1 /* 2 * Core driver for the pin control subsystem 3 * 4 * Copyright (C) 2011-2012 ST-Ericsson SA 5 * Written on behalf of Linaro for ST-Ericsson 6 * Based on bits of regulator core, gpio core and clk core 7 * 8 * Author: Linus Walleij <linus.walleij@linaro.org> 9 * 10 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved. 11 * 12 * License terms: GNU General Public License (GPL) version 2 13 */ 14 #define pr_fmt(fmt) "pinctrl core: " fmt 15 16 #include <linux/kernel.h> 17 #include <linux/kref.h> 18 #include <linux/export.h> 19 #include <linux/init.h> 20 #include <linux/device.h> 21 #include <linux/slab.h> 22 #include <linux/err.h> 23 #include <linux/list.h> 24 #include <linux/sysfs.h> 25 #include <linux/debugfs.h> 26 #include <linux/seq_file.h> 27 #include <linux/pinctrl/consumer.h> 28 #include <linux/pinctrl/pinctrl.h> 29 #include <linux/pinctrl/machine.h> 30 31 #ifdef CONFIG_GPIOLIB 32 #include <asm-generic/gpio.h> 33 #endif 34 35 #include "core.h" 36 #include "devicetree.h" 37 #include "pinmux.h" 38 #include "pinconf.h" 39 40 41 static bool pinctrl_dummy_state; 42 43 /* Mutex taken to protect pinctrl_list */ 44 static DEFINE_MUTEX(pinctrl_list_mutex); 45 46 /* Mutex taken to protect pinctrl_maps */ 47 DEFINE_MUTEX(pinctrl_maps_mutex); 48 49 /* Mutex taken to protect pinctrldev_list */ 50 static DEFINE_MUTEX(pinctrldev_list_mutex); 51 52 /* Global list of pin control devices (struct pinctrl_dev) */ 53 static LIST_HEAD(pinctrldev_list); 54 55 /* List of pin controller handles (struct pinctrl) */ 56 static LIST_HEAD(pinctrl_list); 57 58 /* List of pinctrl maps (struct pinctrl_maps) */ 59 LIST_HEAD(pinctrl_maps); 60 61 62 /** 63 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support 64 * 65 * Usually this function is called by platforms without pinctrl driver support 66 * but run with some shared drivers using pinctrl APIs. 67 * After calling this function, the pinctrl core will return successfully 68 * with creating a dummy state for the driver to keep going smoothly. 69 */ 70 void pinctrl_provide_dummies(void) 71 { 72 pinctrl_dummy_state = true; 73 } 74 75 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev) 76 { 77 /* We're not allowed to register devices without name */ 78 return pctldev->desc->name; 79 } 80 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name); 81 82 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev) 83 { 84 return dev_name(pctldev->dev); 85 } 86 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname); 87 88 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev) 89 { 90 return pctldev->driver_data; 91 } 92 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata); 93 94 /** 95 * get_pinctrl_dev_from_devname() - look up pin controller device 96 * @devname: the name of a device instance, as returned by dev_name() 97 * 98 * Looks up a pin control device matching a certain device name or pure device 99 * pointer, the pure device pointer will take precedence. 100 */ 101 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname) 102 { 103 struct pinctrl_dev *pctldev = NULL; 104 105 if (!devname) 106 return NULL; 107 108 mutex_lock(&pinctrldev_list_mutex); 109 110 list_for_each_entry(pctldev, &pinctrldev_list, node) { 111 if (!strcmp(dev_name(pctldev->dev), devname)) { 112 /* Matched on device name */ 113 mutex_unlock(&pinctrldev_list_mutex); 114 return pctldev; 115 } 116 } 117 118 mutex_unlock(&pinctrldev_list_mutex); 119 120 return NULL; 121 } 122 123 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np) 124 { 125 struct pinctrl_dev *pctldev; 126 127 mutex_lock(&pinctrldev_list_mutex); 128 129 list_for_each_entry(pctldev, &pinctrldev_list, node) 130 if (pctldev->dev->of_node == np) { 131 mutex_unlock(&pinctrldev_list_mutex); 132 return pctldev; 133 } 134 135 mutex_unlock(&pinctrldev_list_mutex); 136 137 return NULL; 138 } 139 140 /** 141 * pin_get_from_name() - look up a pin number from a name 142 * @pctldev: the pin control device to lookup the pin on 143 * @name: the name of the pin to look up 144 */ 145 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name) 146 { 147 unsigned i, pin; 148 149 /* The pin number can be retrived from the pin controller descriptor */ 150 for (i = 0; i < pctldev->desc->npins; i++) { 151 struct pin_desc *desc; 152 153 pin = pctldev->desc->pins[i].number; 154 desc = pin_desc_get(pctldev, pin); 155 /* Pin space may be sparse */ 156 if (desc && !strcmp(name, desc->name)) 157 return pin; 158 } 159 160 return -EINVAL; 161 } 162 163 /** 164 * pin_get_name_from_id() - look up a pin name from a pin id 165 * @pctldev: the pin control device to lookup the pin on 166 * @name: the name of the pin to look up 167 */ 168 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin) 169 { 170 const struct pin_desc *desc; 171 172 desc = pin_desc_get(pctldev, pin); 173 if (desc == NULL) { 174 dev_err(pctldev->dev, "failed to get pin(%d) name\n", 175 pin); 176 return NULL; 177 } 178 179 return desc->name; 180 } 181 182 /** 183 * pin_is_valid() - check if pin exists on controller 184 * @pctldev: the pin control device to check the pin on 185 * @pin: pin to check, use the local pin controller index number 186 * 187 * This tells us whether a certain pin exist on a certain pin controller or 188 * not. Pin lists may be sparse, so some pins may not exist. 189 */ 190 bool pin_is_valid(struct pinctrl_dev *pctldev, int pin) 191 { 192 struct pin_desc *pindesc; 193 194 if (pin < 0) 195 return false; 196 197 mutex_lock(&pctldev->mutex); 198 pindesc = pin_desc_get(pctldev, pin); 199 mutex_unlock(&pctldev->mutex); 200 201 return pindesc != NULL; 202 } 203 EXPORT_SYMBOL_GPL(pin_is_valid); 204 205 /* Deletes a range of pin descriptors */ 206 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev, 207 const struct pinctrl_pin_desc *pins, 208 unsigned num_pins) 209 { 210 int i; 211 212 for (i = 0; i < num_pins; i++) { 213 struct pin_desc *pindesc; 214 215 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree, 216 pins[i].number); 217 if (pindesc != NULL) { 218 radix_tree_delete(&pctldev->pin_desc_tree, 219 pins[i].number); 220 if (pindesc->dynamic_name) 221 kfree(pindesc->name); 222 } 223 kfree(pindesc); 224 } 225 } 226 227 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev, 228 unsigned number, const char *name) 229 { 230 struct pin_desc *pindesc; 231 232 pindesc = pin_desc_get(pctldev, number); 233 if (pindesc != NULL) { 234 pr_err("pin %d already registered on %s\n", number, 235 pctldev->desc->name); 236 return -EINVAL; 237 } 238 239 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL); 240 if (pindesc == NULL) { 241 dev_err(pctldev->dev, "failed to alloc struct pin_desc\n"); 242 return -ENOMEM; 243 } 244 245 /* Set owner */ 246 pindesc->pctldev = pctldev; 247 248 /* Copy basic pin info */ 249 if (name) { 250 pindesc->name = name; 251 } else { 252 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", number); 253 if (pindesc->name == NULL) { 254 kfree(pindesc); 255 return -ENOMEM; 256 } 257 pindesc->dynamic_name = true; 258 } 259 260 radix_tree_insert(&pctldev->pin_desc_tree, number, pindesc); 261 pr_debug("registered pin %d (%s) on %s\n", 262 number, pindesc->name, pctldev->desc->name); 263 return 0; 264 } 265 266 static int pinctrl_register_pins(struct pinctrl_dev *pctldev, 267 struct pinctrl_pin_desc const *pins, 268 unsigned num_descs) 269 { 270 unsigned i; 271 int ret = 0; 272 273 for (i = 0; i < num_descs; i++) { 274 ret = pinctrl_register_one_pin(pctldev, 275 pins[i].number, pins[i].name); 276 if (ret) 277 return ret; 278 } 279 280 return 0; 281 } 282 283 /** 284 * gpio_to_pin() - GPIO range GPIO number to pin number translation 285 * @range: GPIO range used for the translation 286 * @gpio: gpio pin to translate to a pin number 287 * 288 * Finds the pin number for a given GPIO using the specified GPIO range 289 * as a base for translation. The distinction between linear GPIO ranges 290 * and pin list based GPIO ranges is managed correctly by this function. 291 * 292 * This function assumes the gpio is part of the specified GPIO range, use 293 * only after making sure this is the case (e.g. by calling it on the 294 * result of successful pinctrl_get_device_gpio_range calls)! 295 */ 296 static inline int gpio_to_pin(struct pinctrl_gpio_range *range, 297 unsigned int gpio) 298 { 299 unsigned int offset = gpio - range->base; 300 if (range->pins) 301 return range->pins[offset]; 302 else 303 return range->pin_base + offset; 304 } 305 306 /** 307 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range 308 * @pctldev: pin controller device to check 309 * @gpio: gpio pin to check taken from the global GPIO pin space 310 * 311 * Tries to match a GPIO pin number to the ranges handled by a certain pin 312 * controller, return the range or NULL 313 */ 314 static struct pinctrl_gpio_range * 315 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio) 316 { 317 struct pinctrl_gpio_range *range = NULL; 318 319 mutex_lock(&pctldev->mutex); 320 /* Loop over the ranges */ 321 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 322 /* Check if we're in the valid range */ 323 if (gpio >= range->base && 324 gpio < range->base + range->npins) { 325 mutex_unlock(&pctldev->mutex); 326 return range; 327 } 328 } 329 mutex_unlock(&pctldev->mutex); 330 return NULL; 331 } 332 333 /** 334 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of 335 * the same GPIO chip are in range 336 * @gpio: gpio pin to check taken from the global GPIO pin space 337 * 338 * This function is complement of pinctrl_match_gpio_range(). If the return 339 * value of pinctrl_match_gpio_range() is NULL, this function could be used 340 * to check whether pinctrl device is ready or not. Maybe some GPIO pins 341 * of the same GPIO chip don't have back-end pinctrl interface. 342 * If the return value is true, it means that pinctrl device is ready & the 343 * certain GPIO pin doesn't have back-end pinctrl device. If the return value 344 * is false, it means that pinctrl device may not be ready. 345 */ 346 #ifdef CONFIG_GPIOLIB 347 static bool pinctrl_ready_for_gpio_range(unsigned gpio) 348 { 349 struct pinctrl_dev *pctldev; 350 struct pinctrl_gpio_range *range = NULL; 351 struct gpio_chip *chip = gpio_to_chip(gpio); 352 353 mutex_lock(&pinctrldev_list_mutex); 354 355 /* Loop over the pin controllers */ 356 list_for_each_entry(pctldev, &pinctrldev_list, node) { 357 /* Loop over the ranges */ 358 mutex_lock(&pctldev->mutex); 359 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 360 /* Check if any gpio range overlapped with gpio chip */ 361 if (range->base + range->npins - 1 < chip->base || 362 range->base > chip->base + chip->ngpio - 1) 363 continue; 364 mutex_unlock(&pctldev->mutex); 365 mutex_unlock(&pinctrldev_list_mutex); 366 return true; 367 } 368 mutex_unlock(&pctldev->mutex); 369 } 370 371 mutex_unlock(&pinctrldev_list_mutex); 372 373 return false; 374 } 375 #else 376 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; } 377 #endif 378 379 /** 380 * pinctrl_get_device_gpio_range() - find device for GPIO range 381 * @gpio: the pin to locate the pin controller for 382 * @outdev: the pin control device if found 383 * @outrange: the GPIO range if found 384 * 385 * Find the pin controller handling a certain GPIO pin from the pinspace of 386 * the GPIO subsystem, return the device and the matching GPIO range. Returns 387 * -EPROBE_DEFER if the GPIO range could not be found in any device since it 388 * may still have not been registered. 389 */ 390 static int pinctrl_get_device_gpio_range(unsigned gpio, 391 struct pinctrl_dev **outdev, 392 struct pinctrl_gpio_range **outrange) 393 { 394 struct pinctrl_dev *pctldev = NULL; 395 396 mutex_lock(&pinctrldev_list_mutex); 397 398 /* Loop over the pin controllers */ 399 list_for_each_entry(pctldev, &pinctrldev_list, node) { 400 struct pinctrl_gpio_range *range; 401 402 range = pinctrl_match_gpio_range(pctldev, gpio); 403 if (range != NULL) { 404 *outdev = pctldev; 405 *outrange = range; 406 mutex_unlock(&pinctrldev_list_mutex); 407 return 0; 408 } 409 } 410 411 mutex_unlock(&pinctrldev_list_mutex); 412 413 return -EPROBE_DEFER; 414 } 415 416 /** 417 * pinctrl_add_gpio_range() - register a GPIO range for a controller 418 * @pctldev: pin controller device to add the range to 419 * @range: the GPIO range to add 420 * 421 * This adds a range of GPIOs to be handled by a certain pin controller. Call 422 * this to register handled ranges after registering your pin controller. 423 */ 424 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev, 425 struct pinctrl_gpio_range *range) 426 { 427 mutex_lock(&pctldev->mutex); 428 list_add_tail(&range->node, &pctldev->gpio_ranges); 429 mutex_unlock(&pctldev->mutex); 430 } 431 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range); 432 433 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev, 434 struct pinctrl_gpio_range *ranges, 435 unsigned nranges) 436 { 437 int i; 438 439 for (i = 0; i < nranges; i++) 440 pinctrl_add_gpio_range(pctldev, &ranges[i]); 441 } 442 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges); 443 444 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname, 445 struct pinctrl_gpio_range *range) 446 { 447 struct pinctrl_dev *pctldev; 448 449 pctldev = get_pinctrl_dev_from_devname(devname); 450 451 /* 452 * If we can't find this device, let's assume that is because 453 * it has not probed yet, so the driver trying to register this 454 * range need to defer probing. 455 */ 456 if (!pctldev) { 457 return ERR_PTR(-EPROBE_DEFER); 458 } 459 pinctrl_add_gpio_range(pctldev, range); 460 461 return pctldev; 462 } 463 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range); 464 465 /** 466 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin 467 * @pctldev: the pin controller device to look in 468 * @pin: a controller-local number to find the range for 469 */ 470 struct pinctrl_gpio_range * 471 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev, 472 unsigned int pin) 473 { 474 struct pinctrl_gpio_range *range; 475 476 mutex_lock(&pctldev->mutex); 477 /* Loop over the ranges */ 478 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 479 /* Check if we're in the valid range */ 480 if (range->pins) { 481 int a; 482 for (a = 0; a < range->npins; a++) { 483 if (range->pins[a] == pin) 484 goto out; 485 } 486 } else if (pin >= range->pin_base && 487 pin < range->pin_base + range->npins) 488 goto out; 489 } 490 range = NULL; 491 out: 492 mutex_unlock(&pctldev->mutex); 493 return range; 494 } 495 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin); 496 497 /** 498 * pinctrl_remove_gpio_range() - remove a range of GPIOs fro a pin controller 499 * @pctldev: pin controller device to remove the range from 500 * @range: the GPIO range to remove 501 */ 502 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev, 503 struct pinctrl_gpio_range *range) 504 { 505 mutex_lock(&pctldev->mutex); 506 list_del(&range->node); 507 mutex_unlock(&pctldev->mutex); 508 } 509 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range); 510 511 /** 512 * pinctrl_get_group_selector() - returns the group selector for a group 513 * @pctldev: the pin controller handling the group 514 * @pin_group: the pin group to look up 515 */ 516 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev, 517 const char *pin_group) 518 { 519 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops; 520 unsigned ngroups = pctlops->get_groups_count(pctldev); 521 unsigned group_selector = 0; 522 523 while (group_selector < ngroups) { 524 const char *gname = pctlops->get_group_name(pctldev, 525 group_selector); 526 if (!strcmp(gname, pin_group)) { 527 dev_dbg(pctldev->dev, 528 "found group selector %u for %s\n", 529 group_selector, 530 pin_group); 531 return group_selector; 532 } 533 534 group_selector++; 535 } 536 537 dev_err(pctldev->dev, "does not have pin group %s\n", 538 pin_group); 539 540 return -EINVAL; 541 } 542 543 /** 544 * pinctrl_request_gpio() - request a single pin to be used in as GPIO 545 * @gpio: the GPIO pin number from the GPIO subsystem number space 546 * 547 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 548 * as part of their gpio_request() semantics, platforms and individual drivers 549 * shall *NOT* request GPIO pins to be muxed in. 550 */ 551 int pinctrl_request_gpio(unsigned gpio) 552 { 553 struct pinctrl_dev *pctldev; 554 struct pinctrl_gpio_range *range; 555 int ret; 556 int pin; 557 558 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 559 if (ret) { 560 if (pinctrl_ready_for_gpio_range(gpio)) 561 ret = 0; 562 return ret; 563 } 564 565 mutex_lock(&pctldev->mutex); 566 567 /* Convert to the pin controllers number space */ 568 pin = gpio_to_pin(range, gpio); 569 570 ret = pinmux_request_gpio(pctldev, range, pin, gpio); 571 572 mutex_unlock(&pctldev->mutex); 573 574 return ret; 575 } 576 EXPORT_SYMBOL_GPL(pinctrl_request_gpio); 577 578 /** 579 * pinctrl_free_gpio() - free control on a single pin, currently used as GPIO 580 * @gpio: the GPIO pin number from the GPIO subsystem number space 581 * 582 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 583 * as part of their gpio_free() semantics, platforms and individual drivers 584 * shall *NOT* request GPIO pins to be muxed out. 585 */ 586 void pinctrl_free_gpio(unsigned gpio) 587 { 588 struct pinctrl_dev *pctldev; 589 struct pinctrl_gpio_range *range; 590 int ret; 591 int pin; 592 593 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 594 if (ret) { 595 return; 596 } 597 mutex_lock(&pctldev->mutex); 598 599 /* Convert to the pin controllers number space */ 600 pin = gpio_to_pin(range, gpio); 601 602 pinmux_free_gpio(pctldev, pin, range); 603 604 mutex_unlock(&pctldev->mutex); 605 } 606 EXPORT_SYMBOL_GPL(pinctrl_free_gpio); 607 608 static int pinctrl_gpio_direction(unsigned gpio, bool input) 609 { 610 struct pinctrl_dev *pctldev; 611 struct pinctrl_gpio_range *range; 612 int ret; 613 int pin; 614 615 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range); 616 if (ret) { 617 return ret; 618 } 619 620 mutex_lock(&pctldev->mutex); 621 622 /* Convert to the pin controllers number space */ 623 pin = gpio_to_pin(range, gpio); 624 ret = pinmux_gpio_direction(pctldev, range, pin, input); 625 626 mutex_unlock(&pctldev->mutex); 627 628 return ret; 629 } 630 631 /** 632 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode 633 * @gpio: the GPIO pin number from the GPIO subsystem number space 634 * 635 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 636 * as part of their gpio_direction_input() semantics, platforms and individual 637 * drivers shall *NOT* touch pin control GPIO calls. 638 */ 639 int pinctrl_gpio_direction_input(unsigned gpio) 640 { 641 return pinctrl_gpio_direction(gpio, true); 642 } 643 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input); 644 645 /** 646 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode 647 * @gpio: the GPIO pin number from the GPIO subsystem number space 648 * 649 * This function should *ONLY* be used from gpiolib-based GPIO drivers, 650 * as part of their gpio_direction_output() semantics, platforms and individual 651 * drivers shall *NOT* touch pin control GPIO calls. 652 */ 653 int pinctrl_gpio_direction_output(unsigned gpio) 654 { 655 return pinctrl_gpio_direction(gpio, false); 656 } 657 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output); 658 659 static struct pinctrl_state *find_state(struct pinctrl *p, 660 const char *name) 661 { 662 struct pinctrl_state *state; 663 664 list_for_each_entry(state, &p->states, node) 665 if (!strcmp(state->name, name)) 666 return state; 667 668 return NULL; 669 } 670 671 static struct pinctrl_state *create_state(struct pinctrl *p, 672 const char *name) 673 { 674 struct pinctrl_state *state; 675 676 state = kzalloc(sizeof(*state), GFP_KERNEL); 677 if (state == NULL) { 678 dev_err(p->dev, 679 "failed to alloc struct pinctrl_state\n"); 680 return ERR_PTR(-ENOMEM); 681 } 682 683 state->name = name; 684 INIT_LIST_HEAD(&state->settings); 685 686 list_add_tail(&state->node, &p->states); 687 688 return state; 689 } 690 691 static int add_setting(struct pinctrl *p, struct pinctrl_map const *map) 692 { 693 struct pinctrl_state *state; 694 struct pinctrl_setting *setting; 695 int ret; 696 697 state = find_state(p, map->name); 698 if (!state) 699 state = create_state(p, map->name); 700 if (IS_ERR(state)) 701 return PTR_ERR(state); 702 703 if (map->type == PIN_MAP_TYPE_DUMMY_STATE) 704 return 0; 705 706 setting = kzalloc(sizeof(*setting), GFP_KERNEL); 707 if (setting == NULL) { 708 dev_err(p->dev, 709 "failed to alloc struct pinctrl_setting\n"); 710 return -ENOMEM; 711 } 712 713 setting->type = map->type; 714 715 setting->pctldev = get_pinctrl_dev_from_devname(map->ctrl_dev_name); 716 if (setting->pctldev == NULL) { 717 kfree(setting); 718 /* Do not defer probing of hogs (circular loop) */ 719 if (!strcmp(map->ctrl_dev_name, map->dev_name)) 720 return -ENODEV; 721 /* 722 * OK let us guess that the driver is not there yet, and 723 * let's defer obtaining this pinctrl handle to later... 724 */ 725 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe", 726 map->ctrl_dev_name); 727 return -EPROBE_DEFER; 728 } 729 730 setting->dev_name = map->dev_name; 731 732 switch (map->type) { 733 case PIN_MAP_TYPE_MUX_GROUP: 734 ret = pinmux_map_to_setting(map, setting); 735 break; 736 case PIN_MAP_TYPE_CONFIGS_PIN: 737 case PIN_MAP_TYPE_CONFIGS_GROUP: 738 ret = pinconf_map_to_setting(map, setting); 739 break; 740 default: 741 ret = -EINVAL; 742 break; 743 } 744 if (ret < 0) { 745 kfree(setting); 746 return ret; 747 } 748 749 list_add_tail(&setting->node, &state->settings); 750 751 return 0; 752 } 753 754 static struct pinctrl *find_pinctrl(struct device *dev) 755 { 756 struct pinctrl *p; 757 758 mutex_lock(&pinctrl_list_mutex); 759 list_for_each_entry(p, &pinctrl_list, node) 760 if (p->dev == dev) { 761 mutex_unlock(&pinctrl_list_mutex); 762 return p; 763 } 764 765 mutex_unlock(&pinctrl_list_mutex); 766 return NULL; 767 } 768 769 static void pinctrl_free(struct pinctrl *p, bool inlist); 770 771 static struct pinctrl *create_pinctrl(struct device *dev) 772 { 773 struct pinctrl *p; 774 const char *devname; 775 struct pinctrl_maps *maps_node; 776 int i; 777 struct pinctrl_map const *map; 778 int ret; 779 780 /* 781 * create the state cookie holder struct pinctrl for each 782 * mapping, this is what consumers will get when requesting 783 * a pin control handle with pinctrl_get() 784 */ 785 p = kzalloc(sizeof(*p), GFP_KERNEL); 786 if (p == NULL) { 787 dev_err(dev, "failed to alloc struct pinctrl\n"); 788 return ERR_PTR(-ENOMEM); 789 } 790 p->dev = dev; 791 INIT_LIST_HEAD(&p->states); 792 INIT_LIST_HEAD(&p->dt_maps); 793 794 ret = pinctrl_dt_to_map(p); 795 if (ret < 0) { 796 kfree(p); 797 return ERR_PTR(ret); 798 } 799 800 devname = dev_name(dev); 801 802 mutex_lock(&pinctrl_maps_mutex); 803 /* Iterate over the pin control maps to locate the right ones */ 804 for_each_maps(maps_node, i, map) { 805 /* Map must be for this device */ 806 if (strcmp(map->dev_name, devname)) 807 continue; 808 809 ret = add_setting(p, map); 810 /* 811 * At this point the adding of a setting may: 812 * 813 * - Defer, if the pinctrl device is not yet available 814 * - Fail, if the pinctrl device is not yet available, 815 * AND the setting is a hog. We cannot defer that, since 816 * the hog will kick in immediately after the device 817 * is registered. 818 * 819 * If the error returned was not -EPROBE_DEFER then we 820 * accumulate the errors to see if we end up with 821 * an -EPROBE_DEFER later, as that is the worst case. 822 */ 823 if (ret == -EPROBE_DEFER) { 824 pinctrl_free(p, false); 825 mutex_unlock(&pinctrl_maps_mutex); 826 return ERR_PTR(ret); 827 } 828 } 829 mutex_unlock(&pinctrl_maps_mutex); 830 831 if (ret < 0) { 832 /* If some other error than deferral occured, return here */ 833 pinctrl_free(p, false); 834 return ERR_PTR(ret); 835 } 836 837 kref_init(&p->users); 838 839 /* Add the pinctrl handle to the global list */ 840 list_add_tail(&p->node, &pinctrl_list); 841 842 return p; 843 } 844 845 /** 846 * pinctrl_get() - retrieves the pinctrl handle for a device 847 * @dev: the device to obtain the handle for 848 */ 849 struct pinctrl *pinctrl_get(struct device *dev) 850 { 851 struct pinctrl *p; 852 853 if (WARN_ON(!dev)) 854 return ERR_PTR(-EINVAL); 855 856 /* 857 * See if somebody else (such as the device core) has already 858 * obtained a handle to the pinctrl for this device. In that case, 859 * return another pointer to it. 860 */ 861 p = find_pinctrl(dev); 862 if (p != NULL) { 863 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n"); 864 kref_get(&p->users); 865 return p; 866 } 867 868 return create_pinctrl(dev); 869 } 870 EXPORT_SYMBOL_GPL(pinctrl_get); 871 872 static void pinctrl_free_setting(bool disable_setting, 873 struct pinctrl_setting *setting) 874 { 875 switch (setting->type) { 876 case PIN_MAP_TYPE_MUX_GROUP: 877 if (disable_setting) 878 pinmux_disable_setting(setting); 879 pinmux_free_setting(setting); 880 break; 881 case PIN_MAP_TYPE_CONFIGS_PIN: 882 case PIN_MAP_TYPE_CONFIGS_GROUP: 883 pinconf_free_setting(setting); 884 break; 885 default: 886 break; 887 } 888 } 889 890 static void pinctrl_free(struct pinctrl *p, bool inlist) 891 { 892 struct pinctrl_state *state, *n1; 893 struct pinctrl_setting *setting, *n2; 894 895 mutex_lock(&pinctrl_list_mutex); 896 list_for_each_entry_safe(state, n1, &p->states, node) { 897 list_for_each_entry_safe(setting, n2, &state->settings, node) { 898 pinctrl_free_setting(state == p->state, setting); 899 list_del(&setting->node); 900 kfree(setting); 901 } 902 list_del(&state->node); 903 kfree(state); 904 } 905 906 pinctrl_dt_free_maps(p); 907 908 if (inlist) 909 list_del(&p->node); 910 kfree(p); 911 mutex_unlock(&pinctrl_list_mutex); 912 } 913 914 /** 915 * pinctrl_release() - release the pinctrl handle 916 * @kref: the kref in the pinctrl being released 917 */ 918 static void pinctrl_release(struct kref *kref) 919 { 920 struct pinctrl *p = container_of(kref, struct pinctrl, users); 921 922 pinctrl_free(p, true); 923 } 924 925 /** 926 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle 927 * @p: the pinctrl handle to release 928 */ 929 void pinctrl_put(struct pinctrl *p) 930 { 931 kref_put(&p->users, pinctrl_release); 932 } 933 EXPORT_SYMBOL_GPL(pinctrl_put); 934 935 /** 936 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle 937 * @p: the pinctrl handle to retrieve the state from 938 * @name: the state name to retrieve 939 */ 940 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p, 941 const char *name) 942 { 943 struct pinctrl_state *state; 944 945 state = find_state(p, name); 946 if (!state) { 947 if (pinctrl_dummy_state) { 948 /* create dummy state */ 949 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n", 950 name); 951 state = create_state(p, name); 952 } else 953 state = ERR_PTR(-ENODEV); 954 } 955 956 return state; 957 } 958 EXPORT_SYMBOL_GPL(pinctrl_lookup_state); 959 960 /** 961 * pinctrl_select_state() - select/activate/program a pinctrl state to HW 962 * @p: the pinctrl handle for the device that requests configuration 963 * @state: the state handle to select/activate/program 964 */ 965 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state) 966 { 967 struct pinctrl_setting *setting, *setting2; 968 struct pinctrl_state *old_state = p->state; 969 int ret; 970 971 if (p->state == state) 972 return 0; 973 974 if (p->state) { 975 /* 976 * The set of groups with a mux configuration in the old state 977 * may not be identical to the set of groups with a mux setting 978 * in the new state. While this might be unusual, it's entirely 979 * possible for the "user"-supplied mapping table to be written 980 * that way. For each group that was configured in the old state 981 * but not in the new state, this code puts that group into a 982 * safe/disabled state. 983 */ 984 list_for_each_entry(setting, &p->state->settings, node) { 985 bool found = false; 986 if (setting->type != PIN_MAP_TYPE_MUX_GROUP) 987 continue; 988 list_for_each_entry(setting2, &state->settings, node) { 989 if (setting2->type != PIN_MAP_TYPE_MUX_GROUP) 990 continue; 991 if (setting2->data.mux.group == 992 setting->data.mux.group) { 993 found = true; 994 break; 995 } 996 } 997 if (!found) 998 pinmux_disable_setting(setting); 999 } 1000 } 1001 1002 p->state = NULL; 1003 1004 /* Apply all the settings for the new state */ 1005 list_for_each_entry(setting, &state->settings, node) { 1006 switch (setting->type) { 1007 case PIN_MAP_TYPE_MUX_GROUP: 1008 ret = pinmux_enable_setting(setting); 1009 break; 1010 case PIN_MAP_TYPE_CONFIGS_PIN: 1011 case PIN_MAP_TYPE_CONFIGS_GROUP: 1012 ret = pinconf_apply_setting(setting); 1013 break; 1014 default: 1015 ret = -EINVAL; 1016 break; 1017 } 1018 1019 if (ret < 0) { 1020 goto unapply_new_state; 1021 } 1022 } 1023 1024 p->state = state; 1025 1026 return 0; 1027 1028 unapply_new_state: 1029 dev_err(p->dev, "Error applying setting, reverse things back\n"); 1030 1031 list_for_each_entry(setting2, &state->settings, node) { 1032 if (&setting2->node == &setting->node) 1033 break; 1034 /* 1035 * All we can do here is pinmux_disable_setting. 1036 * That means that some pins are muxed differently now 1037 * than they were before applying the setting (We can't 1038 * "unmux a pin"!), but it's not a big deal since the pins 1039 * are free to be muxed by another apply_setting. 1040 */ 1041 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP) 1042 pinmux_disable_setting(setting2); 1043 } 1044 1045 /* There's no infinite recursive loop here because p->state is NULL */ 1046 if (old_state) 1047 pinctrl_select_state(p, old_state); 1048 1049 return ret; 1050 } 1051 EXPORT_SYMBOL_GPL(pinctrl_select_state); 1052 1053 static void devm_pinctrl_release(struct device *dev, void *res) 1054 { 1055 pinctrl_put(*(struct pinctrl **)res); 1056 } 1057 1058 /** 1059 * struct devm_pinctrl_get() - Resource managed pinctrl_get() 1060 * @dev: the device to obtain the handle for 1061 * 1062 * If there is a need to explicitly destroy the returned struct pinctrl, 1063 * devm_pinctrl_put() should be used, rather than plain pinctrl_put(). 1064 */ 1065 struct pinctrl *devm_pinctrl_get(struct device *dev) 1066 { 1067 struct pinctrl **ptr, *p; 1068 1069 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL); 1070 if (!ptr) 1071 return ERR_PTR(-ENOMEM); 1072 1073 p = pinctrl_get(dev); 1074 if (!IS_ERR(p)) { 1075 *ptr = p; 1076 devres_add(dev, ptr); 1077 } else { 1078 devres_free(ptr); 1079 } 1080 1081 return p; 1082 } 1083 EXPORT_SYMBOL_GPL(devm_pinctrl_get); 1084 1085 static int devm_pinctrl_match(struct device *dev, void *res, void *data) 1086 { 1087 struct pinctrl **p = res; 1088 1089 return *p == data; 1090 } 1091 1092 /** 1093 * devm_pinctrl_put() - Resource managed pinctrl_put() 1094 * @p: the pinctrl handle to release 1095 * 1096 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally 1097 * this function will not need to be called and the resource management 1098 * code will ensure that the resource is freed. 1099 */ 1100 void devm_pinctrl_put(struct pinctrl *p) 1101 { 1102 WARN_ON(devres_release(p->dev, devm_pinctrl_release, 1103 devm_pinctrl_match, p)); 1104 } 1105 EXPORT_SYMBOL_GPL(devm_pinctrl_put); 1106 1107 int pinctrl_register_map(struct pinctrl_map const *maps, unsigned num_maps, 1108 bool dup, bool locked) 1109 { 1110 int i, ret; 1111 struct pinctrl_maps *maps_node; 1112 1113 pr_debug("add %d pinmux maps\n", num_maps); 1114 1115 /* First sanity check the new mapping */ 1116 for (i = 0; i < num_maps; i++) { 1117 if (!maps[i].dev_name) { 1118 pr_err("failed to register map %s (%d): no device given\n", 1119 maps[i].name, i); 1120 return -EINVAL; 1121 } 1122 1123 if (!maps[i].name) { 1124 pr_err("failed to register map %d: no map name given\n", 1125 i); 1126 return -EINVAL; 1127 } 1128 1129 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE && 1130 !maps[i].ctrl_dev_name) { 1131 pr_err("failed to register map %s (%d): no pin control device given\n", 1132 maps[i].name, i); 1133 return -EINVAL; 1134 } 1135 1136 switch (maps[i].type) { 1137 case PIN_MAP_TYPE_DUMMY_STATE: 1138 break; 1139 case PIN_MAP_TYPE_MUX_GROUP: 1140 ret = pinmux_validate_map(&maps[i], i); 1141 if (ret < 0) 1142 return ret; 1143 break; 1144 case PIN_MAP_TYPE_CONFIGS_PIN: 1145 case PIN_MAP_TYPE_CONFIGS_GROUP: 1146 ret = pinconf_validate_map(&maps[i], i); 1147 if (ret < 0) 1148 return ret; 1149 break; 1150 default: 1151 pr_err("failed to register map %s (%d): invalid type given\n", 1152 maps[i].name, i); 1153 return -EINVAL; 1154 } 1155 } 1156 1157 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL); 1158 if (!maps_node) { 1159 pr_err("failed to alloc struct pinctrl_maps\n"); 1160 return -ENOMEM; 1161 } 1162 1163 maps_node->num_maps = num_maps; 1164 if (dup) { 1165 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps, 1166 GFP_KERNEL); 1167 if (!maps_node->maps) { 1168 pr_err("failed to duplicate mapping table\n"); 1169 kfree(maps_node); 1170 return -ENOMEM; 1171 } 1172 } else { 1173 maps_node->maps = maps; 1174 } 1175 1176 if (!locked) 1177 mutex_lock(&pinctrl_maps_mutex); 1178 list_add_tail(&maps_node->node, &pinctrl_maps); 1179 if (!locked) 1180 mutex_unlock(&pinctrl_maps_mutex); 1181 1182 return 0; 1183 } 1184 1185 /** 1186 * pinctrl_register_mappings() - register a set of pin controller mappings 1187 * @maps: the pincontrol mappings table to register. This should probably be 1188 * marked with __initdata so it can be discarded after boot. This 1189 * function will perform a shallow copy for the mapping entries. 1190 * @num_maps: the number of maps in the mapping table 1191 */ 1192 int pinctrl_register_mappings(struct pinctrl_map const *maps, 1193 unsigned num_maps) 1194 { 1195 return pinctrl_register_map(maps, num_maps, true, false); 1196 } 1197 1198 void pinctrl_unregister_map(struct pinctrl_map const *map) 1199 { 1200 struct pinctrl_maps *maps_node; 1201 1202 mutex_lock(&pinctrl_maps_mutex); 1203 list_for_each_entry(maps_node, &pinctrl_maps, node) { 1204 if (maps_node->maps == map) { 1205 list_del(&maps_node->node); 1206 kfree(maps_node); 1207 mutex_unlock(&pinctrl_maps_mutex); 1208 return; 1209 } 1210 } 1211 mutex_unlock(&pinctrl_maps_mutex); 1212 } 1213 1214 /** 1215 * pinctrl_force_sleep() - turn a given controller device into sleep state 1216 * @pctldev: pin controller device 1217 */ 1218 int pinctrl_force_sleep(struct pinctrl_dev *pctldev) 1219 { 1220 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep)) 1221 return pinctrl_select_state(pctldev->p, pctldev->hog_sleep); 1222 return 0; 1223 } 1224 EXPORT_SYMBOL_GPL(pinctrl_force_sleep); 1225 1226 /** 1227 * pinctrl_force_default() - turn a given controller device into default state 1228 * @pctldev: pin controller device 1229 */ 1230 int pinctrl_force_default(struct pinctrl_dev *pctldev) 1231 { 1232 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default)) 1233 return pinctrl_select_state(pctldev->p, pctldev->hog_default); 1234 return 0; 1235 } 1236 EXPORT_SYMBOL_GPL(pinctrl_force_default); 1237 1238 #ifdef CONFIG_PM 1239 1240 /** 1241 * pinctrl_pm_select_state() - select pinctrl state for PM 1242 * @dev: device to select default state for 1243 * @state: state to set 1244 */ 1245 static int pinctrl_pm_select_state(struct device *dev, 1246 struct pinctrl_state *state) 1247 { 1248 struct dev_pin_info *pins = dev->pins; 1249 int ret; 1250 1251 if (IS_ERR(state)) 1252 return 0; /* No such state */ 1253 ret = pinctrl_select_state(pins->p, state); 1254 if (ret) 1255 dev_err(dev, "failed to activate pinctrl state %s\n", 1256 state->name); 1257 return ret; 1258 } 1259 1260 /** 1261 * pinctrl_pm_select_default_state() - select default pinctrl state for PM 1262 * @dev: device to select default state for 1263 */ 1264 int pinctrl_pm_select_default_state(struct device *dev) 1265 { 1266 if (!dev->pins) 1267 return 0; 1268 1269 return pinctrl_pm_select_state(dev, dev->pins->default_state); 1270 } 1271 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state); 1272 1273 /** 1274 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM 1275 * @dev: device to select sleep state for 1276 */ 1277 int pinctrl_pm_select_sleep_state(struct device *dev) 1278 { 1279 if (!dev->pins) 1280 return 0; 1281 1282 return pinctrl_pm_select_state(dev, dev->pins->sleep_state); 1283 } 1284 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state); 1285 1286 /** 1287 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM 1288 * @dev: device to select idle state for 1289 */ 1290 int pinctrl_pm_select_idle_state(struct device *dev) 1291 { 1292 if (!dev->pins) 1293 return 0; 1294 1295 return pinctrl_pm_select_state(dev, dev->pins->idle_state); 1296 } 1297 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state); 1298 #endif 1299 1300 #ifdef CONFIG_DEBUG_FS 1301 1302 static int pinctrl_pins_show(struct seq_file *s, void *what) 1303 { 1304 struct pinctrl_dev *pctldev = s->private; 1305 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1306 unsigned i, pin; 1307 1308 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins); 1309 1310 mutex_lock(&pctldev->mutex); 1311 1312 /* The pin number can be retrived from the pin controller descriptor */ 1313 for (i = 0; i < pctldev->desc->npins; i++) { 1314 struct pin_desc *desc; 1315 1316 pin = pctldev->desc->pins[i].number; 1317 desc = pin_desc_get(pctldev, pin); 1318 /* Pin space may be sparse */ 1319 if (desc == NULL) 1320 continue; 1321 1322 seq_printf(s, "pin %d (%s) ", pin, 1323 desc->name ? desc->name : "unnamed"); 1324 1325 /* Driver-specific info per pin */ 1326 if (ops->pin_dbg_show) 1327 ops->pin_dbg_show(pctldev, s, pin); 1328 1329 seq_puts(s, "\n"); 1330 } 1331 1332 mutex_unlock(&pctldev->mutex); 1333 1334 return 0; 1335 } 1336 1337 static int pinctrl_groups_show(struct seq_file *s, void *what) 1338 { 1339 struct pinctrl_dev *pctldev = s->private; 1340 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1341 unsigned ngroups, selector = 0; 1342 1343 mutex_lock(&pctldev->mutex); 1344 1345 ngroups = ops->get_groups_count(pctldev); 1346 1347 seq_puts(s, "registered pin groups:\n"); 1348 while (selector < ngroups) { 1349 const unsigned *pins; 1350 unsigned num_pins; 1351 const char *gname = ops->get_group_name(pctldev, selector); 1352 const char *pname; 1353 int ret; 1354 int i; 1355 1356 ret = ops->get_group_pins(pctldev, selector, 1357 &pins, &num_pins); 1358 if (ret) 1359 seq_printf(s, "%s [ERROR GETTING PINS]\n", 1360 gname); 1361 else { 1362 seq_printf(s, "group: %s\n", gname); 1363 for (i = 0; i < num_pins; i++) { 1364 pname = pin_get_name(pctldev, pins[i]); 1365 if (WARN_ON(!pname)) { 1366 mutex_unlock(&pctldev->mutex); 1367 return -EINVAL; 1368 } 1369 seq_printf(s, "pin %d (%s)\n", pins[i], pname); 1370 } 1371 seq_puts(s, "\n"); 1372 } 1373 selector++; 1374 } 1375 1376 mutex_unlock(&pctldev->mutex); 1377 1378 return 0; 1379 } 1380 1381 static int pinctrl_gpioranges_show(struct seq_file *s, void *what) 1382 { 1383 struct pinctrl_dev *pctldev = s->private; 1384 struct pinctrl_gpio_range *range = NULL; 1385 1386 seq_puts(s, "GPIO ranges handled:\n"); 1387 1388 mutex_lock(&pctldev->mutex); 1389 1390 /* Loop over the ranges */ 1391 list_for_each_entry(range, &pctldev->gpio_ranges, node) { 1392 if (range->pins) { 1393 int a; 1394 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {", 1395 range->id, range->name, 1396 range->base, (range->base + range->npins - 1)); 1397 for (a = 0; a < range->npins - 1; a++) 1398 seq_printf(s, "%u, ", range->pins[a]); 1399 seq_printf(s, "%u}\n", range->pins[a]); 1400 } 1401 else 1402 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n", 1403 range->id, range->name, 1404 range->base, (range->base + range->npins - 1), 1405 range->pin_base, 1406 (range->pin_base + range->npins - 1)); 1407 } 1408 1409 mutex_unlock(&pctldev->mutex); 1410 1411 return 0; 1412 } 1413 1414 static int pinctrl_devices_show(struct seq_file *s, void *what) 1415 { 1416 struct pinctrl_dev *pctldev; 1417 1418 seq_puts(s, "name [pinmux] [pinconf]\n"); 1419 1420 mutex_lock(&pinctrldev_list_mutex); 1421 1422 list_for_each_entry(pctldev, &pinctrldev_list, node) { 1423 seq_printf(s, "%s ", pctldev->desc->name); 1424 if (pctldev->desc->pmxops) 1425 seq_puts(s, "yes "); 1426 else 1427 seq_puts(s, "no "); 1428 if (pctldev->desc->confops) 1429 seq_puts(s, "yes"); 1430 else 1431 seq_puts(s, "no"); 1432 seq_puts(s, "\n"); 1433 } 1434 1435 mutex_unlock(&pinctrldev_list_mutex); 1436 1437 return 0; 1438 } 1439 1440 static inline const char *map_type(enum pinctrl_map_type type) 1441 { 1442 static const char * const names[] = { 1443 "INVALID", 1444 "DUMMY_STATE", 1445 "MUX_GROUP", 1446 "CONFIGS_PIN", 1447 "CONFIGS_GROUP", 1448 }; 1449 1450 if (type >= ARRAY_SIZE(names)) 1451 return "UNKNOWN"; 1452 1453 return names[type]; 1454 } 1455 1456 static int pinctrl_maps_show(struct seq_file *s, void *what) 1457 { 1458 struct pinctrl_maps *maps_node; 1459 int i; 1460 struct pinctrl_map const *map; 1461 1462 seq_puts(s, "Pinctrl maps:\n"); 1463 1464 mutex_lock(&pinctrl_maps_mutex); 1465 for_each_maps(maps_node, i, map) { 1466 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n", 1467 map->dev_name, map->name, map_type(map->type), 1468 map->type); 1469 1470 if (map->type != PIN_MAP_TYPE_DUMMY_STATE) 1471 seq_printf(s, "controlling device %s\n", 1472 map->ctrl_dev_name); 1473 1474 switch (map->type) { 1475 case PIN_MAP_TYPE_MUX_GROUP: 1476 pinmux_show_map(s, map); 1477 break; 1478 case PIN_MAP_TYPE_CONFIGS_PIN: 1479 case PIN_MAP_TYPE_CONFIGS_GROUP: 1480 pinconf_show_map(s, map); 1481 break; 1482 default: 1483 break; 1484 } 1485 1486 seq_printf(s, "\n"); 1487 } 1488 mutex_unlock(&pinctrl_maps_mutex); 1489 1490 return 0; 1491 } 1492 1493 static int pinctrl_show(struct seq_file *s, void *what) 1494 { 1495 struct pinctrl *p; 1496 struct pinctrl_state *state; 1497 struct pinctrl_setting *setting; 1498 1499 seq_puts(s, "Requested pin control handlers their pinmux maps:\n"); 1500 1501 mutex_lock(&pinctrl_list_mutex); 1502 1503 list_for_each_entry(p, &pinctrl_list, node) { 1504 seq_printf(s, "device: %s current state: %s\n", 1505 dev_name(p->dev), 1506 p->state ? p->state->name : "none"); 1507 1508 list_for_each_entry(state, &p->states, node) { 1509 seq_printf(s, " state: %s\n", state->name); 1510 1511 list_for_each_entry(setting, &state->settings, node) { 1512 struct pinctrl_dev *pctldev = setting->pctldev; 1513 1514 seq_printf(s, " type: %s controller %s ", 1515 map_type(setting->type), 1516 pinctrl_dev_get_name(pctldev)); 1517 1518 switch (setting->type) { 1519 case PIN_MAP_TYPE_MUX_GROUP: 1520 pinmux_show_setting(s, setting); 1521 break; 1522 case PIN_MAP_TYPE_CONFIGS_PIN: 1523 case PIN_MAP_TYPE_CONFIGS_GROUP: 1524 pinconf_show_setting(s, setting); 1525 break; 1526 default: 1527 break; 1528 } 1529 } 1530 } 1531 } 1532 1533 mutex_unlock(&pinctrl_list_mutex); 1534 1535 return 0; 1536 } 1537 1538 static int pinctrl_pins_open(struct inode *inode, struct file *file) 1539 { 1540 return single_open(file, pinctrl_pins_show, inode->i_private); 1541 } 1542 1543 static int pinctrl_groups_open(struct inode *inode, struct file *file) 1544 { 1545 return single_open(file, pinctrl_groups_show, inode->i_private); 1546 } 1547 1548 static int pinctrl_gpioranges_open(struct inode *inode, struct file *file) 1549 { 1550 return single_open(file, pinctrl_gpioranges_show, inode->i_private); 1551 } 1552 1553 static int pinctrl_devices_open(struct inode *inode, struct file *file) 1554 { 1555 return single_open(file, pinctrl_devices_show, NULL); 1556 } 1557 1558 static int pinctrl_maps_open(struct inode *inode, struct file *file) 1559 { 1560 return single_open(file, pinctrl_maps_show, NULL); 1561 } 1562 1563 static int pinctrl_open(struct inode *inode, struct file *file) 1564 { 1565 return single_open(file, pinctrl_show, NULL); 1566 } 1567 1568 static const struct file_operations pinctrl_pins_ops = { 1569 .open = pinctrl_pins_open, 1570 .read = seq_read, 1571 .llseek = seq_lseek, 1572 .release = single_release, 1573 }; 1574 1575 static const struct file_operations pinctrl_groups_ops = { 1576 .open = pinctrl_groups_open, 1577 .read = seq_read, 1578 .llseek = seq_lseek, 1579 .release = single_release, 1580 }; 1581 1582 static const struct file_operations pinctrl_gpioranges_ops = { 1583 .open = pinctrl_gpioranges_open, 1584 .read = seq_read, 1585 .llseek = seq_lseek, 1586 .release = single_release, 1587 }; 1588 1589 static const struct file_operations pinctrl_devices_ops = { 1590 .open = pinctrl_devices_open, 1591 .read = seq_read, 1592 .llseek = seq_lseek, 1593 .release = single_release, 1594 }; 1595 1596 static const struct file_operations pinctrl_maps_ops = { 1597 .open = pinctrl_maps_open, 1598 .read = seq_read, 1599 .llseek = seq_lseek, 1600 .release = single_release, 1601 }; 1602 1603 static const struct file_operations pinctrl_ops = { 1604 .open = pinctrl_open, 1605 .read = seq_read, 1606 .llseek = seq_lseek, 1607 .release = single_release, 1608 }; 1609 1610 static struct dentry *debugfs_root; 1611 1612 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1613 { 1614 struct dentry *device_root; 1615 1616 device_root = debugfs_create_dir(dev_name(pctldev->dev), 1617 debugfs_root); 1618 pctldev->device_root = device_root; 1619 1620 if (IS_ERR(device_root) || !device_root) { 1621 pr_warn("failed to create debugfs directory for %s\n", 1622 dev_name(pctldev->dev)); 1623 return; 1624 } 1625 debugfs_create_file("pins", S_IFREG | S_IRUGO, 1626 device_root, pctldev, &pinctrl_pins_ops); 1627 debugfs_create_file("pingroups", S_IFREG | S_IRUGO, 1628 device_root, pctldev, &pinctrl_groups_ops); 1629 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO, 1630 device_root, pctldev, &pinctrl_gpioranges_ops); 1631 pinmux_init_device_debugfs(device_root, pctldev); 1632 pinconf_init_device_debugfs(device_root, pctldev); 1633 } 1634 1635 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1636 { 1637 debugfs_remove_recursive(pctldev->device_root); 1638 } 1639 1640 static void pinctrl_init_debugfs(void) 1641 { 1642 debugfs_root = debugfs_create_dir("pinctrl", NULL); 1643 if (IS_ERR(debugfs_root) || !debugfs_root) { 1644 pr_warn("failed to create debugfs directory\n"); 1645 debugfs_root = NULL; 1646 return; 1647 } 1648 1649 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO, 1650 debugfs_root, NULL, &pinctrl_devices_ops); 1651 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO, 1652 debugfs_root, NULL, &pinctrl_maps_ops); 1653 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO, 1654 debugfs_root, NULL, &pinctrl_ops); 1655 } 1656 1657 #else /* CONFIG_DEBUG_FS */ 1658 1659 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev) 1660 { 1661 } 1662 1663 static void pinctrl_init_debugfs(void) 1664 { 1665 } 1666 1667 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev) 1668 { 1669 } 1670 1671 #endif 1672 1673 static int pinctrl_check_ops(struct pinctrl_dev *pctldev) 1674 { 1675 const struct pinctrl_ops *ops = pctldev->desc->pctlops; 1676 1677 if (!ops || 1678 !ops->get_groups_count || 1679 !ops->get_group_name || 1680 !ops->get_group_pins) 1681 return -EINVAL; 1682 1683 if (ops->dt_node_to_map && !ops->dt_free_map) 1684 return -EINVAL; 1685 1686 return 0; 1687 } 1688 1689 /** 1690 * pinctrl_register() - register a pin controller device 1691 * @pctldesc: descriptor for this pin controller 1692 * @dev: parent device for this pin controller 1693 * @driver_data: private pin controller data for this pin controller 1694 */ 1695 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc, 1696 struct device *dev, void *driver_data) 1697 { 1698 struct pinctrl_dev *pctldev; 1699 int ret; 1700 1701 if (!pctldesc) 1702 return NULL; 1703 if (!pctldesc->name) 1704 return NULL; 1705 1706 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL); 1707 if (pctldev == NULL) { 1708 dev_err(dev, "failed to alloc struct pinctrl_dev\n"); 1709 return NULL; 1710 } 1711 1712 /* Initialize pin control device struct */ 1713 pctldev->owner = pctldesc->owner; 1714 pctldev->desc = pctldesc; 1715 pctldev->driver_data = driver_data; 1716 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL); 1717 INIT_LIST_HEAD(&pctldev->gpio_ranges); 1718 pctldev->dev = dev; 1719 mutex_init(&pctldev->mutex); 1720 1721 /* check core ops for sanity */ 1722 if (pinctrl_check_ops(pctldev)) { 1723 dev_err(dev, "pinctrl ops lacks necessary functions\n"); 1724 goto out_err; 1725 } 1726 1727 /* If we're implementing pinmuxing, check the ops for sanity */ 1728 if (pctldesc->pmxops) { 1729 if (pinmux_check_ops(pctldev)) 1730 goto out_err; 1731 } 1732 1733 /* If we're implementing pinconfig, check the ops for sanity */ 1734 if (pctldesc->confops) { 1735 if (pinconf_check_ops(pctldev)) 1736 goto out_err; 1737 } 1738 1739 /* Register all the pins */ 1740 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins); 1741 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins); 1742 if (ret) { 1743 dev_err(dev, "error during pin registration\n"); 1744 pinctrl_free_pindescs(pctldev, pctldesc->pins, 1745 pctldesc->npins); 1746 goto out_err; 1747 } 1748 1749 mutex_lock(&pinctrldev_list_mutex); 1750 list_add_tail(&pctldev->node, &pinctrldev_list); 1751 mutex_unlock(&pinctrldev_list_mutex); 1752 1753 pctldev->p = pinctrl_get(pctldev->dev); 1754 1755 if (!IS_ERR(pctldev->p)) { 1756 pctldev->hog_default = 1757 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT); 1758 if (IS_ERR(pctldev->hog_default)) { 1759 dev_dbg(dev, "failed to lookup the default state\n"); 1760 } else { 1761 if (pinctrl_select_state(pctldev->p, 1762 pctldev->hog_default)) 1763 dev_err(dev, 1764 "failed to select default state\n"); 1765 } 1766 1767 pctldev->hog_sleep = 1768 pinctrl_lookup_state(pctldev->p, 1769 PINCTRL_STATE_SLEEP); 1770 if (IS_ERR(pctldev->hog_sleep)) 1771 dev_dbg(dev, "failed to lookup the sleep state\n"); 1772 } 1773 1774 pinctrl_init_device_debugfs(pctldev); 1775 1776 return pctldev; 1777 1778 out_err: 1779 mutex_destroy(&pctldev->mutex); 1780 kfree(pctldev); 1781 return NULL; 1782 } 1783 EXPORT_SYMBOL_GPL(pinctrl_register); 1784 1785 /** 1786 * pinctrl_unregister() - unregister pinmux 1787 * @pctldev: pin controller to unregister 1788 * 1789 * Called by pinmux drivers to unregister a pinmux. 1790 */ 1791 void pinctrl_unregister(struct pinctrl_dev *pctldev) 1792 { 1793 struct pinctrl_gpio_range *range, *n; 1794 if (pctldev == NULL) 1795 return; 1796 1797 mutex_lock(&pinctrldev_list_mutex); 1798 mutex_lock(&pctldev->mutex); 1799 1800 pinctrl_remove_device_debugfs(pctldev); 1801 1802 if (!IS_ERR(pctldev->p)) 1803 pinctrl_put(pctldev->p); 1804 1805 /* TODO: check that no pinmuxes are still active? */ 1806 list_del(&pctldev->node); 1807 /* Destroy descriptor tree */ 1808 pinctrl_free_pindescs(pctldev, pctldev->desc->pins, 1809 pctldev->desc->npins); 1810 /* remove gpio ranges map */ 1811 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node) 1812 list_del(&range->node); 1813 1814 mutex_unlock(&pctldev->mutex); 1815 mutex_destroy(&pctldev->mutex); 1816 kfree(pctldev); 1817 mutex_unlock(&pinctrldev_list_mutex); 1818 } 1819 EXPORT_SYMBOL_GPL(pinctrl_unregister); 1820 1821 static int __init pinctrl_init(void) 1822 { 1823 pr_info("initialized pinctrl subsystem\n"); 1824 pinctrl_init_debugfs(); 1825 return 0; 1826 } 1827 1828 /* init early since many drivers really need to initialized pinmux early */ 1829 core_initcall(pinctrl_init); 1830