 	switch (map->type) {
733 	case PIN_MAP_TYPE_MUX_GROUP:
734 		ret = pinmux_map_to_setting(map, setting);
735 		break;
736 	case PIN_MAP_TYPE_CONFIGS_PIN:
737 	case PIN_MAP_TYPE_CONFIGS_GROUP:
738 		ret = pinconf_map_to_setting(map, setting);
739 		break;
740 	default:
741 		ret = -EINVAL;
742 		break;
743 	}
744 	if (ret < 0) {
745 		kfree(setting);
746 		return ret;
747 	}
748 
749 	list_add_tail(&setting->node, &state->settings);
750 
751 	return 0;
752 }
753 
754 static struct pinctrl *find_pinctrl(struct device *dev)
755 {
756 	struct pinctrl *p;
757 
758 	mutex_lock(&pinctrl_list_mutex);
759 	list_for_each_entry(p, &pinctrl_list, node)
760 		if (p->dev == dev) {
761 			mutex_unlock(&pinctrl_list_mutex);
762 			return p;
763 		}
764 
765 	mutex_unlock(&pinctrl_list_mutex);
766 	return NULL;
767 }
768 
769 static void pinctrl_free(struct pinctrl *p, bool inlist);
770 
771 static struct pinctrl *create_pinctrl(struct device *dev)
772 {
773 	struct pinctrl *p;
774 	const char *devname;
775 	struct pinctrl_maps *maps_node;
776 	int i;
777 	struct pinctrl_map const *map;
778 	int ret;
779 
780 	/*
781 	 * create the state cookie holder struct pinctrl for each
782 	 * mapping, this is what consumers will get when requesting
783 	 * a pin control handle with pinctrl_get()
784 	 */
785 	p = kzalloc(sizeof(*p), GFP_KERNEL);
786 	if (p == NULL) {
787 		dev_err(dev, "failed to alloc struct pinctrl\n");
788 		return ERR_PTR(-ENOMEM);
789 	}
790 	p->dev = dev;
791 	INIT_LIST_HEAD(&p->states);
792 	INIT_LIST_HEAD(&p->dt_maps);
793 
794 	ret = pinctrl_dt_to_map(p);
795 	if (ret < 0) {
796 		kfree(p);
797 		return ERR_PTR(ret);
798 	}
799 
800 	devname = dev_name(dev);
801 
802 	mutex_lock(&pinctrl_maps_mutex);
803 	/* Iterate over the pin control maps to locate the right ones */
804 	for_each_maps(maps_node, i, map) {
805 		/* Map must be for this device */
806 		if (strcmp(map->dev_name, devname))
807 			continue;
808 
809 		ret = add_setting(p, map);
810 		/*
811 		 * At this point the adding of a setting may:
812 		 *
813 		 * - Defer, if the pinctrl device is not yet available
814 		 * - Fail, if the pinctrl device is not yet available,
815 		 *   AND the setting is a hog. We cannot defer that, since
816 		 *   the hog will kick in immediately after the device
817 		 *   is registered.
818 		 *
819 		 * If the error returned was not -EPROBE_DEFER then we
820 		 * accumulate the errors to see if we end up with
821 		 * an -EPROBE_DEFER later, as that is the worst case.
822 		 */
823 		if (ret == -EPROBE_DEFER) {
824 			pinctrl_free(p, false);
825 			mutex_unlock(&pinctrl_maps_mutex);
826 			return ERR_PTR(ret);
827 		}
828 	}
829 	mutex_unlock(&pinctrl_maps_mutex);
830 
831 	if (ret < 0) {
832 		/* If some other error than deferral occured, return here */
833 		pinctrl_free(p, false);
834 		return ERR_PTR(ret);
835 	}
836 
837 	kref_init(&p->users);
838 
839 	/* Add the pinctrl handle to the global list */
840 	list_add_tail(&p->node, &pinctrl_list);
841 
842 	return p;
843 }
844 
845 /**
846  * pinctrl_get() - retrieves the pinctrl handle for a device
847  * @dev: the device to obtain the handle for
848  */
849 struct pinctrl *pinctrl_get(struct device *dev)
850 {
851 	struct pinctrl *p;
852 
853 	if (WARN_ON(!dev))
854 		return ERR_PTR(-EINVAL);
855 
856 	/*
857 	 * See if somebody else (such as the device core) has already
858 	 * obtained a handle to the pinctrl for this device. In that case,
859 	 * return another pointer to it.
860 	 */
861 	p = find_pinctrl(dev);
862 	if (p != NULL) {
863 		dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
864 		kref_get(&p->users);
865 		return p;
866 	}
867 
868 	return create_pinctrl(dev);
869 }
870 EXPORT_SYMBOL_GPL(pinctrl_get);
871 
872 static void pinctrl_free_setting(bool disable_setting,
873 				 struct pinctrl_setting *setting)
874 {
875 	switch (setting->type) {
876 	case PIN_MAP_TYPE_MUX_GROUP:
877 		if (disable_setting)
878 			pinmux_disable_setting(setting);
879 		pinmux_free_setting(setting);
880 		break;
881 	case PIN_MAP_TYPE_CONFIGS_PIN:
882 	case PIN_MAP_TYPE_CONFIGS_GROUP:
883 		pinconf_free_setting(setting);
884 		break;
885 	default:
886 		break;
887 	}
888 }
889 
890 static void pinctrl_free(struct pinctrl *p, bool inlist)
891 {
892 	struct pinctrl_state *state, *n1;
893 	struct pinctrl_setting *setting, *n2;
894 
895 	mutex_lock(&pinctrl_list_mutex);
896 	list_for_each_entry_safe(state, n1, &p->states, node) {
897 		list_for_each_entry_safe(setting, n2, &state->settings, node) {
898 			pinctrl_free_setting(state == p->state, setting);
899 			list_del(&setting->node);
900 			kfree(setting);
901 		}
902 		list_del(&state->node);
903 		kfree(state);
904 	}
905 
906 	pinctrl_dt_free_maps(p);
907 
908 	if (inlist)
909 		list_del(&p->node);
910 	kfree(p);
911 	mutex_unlock(&pinctrl_list_mutex);
912 }
913 
914 /**
915  * pinctrl_release() - release the pinctrl handle
916  * @kref: the kref in the pinctrl being released
917  */
918 static void pinctrl_release(struct kref *kref)
919 {
920 	struct pinctrl *p = container_of(kref, struct pinctrl, users);
921 
922 	pinctrl_free(p, true);
923 }
924 
925 /**
926  * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
927  * @p: the pinctrl handle to release
928  */
929 void pinctrl_put(struct pinctrl *p)
930 {
931 	kref_put(&p->users, pinctrl_release);
932 }
933 EXPORT_SYMBOL_GPL(pinctrl_put);
934 
935 /**
936  * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
937  * @p: the pinctrl handle to retrieve the state from
938  * @name: the state name to retrieve
939  */
940 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
941 						 const char *name)
942 {
943 	struct pinctrl_state *state;
944 
945 	state = find_state(p, name);
946 	if (!state) {
947 		if (pinctrl_dummy_state) {
948 			/* create dummy state */
949 			dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
950 				name);
951 			state = create_state(p, name);
952 		} else
953 			state = ERR_PTR(-ENODEV);
954 	}
955 
956 	return state;
957 }
958 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
959 
960 /**
961  * pinctrl_select_state() - select/activate/program a pinctrl state to HW
962  * @p: the pinctrl handle for the device that requests configuration
963  * @state: the state handle to select/activate/program
964  */
965 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
966 {
967 	struct pinctrl_setting *setting, *setting2;
968 	struct pinctrl_state *old_state = p->state;
969 	int ret;
970 
971 	if (p->state == state)
972 		return 0;
973 
974 	if (p->state) {
975 		/*
976 		 * The set of groups with a mux configuration in the old state
977 		 * may not be identical to the set of groups with a mux setting
978 		 * in the new state. While this might be unusual, it's entirely
979 		 * possible for the "user"-supplied mapping table to be written
980 		 * that way. For each group that was configured in the old state
981 		 * but not in the new state, this code puts that group into a
982 		 * safe/disabled state.
983 		 */
984 		list_for_each_entry(setting, &p->state->settings, node) {
985 			bool found = false;
986 			if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
987 				continue;
988 			list_for_each_entry(setting2, &state->settings, node) {
989 				if (setting2->type != PIN_MAP_TYPE_MUX_GROUP)
990 					continue;
991 				if (setting2->data.mux.group ==
992 						setting->data.mux.group) {
993 					found = true;
994 					break;
995 				}
996 			}
997 			if (!found)
998 				pinmux_disable_setting(setting);
999 		}
1000 	}
1001 
1002 	p->state = NULL;
1003 
1004 	/* Apply all the settings for the new state */
1005 	list_for_each_entry(setting, &state->settings, node) {
1006 		switch (setting->type) {
1007 		case PIN_MAP_TYPE_MUX_GROUP:
1008 			ret = pinmux_enable_setting(setting);
1009 			break;
1010 		case PIN_MAP_TYPE_CONFIGS_PIN:
1011 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1012 			ret = pinconf_apply_setting(setting);
1013 			break;
1014 		default:
1015 			ret = -EINVAL;
1016 			break;
1017 		}
1018 
1019 		if (ret < 0) {
1020 			goto unapply_new_state;
1021 		}
1022 	}
1023 
1024 	p->state = state;
1025 
1026 	return 0;
1027 
1028 unapply_new_state:
1029 	dev_err(p->dev, "Error applying setting, reverse things back\n");
1030 
1031 	list_for_each_entry(setting2, &state->settings, node) {
1032 		if (&setting2->node == &setting->node)
1033 			break;
1034 		/*
1035 		 * All we can do here is pinmux_disable_setting.
1036 		 * That means that some pins are muxed differently now
1037 		 * than they were before applying the setting (We can't
1038 		 * "unmux a pin"!), but it's not a big deal since the pins
1039 		 * are free to be muxed by another apply_setting.
1040 		 */
1041 		if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1042 			pinmux_disable_setting(setting2);
1043 	}
1044 
1045 	/* There's no infinite recursive loop here because p->state is NULL */
1046 	if (old_state)
1047 		pinctrl_select_state(p, old_state);
1048 
1049 	return ret;
1050 }
1051 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1052 
1053 static void devm_pinctrl_release(struct device *dev, void *res)
1054 {
1055 	pinctrl_put(*(struct pinctrl **)res);
1056 }
1057 
1058 /**
1059  * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1060  * @dev: the device to obtain the handle for
1061  *
1062  * If there is a need to explicitly destroy the returned struct pinctrl,
1063  * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1064  */
1065 struct pinctrl *devm_pinctrl_get(struct device *dev)
1066 {
1067 	struct pinctrl **ptr, *p;
1068 
1069 	ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1070 	if (!ptr)
1071 		return ERR_PTR(-ENOMEM);
1072 
1073 	p = pinctrl_get(dev);
1074 	if (!IS_ERR(p)) {
1075 		*ptr = p;
1076 		devres_add(dev, ptr);
1077 	} else {
1078 		devres_free(ptr);
1079 	}
1080 
1081 	return p;
1082 }
1083 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1084 
1085 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1086 {
1087 	struct pinctrl **p = res;
1088 
1089 	return *p == data;
1090 }
1091 
1092 /**
1093  * devm_pinctrl_put() - Resource managed pinctrl_put()
1094  * @p: the pinctrl handle to release
1095  *
1096  * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1097  * this function will not need to be called and the resource management
1098  * code will ensure that the resource is freed.
1099  */
1100 void devm_pinctrl_put(struct pinctrl *p)
1101 {
1102 	WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1103 			       devm_pinctrl_match, p));
1104 }
1105 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1106 
1107 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps,
1108 			 bool dup, bool locked)
1109 {
1110 	int i, ret;
1111 	struct pinctrl_maps *maps_node;
1112 
1113 	pr_debug("add %d pinmux maps\n", num_maps);
1114 
1115 	/* First sanity check the new mapping */
1116 	for (i = 0; i < num_maps; i++) {
1117 		if (!maps[i].dev_name) {
1118 			pr_err("failed to register map %s (%d): no device given\n",
1119 			       maps[i].name, i);
1120 			return -EINVAL;
1121 		}
1122 
1123 		if (!maps[i].name) {
1124 			pr_err("failed to register map %d: no map name given\n",
1125 			       i);
1126 			return -EINVAL;
1127 		}
1128 
1129 		if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1130 				!maps[i].ctrl_dev_name) {
1131 			pr_err("failed to register map %s (%d): no pin control device given\n",
1132 			       maps[i].name, i);
1133 			return -EINVAL;
1134 		}
1135 
1136 		switch (maps[i].type) {
1137 		case PIN_MAP_TYPE_DUMMY_STATE:
1138 			break;
1139 		case PIN_MAP_TYPE_MUX_GROUP:
1140 			ret = pinmux_validate_map(&maps[i], i);
1141 			if (ret < 0)
1142 				return ret;
1143 			break;
1144 		case PIN_MAP_TYPE_CONFIGS_PIN:
1145 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1146 			ret = pinconf_validate_map(&maps[i], i);
1147 			if (ret < 0)
1148 				return ret;
1149 			break;
1150 		default:
1151 			pr_err("failed to register map %s (%d): invalid type given\n",
1152 			       maps[i].name, i);
1153 			return -EINVAL;
1154 		}
1155 	}
1156 
1157 	maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1158 	if (!maps_node) {
1159 		pr_err("failed to alloc struct pinctrl_maps\n");
1160 		return -ENOMEM;
1161 	}
1162 
1163 	maps_node->num_maps = num_maps;
1164 	if (dup) {
1165 		maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1166 					  GFP_KERNEL);
1167 		if (!maps_node->maps) {
1168 			pr_err("failed to duplicate mapping table\n");
1169 			kfree(maps_node);
1170 			return -ENOMEM;
1171 		}
1172 	} else {
1173 		maps_node->maps = maps;
1174 	}
1175 
1176 	if (!locked)
1177 		mutex_lock(&pinctrl_maps_mutex);
1178 	list_add_tail(&maps_node->node, &pinctrl_maps);
1179 	if (!locked)
1180 		mutex_unlock(&pinctrl_maps_mutex);
1181 
1182 	return 0;
1183 }
1184 
1185 /**
1186  * pinctrl_register_mappings() - register a set of pin controller mappings
1187  * @maps: the pincontrol mappings table to register. This should probably be
1188  *	marked with __initdata so it can be discarded after boot. This
1189  *	function will perform a shallow copy for the mapping entries.
1190  * @num_maps: the number of maps in the mapping table
1191  */
1192 int pinctrl_register_mappings(struct pinctrl_map const *maps,
1193 			      unsigned num_maps)
1194 {
1195 	return pinctrl_register_map(maps, num_maps, true, false);
1196 }
1197 
1198 void pinctrl_unregister_map(struct pinctrl_map const *map)
1199 {
1200 	struct pinctrl_maps *maps_node;
1201 
1202 	mutex_lock(&pinctrl_maps_mutex);
1203 	list_for_each_entry(maps_node, &pinctrl_maps, node) {
1204 		if (maps_node->maps == map) {
1205 			list_del(&maps_node->node);
1206 			kfree(maps_node);
1207 			mutex_unlock(&pinctrl_maps_mutex);
1208 			return;
1209 		}
1210 	}
1211 	mutex_unlock(&pinctrl_maps_mutex);
1212 }
1213 
1214 /**
1215  * pinctrl_force_sleep() - turn a given controller device into sleep state
1216  * @pctldev: pin controller device
1217  */
1218 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1219 {
1220 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1221 		return pinctrl_select_state(pctldev->p, pctldev->hog_sleep);
1222 	return 0;
1223 }
1224 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1225 
1226 /**
1227  * pinctrl_force_default() - turn a given controller device into default state
1228  * @pctldev: pin controller device
1229  */
1230 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1231 {
1232 	if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1233 		return pinctrl_select_state(pctldev->p, pctldev->hog_default);
1234 	return 0;
1235 }
1236 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1237 
1238 #ifdef CONFIG_PM
1239 
1240 /**
1241  * pinctrl_pm_select_state() - select pinctrl state for PM
1242  * @dev: device to select default state for
1243  * @state: state to set
1244  */
1245 static int pinctrl_pm_select_state(struct device *dev,
1246 				   struct pinctrl_state *state)
1247 {
1248 	struct dev_pin_info *pins = dev->pins;
1249 	int ret;
1250 
1251 	if (IS_ERR(state))
1252 		return 0; /* No such state */
1253 	ret = pinctrl_select_state(pins->p, state);
1254 	if (ret)
1255 		dev_err(dev, "failed to activate pinctrl state %s\n",
1256 			state->name);
1257 	return ret;
1258 }
1259 
1260 /**
1261  * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1262  * @dev: device to select default state for
1263  */
1264 int pinctrl_pm_select_default_state(struct device *dev)
1265 {
1266 	if (!dev->pins)
1267 		return 0;
1268 
1269 	return pinctrl_pm_select_state(dev, dev->pins->default_state);
1270 }
1271 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1272 
1273 /**
1274  * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1275  * @dev: device to select sleep state for
1276  */
1277 int pinctrl_pm_select_sleep_state(struct device *dev)
1278 {
1279 	if (!dev->pins)
1280 		return 0;
1281 
1282 	return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1283 }
1284 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1285 
1286 /**
1287  * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1288  * @dev: device to select idle state for
1289  */
1290 int pinctrl_pm_select_idle_state(struct device *dev)
1291 {
1292 	if (!dev->pins)
1293 		return 0;
1294 
1295 	return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1296 }
1297 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1298 #endif
1299 
1300 #ifdef CONFIG_DEBUG_FS
1301 
1302 static int pinctrl_pins_show(struct seq_file *s, void *what)
1303 {
1304 	struct pinctrl_dev *pctldev = s->private;
1305 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1306 	unsigned i, pin;
1307 
1308 	seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1309 
1310 	mutex_lock(&pctldev->mutex);
1311 
1312 	/* The pin number can be retrived from the pin controller descriptor */
1313 	for (i = 0; i < pctldev->desc->npins; i++) {
1314 		struct pin_desc *desc;
1315 
1316 		pin = pctldev->desc->pins[i].number;
1317 		desc = pin_desc_get(pctldev, pin);
1318 		/* Pin space may be sparse */
1319 		if (desc == NULL)
1320 			continue;
1321 
1322 		seq_printf(s, "pin %d (%s) ", pin,
1323 			   desc->name ? desc->name : "unnamed");
1324 
1325 		/* Driver-specific info per pin */
1326 		if (ops->pin_dbg_show)
1327 			ops->pin_dbg_show(pctldev, s, pin);
1328 
1329 		seq_puts(s, "\n");
1330 	}
1331 
1332 	mutex_unlock(&pctldev->mutex);
1333 
1334 	return 0;
1335 }
1336 
1337 static int pinctrl_groups_show(struct seq_file *s, void *what)
1338 {
1339 	struct pinctrl_dev *pctldev = s->private;
1340 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1341 	unsigned ngroups, selector = 0;
1342 
1343 	mutex_lock(&pctldev->mutex);
1344 
1345 	ngroups = ops->get_groups_count(pctldev);
1346 
1347 	seq_puts(s, "registered pin groups:\n");
1348 	while (selector < ngroups) {
1349 		const unsigned *pins;
1350 		unsigned num_pins;
1351 		const char *gname = ops->get_group_name(pctldev, selector);
1352 		const char *pname;
1353 		int ret;
1354 		int i;
1355 
1356 		ret = ops->get_group_pins(pctldev, selector,
1357 					  &pins, &num_pins);
1358 		if (ret)
1359 			seq_printf(s, "%s [ERROR GETTING PINS]\n",
1360 				   gname);
1361 		else {
1362 			seq_printf(s, "group: %s\n", gname);
1363 			for (i = 0; i < num_pins; i++) {
1364 				pname = pin_get_name(pctldev, pins[i]);
1365 				if (WARN_ON(!pname)) {
1366 					mutex_unlock(&pctldev->mutex);
1367 					return -EINVAL;
1368 				}
1369 				seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1370 			}
1371 			seq_puts(s, "\n");
1372 		}
1373 		selector++;
1374 	}
1375 
1376 	mutex_unlock(&pctldev->mutex);
1377 
1378 	return 0;
1379 }
1380 
1381 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1382 {
1383 	struct pinctrl_dev *pctldev = s->private;
1384 	struct pinctrl_gpio_range *range = NULL;
1385 
1386 	seq_puts(s, "GPIO ranges handled:\n");
1387 
1388 	mutex_lock(&pctldev->mutex);
1389 
1390 	/* Loop over the ranges */
1391 	list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1392 		if (range->pins) {
1393 			int a;
1394 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1395 				range->id, range->name,
1396 				range->base, (range->base + range->npins - 1));
1397 			for (a = 0; a < range->npins - 1; a++)
1398 				seq_printf(s, "%u, ", range->pins[a]);
1399 			seq_printf(s, "%u}\n", range->pins[a]);
1400 		}
1401 		else
1402 			seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1403 				range->id, range->name,
1404 				range->base, (range->base + range->npins - 1),
1405 				range->pin_base,
1406 				(range->pin_base + range->npins - 1));
1407 	}
1408 
1409 	mutex_unlock(&pctldev->mutex);
1410 
1411 	return 0;
1412 }
1413 
1414 static int pinctrl_devices_show(struct seq_file *s, void *what)
1415 {
1416 	struct pinctrl_dev *pctldev;
1417 
1418 	seq_puts(s, "name [pinmux] [pinconf]\n");
1419 
1420 	mutex_lock(&pinctrldev_list_mutex);
1421 
1422 	list_for_each_entry(pctldev, &pinctrldev_list, node) {
1423 		seq_printf(s, "%s ", pctldev->desc->name);
1424 		if (pctldev->desc->pmxops)
1425 			seq_puts(s, "yes ");
1426 		else
1427 			seq_puts(s, "no ");
1428 		if (pctldev->desc->confops)
1429 			seq_puts(s, "yes");
1430 		else
1431 			seq_puts(s, "no");
1432 		seq_puts(s, "\n");
1433 	}
1434 
1435 	mutex_unlock(&pinctrldev_list_mutex);
1436 
1437 	return 0;
1438 }
1439 
1440 static inline const char *map_type(enum pinctrl_map_type type)
1441 {
1442 	static const char * const names[] = {
1443 		"INVALID",
1444 		"DUMMY_STATE",
1445 		"MUX_GROUP",
1446 		"CONFIGS_PIN",
1447 		"CONFIGS_GROUP",
1448 	};
1449 
1450 	if (type >= ARRAY_SIZE(names))
1451 		return "UNKNOWN";
1452 
1453 	return names[type];
1454 }
1455 
1456 static int pinctrl_maps_show(struct seq_file *s, void *what)
1457 {
1458 	struct pinctrl_maps *maps_node;
1459 	int i;
1460 	struct pinctrl_map const *map;
1461 
1462 	seq_puts(s, "Pinctrl maps:\n");
1463 
1464 	mutex_lock(&pinctrl_maps_mutex);
1465 	for_each_maps(maps_node, i, map) {
1466 		seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1467 			   map->dev_name, map->name, map_type(map->type),
1468 			   map->type);
1469 
1470 		if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1471 			seq_printf(s, "controlling device %s\n",
1472 				   map->ctrl_dev_name);
1473 
1474 		switch (map->type) {
1475 		case PIN_MAP_TYPE_MUX_GROUP:
1476 			pinmux_show_map(s, map);
1477 			break;
1478 		case PIN_MAP_TYPE_CONFIGS_PIN:
1479 		case PIN_MAP_TYPE_CONFIGS_GROUP:
1480 			pinconf_show_map(s, map);
1481 			break;
1482 		default:
1483 			break;
1484 		}
1485 
1486 		seq_printf(s, "\n");
1487 	}
1488 	mutex_unlock(&pinctrl_maps_mutex);
1489 
1490 	return 0;
1491 }
1492 
1493 static int pinctrl_show(struct seq_file *s, void *what)
1494 {
1495 	struct pinctrl *p;
1496 	struct pinctrl_state *state;
1497 	struct pinctrl_setting *setting;
1498 
1499 	seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1500 
1501 	mutex_lock(&pinctrl_list_mutex);
1502 
1503 	list_for_each_entry(p, &pinctrl_list, node) {
1504 		seq_printf(s, "device: %s current state: %s\n",
1505 			   dev_name(p->dev),
1506 			   p->state ? p->state->name : "none");
1507 
1508 		list_for_each_entry(state, &p->states, node) {
1509 			seq_printf(s, "  state: %s\n", state->name);
1510 
1511 			list_for_each_entry(setting, &state->settings, node) {
1512 				struct pinctrl_dev *pctldev = setting->pctldev;
1513 
1514 				seq_printf(s, "    type: %s controller %s ",
1515 					   map_type(setting->type),
1516 					   pinctrl_dev_get_name(pctldev));
1517 
1518 				switch (setting->type) {
1519 				case PIN_MAP_TYPE_MUX_GROUP:
1520 					pinmux_show_setting(s, setting);
1521 					break;
1522 				case PIN_MAP_TYPE_CONFIGS_PIN:
1523 				case PIN_MAP_TYPE_CONFIGS_GROUP:
1524 					pinconf_show_setting(s, setting);
1525 					break;
1526 				default:
1527 					break;
1528 				}
1529 			}
1530 		}
1531 	}
1532 
1533 	mutex_unlock(&pinctrl_list_mutex);
1534 
1535 	return 0;
1536 }
1537 
1538 static int pinctrl_pins_open(struct inode *inode, struct file *file)
1539 {
1540 	return single_open(file, pinctrl_pins_show, inode->i_private);
1541 }
1542 
1543 static int pinctrl_groups_open(struct inode *inode, struct file *file)
1544 {
1545 	return single_open(file, pinctrl_groups_show, inode->i_private);
1546 }
1547 
1548 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file)
1549 {
1550 	return single_open(file, pinctrl_gpioranges_show, inode->i_private);
1551 }
1552 
1553 static int pinctrl_devices_open(struct inode *inode, struct file *file)
1554 {
1555 	return single_open(file, pinctrl_devices_show, NULL);
1556 }
1557 
1558 static int pinctrl_maps_open(struct inode *inode, struct file *file)
1559 {
1560 	return single_open(file, pinctrl_maps_show, NULL);
1561 }
1562 
1563 static int pinctrl_open(struct inode *inode, struct file *file)
1564 {
1565 	return single_open(file, pinctrl_show, NULL);
1566 }
1567 
1568 static const struct file_operations pinctrl_pins_ops = {
1569 	.open		= pinctrl_pins_open,
1570 	.read		= seq_read,
1571 	.llseek		= seq_lseek,
1572 	.release	= single_release,
1573 };
1574 
1575 static const struct file_operations pinctrl_groups_ops = {
1576 	.open		= pinctrl_groups_open,
1577 	.read		= seq_read,
1578 	.llseek		= seq_lseek,
1579 	.release	= single_release,
1580 };
1581 
1582 static const struct file_operations pinctrl_gpioranges_ops = {
1583 	.open		= pinctrl_gpioranges_open,
1584 	.read		= seq_read,
1585 	.llseek		= seq_lseek,
1586 	.release	= single_release,
1587 };
1588 
1589 static const struct file_operations pinctrl_devices_ops = {
1590 	.open		= pinctrl_devices_open,
1591 	.read		= seq_read,
1592 	.llseek		= seq_lseek,
1593 	.release	= single_release,
1594 };
1595 
1596 static const struct file_operations pinctrl_maps_ops = {
1597 	.open		= pinctrl_maps_open,
1598 	.read		= seq_read,
1599 	.llseek		= seq_lseek,
1600 	.release	= single_release,
1601 };
1602 
1603 static const struct file_operations pinctrl_ops = {
1604 	.open		= pinctrl_open,
1605 	.read		= seq_read,
1606 	.llseek		= seq_lseek,
1607 	.release	= single_release,
1608 };
1609 
1610 static struct dentry *debugfs_root;
1611 
1612 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1613 {
1614 	struct dentry *device_root;
1615 
1616 	device_root = debugfs_create_dir(dev_name(pctldev->dev),
1617 					 debugfs_root);
1618 	pctldev->device_root = device_root;
1619 
1620 	if (IS_ERR(device_root) || !device_root) {
1621 		pr_warn("failed to create debugfs directory for %s\n",
1622 			dev_name(pctldev->dev));
1623 		return;
1624 	}
1625 	debugfs_create_file("pins", S_IFREG | S_IRUGO,
1626 			    device_root, pctldev, &pinctrl_pins_ops);
1627 	debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1628 			    device_root, pctldev, &pinctrl_groups_ops);
1629 	debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1630 			    device_root, pctldev, &pinctrl_gpioranges_ops);
1631 	pinmux_init_device_debugfs(device_root, pctldev);
1632 	pinconf_init_device_debugfs(device_root, pctldev);
1633 }
1634 
1635 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1636 {
1637 	debugfs_remove_recursive(pctldev->device_root);
1638 }
1639 
1640 static void pinctrl_init_debugfs(void)
1641 {
1642 	debugfs_root = debugfs_create_dir("pinctrl", NULL);
1643 	if (IS_ERR(debugfs_root) || !debugfs_root) {
1644 		pr_warn("failed to create debugfs directory\n");
1645 		debugfs_root = NULL;
1646 		return;
1647 	}
1648 
1649 	debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1650 			    debugfs_root, NULL, &pinctrl_devices_ops);
1651 	debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1652 			    debugfs_root, NULL, &pinctrl_maps_ops);
1653 	debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1654 			    debugfs_root, NULL, &pinctrl_ops);
1655 }
1656 
1657 #else /* CONFIG_DEBUG_FS */
1658 
1659 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1660 {
1661 }
1662 
1663 static void pinctrl_init_debugfs(void)
1664 {
1665 }
1666 
1667 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1668 {
1669 }
1670 
1671 #endif
1672 
1673 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1674 {
1675 	const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1676 
1677 	if (!ops ||
1678 	    !ops->get_groups_count ||
1679 	    !ops->get_group_name ||
1680 	    !ops->get_group_pins)
1681 		return -EINVAL;
1682 
1683 	if (ops->dt_node_to_map && !ops->dt_free_map)
1684 		return -EINVAL;
1685 
1686 	return 0;
1687 }
1688 
1689 /**
1690  * pinctrl_register() - register a pin controller device
1691  * @pctldesc: descriptor for this pin controller
1692  * @dev: parent device for this pin controller
1693  * @driver_data: private pin controller data for this pin controller
1694  */
1695 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
1696 				    struct device *dev, void *driver_data)
1697 {
1698 	struct pinctrl_dev *pctldev;
1699 	int ret;
1700 
1701 	if (!pctldesc)
1702 		return NULL;
1703 	if (!pctldesc->name)
1704 		return NULL;
1705 
1706 	pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1707 	if (pctldev == NULL) {
1708 		dev_err(dev, "failed to alloc struct pinctrl_dev\n");
1709 		return NULL;
1710 	}
1711 
1712 	/* Initialize pin control device struct */
1713 	pctldev->owner = pctldesc->owner;
1714 	pctldev->desc = pctldesc;
1715 	pctldev->driver_data = driver_data;
1716 	INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1717 	INIT_LIST_HEAD(&pctldev->gpio_ranges);
1718 	pctldev->dev = dev;
1719 	mutex_init(&pctldev->mutex);
1720 
1721 	/* check core ops for sanity */
1722 	if (pinctrl_check_ops(pctldev)) {
1723 		dev_err(dev, "pinctrl ops lacks necessary functions\n");
1724 		goto out_err;
1725 	}
1726 
1727 	/* If we're implementing pinmuxing, check the ops for sanity */
1728 	if (pctldesc->pmxops) {
1729 		if (pinmux_check_ops(pctldev))
1730 			goto out_err;
1731 	}
1732 
1733 	/* If we're implementing pinconfig, check the ops for sanity */
1734 	if (pctldesc->confops) {
1735 		if (pinconf_check_ops(pctldev))
1736 			goto out_err;
1737 	}
1738 
1739 	/* Register all the pins */
1740 	dev_dbg(dev, "try to register %d pins ...\n",  pctldesc->npins);
1741 	ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1742 	if (ret) {
1743 		dev_err(dev, "error during pin registration\n");
1744 		pinctrl_free_pindescs(pctldev, pctldesc->pins,
1745 				      pctldesc->npins);
1746 		goto out_err;
1747 	}
1748 
1749 	mutex_lock(&pinctrldev_list_mutex);
1750 	list_add_tail(&pctldev->node, &pinctrldev_list);
1751 	mutex_unlock(&pinctrldev_list_mutex);
1752 
1753 	pctldev->p = pinctrl_get(pctldev->dev);
1754 
1755 	if (!IS_ERR(pctldev->p)) {
1756 		pctldev->hog_default =
1757 			pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
1758 		if (IS_ERR(pctldev->hog_default)) {
1759 			dev_dbg(dev, "failed to lookup the default state\n");
1760 		} else {
1761 			if (pinctrl_select_state(pctldev->p,
1762 						pctldev->hog_default))
1763 				dev_err(dev,
1764 					"failed to select default state\n");
1765 		}
1766 
1767 		pctldev->hog_sleep =
1768 			pinctrl_lookup_state(pctldev->p,
1769 						    PINCTRL_STATE_SLEEP);
1770 		if (IS_ERR(pctldev->hog_sleep))
1771 			dev_dbg(dev, "failed to lookup the sleep state\n");
1772 	}
1773 
1774 	pinctrl_init_device_debugfs(pctldev);
1775 
1776 	return pctldev;
1777 
1778 out_err:
1779 	mutex_destroy(&pctldev->mutex);
1780 	kfree(pctldev);
1781 	return NULL;
1782 }
1783 EXPORT_SYMBOL_GPL(pinctrl_register);
1784 
1785 /**
1786  * pinctrl_unregister() - unregister pinmux
1787  * @pctldev: pin controller to unregister
1788  *
1789  * Called by pinmux drivers to unregister a pinmux.
1790  */
1791 void pinctrl_unregister(struct pinctrl_dev *pctldev)
1792 {
1793 	struct pinctrl_gpio_range *range, *n;
1794 	if (pctldev == NULL)
1795 		return;
1796 
1797 	mutex_lock(&pinctrldev_list_mutex);
1798 	mutex_lock(&pctldev->mutex);
1799 
1800 	pinctrl_remove_device_debugfs(pctldev);
1801 
1802 	if (!IS_ERR(pctldev->p))
1803 		pinctrl_put(pctldev->p);
1804 
1805 	/* TODO: check that no pinmuxes are still active? */
1806 	list_del(&pctldev->node);
1807 	/* Destroy descriptor tree */
1808 	pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
1809 			      pctldev->desc->npins);
1810 	/* remove gpio ranges map */
1811 	list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
1812 		list_del(&range->node);
1813 
1814 	mutex_unlock(&pctldev->mutex);
1815 	mutex_destroy(&pctldev->mutex);
1816 	kfree(pctldev);
1817 	mutex_unlock(&pinctrldev_list_mutex);
1818 }
1819 EXPORT_SYMBOL_GPL(pinctrl_unregister);
1820 
1821 static int __init pinctrl_init(void)
1822 {
1823 	pr_info("initialized pinctrl subsystem\n");
1824 	pinctrl_init_debugfs();
1825 	return 0;
1826 }
1827 
1828 /* init early since many drivers really need to initialized pinmux early */
1829 core_initcall(pinctrl_init);
1830