1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13 #define pr_fmt(fmt) "pinctrl core: " fmt
14
15 #include <linux/debugfs.h>
16 #include <linux/device.h>
17 #include <linux/err.h>
18 #include <linux/export.h>
19 #include <linux/init.h>
20 #include <linux/kernel.h>
21 #include <linux/kref.h>
22 #include <linux/list.h>
23 #include <linux/seq_file.h>
24 #include <linux/slab.h>
25
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/pinctrl/devinfo.h>
28 #include <linux/pinctrl/machine.h>
29 #include <linux/pinctrl/pinctrl.h>
30
31 #ifdef CONFIG_GPIOLIB
32 #include "../gpio/gpiolib.h"
33 #endif
34
35 #include "core.h"
36 #include "devicetree.h"
37 #include "pinconf.h"
38 #include "pinmux.h"
39
40 static bool pinctrl_dummy_state;
41
42 /* Mutex taken to protect pinctrl_list */
43 static DEFINE_MUTEX(pinctrl_list_mutex);
44
45 /* Mutex taken to protect pinctrl_maps */
46 DEFINE_MUTEX(pinctrl_maps_mutex);
47
48 /* Mutex taken to protect pinctrldev_list */
49 static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51 /* Global list of pin control devices (struct pinctrl_dev) */
52 static LIST_HEAD(pinctrldev_list);
53
54 /* List of pin controller handles (struct pinctrl) */
55 static LIST_HEAD(pinctrl_list);
56
57 /* List of pinctrl maps (struct pinctrl_maps) */
58 LIST_HEAD(pinctrl_maps);
59
60
61 /**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
pinctrl_provide_dummies(void)69 void pinctrl_provide_dummies(void)
70 {
71 pinctrl_dummy_state = true;
72 }
73
pinctrl_dev_get_name(struct pinctrl_dev * pctldev)74 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 {
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78 }
79 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
pinctrl_dev_get_devname(struct pinctrl_dev * pctldev)81 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 {
83 return dev_name(pctldev->dev);
84 }
85 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
pinctrl_dev_get_drvdata(struct pinctrl_dev * pctldev)87 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 {
89 return pctldev->driver_data;
90 }
91 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93 /**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
get_pinctrl_dev_from_devname(const char * devname)100 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 {
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120 }
121
get_pinctrl_dev_from_of_node(struct device_node * np)122 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 {
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137 }
138
139 /**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
pin_get_from_name(struct pinctrl_dev * pctldev,const char * name)144 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145 {
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160 }
161
162 /**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
pin_get_name(struct pinctrl_dev * pctldev,const unsigned pin)167 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 {
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179 }
180 EXPORT_SYMBOL_GPL(pin_get_name);
181
182 /* Deletes a range of pin descriptors */
pinctrl_free_pindescs(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_pins)183 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186 {
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202 }
203
pinctrl_register_one_pin(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pin)204 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206 {
207 struct pin_desc *pindesc;
208 int error;
209
210 pindesc = pin_desc_get(pctldev, pin->number);
211 if (pindesc) {
212 dev_err(pctldev->dev, "pin %d already registered\n",
213 pin->number);
214 return -EINVAL;
215 }
216
217 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
218 if (!pindesc)
219 return -ENOMEM;
220
221 /* Set owner */
222 pindesc->pctldev = pctldev;
223
224 /* Copy basic pin info */
225 if (pin->name) {
226 pindesc->name = pin->name;
227 } else {
228 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
229 if (!pindesc->name) {
230 error = -ENOMEM;
231 goto failed;
232 }
233 pindesc->dynamic_name = true;
234 }
235
236 pindesc->drv_data = pin->drv_data;
237
238 error = radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
239 if (error)
240 goto failed;
241
242 pr_debug("registered pin %d (%s) on %s\n",
243 pin->number, pindesc->name, pctldev->desc->name);
244 return 0;
245
246 failed:
247 kfree(pindesc);
248 return error;
249 }
250
pinctrl_register_pins(struct pinctrl_dev * pctldev,const struct pinctrl_pin_desc * pins,unsigned num_descs)251 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
252 const struct pinctrl_pin_desc *pins,
253 unsigned num_descs)
254 {
255 unsigned i;
256 int ret = 0;
257
258 for (i = 0; i < num_descs; i++) {
259 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
260 if (ret)
261 return ret;
262 }
263
264 return 0;
265 }
266
267 /**
268 * gpio_to_pin() - GPIO range GPIO number to pin number translation
269 * @range: GPIO range used for the translation
270 * @gpio: gpio pin to translate to a pin number
271 *
272 * Finds the pin number for a given GPIO using the specified GPIO range
273 * as a base for translation. The distinction between linear GPIO ranges
274 * and pin list based GPIO ranges is managed correctly by this function.
275 *
276 * This function assumes the gpio is part of the specified GPIO range, use
277 * only after making sure this is the case (e.g. by calling it on the
278 * result of successful pinctrl_get_device_gpio_range calls)!
279 */
gpio_to_pin(struct pinctrl_gpio_range * range,unsigned int gpio)280 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
281 unsigned int gpio)
282 {
283 unsigned int offset = gpio - range->base;
284 if (range->pins)
285 return range->pins[offset];
286 else
287 return range->pin_base + offset;
288 }
289
290 /**
291 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
292 * @pctldev: pin controller device to check
293 * @gpio: gpio pin to check taken from the global GPIO pin space
294 *
295 * Tries to match a GPIO pin number to the ranges handled by a certain pin
296 * controller, return the range or NULL
297 */
298 static struct pinctrl_gpio_range *
pinctrl_match_gpio_range(struct pinctrl_dev * pctldev,unsigned gpio)299 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
300 {
301 struct pinctrl_gpio_range *range;
302
303 mutex_lock(&pctldev->mutex);
304 /* Loop over the ranges */
305 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
306 /* Check if we're in the valid range */
307 if (gpio >= range->base &&
308 gpio < range->base + range->npins) {
309 mutex_unlock(&pctldev->mutex);
310 return range;
311 }
312 }
313 mutex_unlock(&pctldev->mutex);
314 return NULL;
315 }
316
317 /**
318 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
319 * the same GPIO chip are in range
320 * @gpio: gpio pin to check taken from the global GPIO pin space
321 *
322 * This function is complement of pinctrl_match_gpio_range(). If the return
323 * value of pinctrl_match_gpio_range() is NULL, this function could be used
324 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
325 * of the same GPIO chip don't have back-end pinctrl interface.
326 * If the return value is true, it means that pinctrl device is ready & the
327 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
328 * is false, it means that pinctrl device may not be ready.
329 */
330 #ifdef CONFIG_GPIOLIB
pinctrl_ready_for_gpio_range(unsigned gpio)331 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
332 {
333 struct pinctrl_dev *pctldev;
334 struct pinctrl_gpio_range *range = NULL;
335 /*
336 * FIXME: "gpio" here is a number in the global GPIO numberspace.
337 * get rid of this from the ranges eventually and get the GPIO
338 * descriptor from the gpio_chip.
339 */
340 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
341
342 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
343 return false;
344
345 mutex_lock(&pinctrldev_list_mutex);
346
347 /* Loop over the pin controllers */
348 list_for_each_entry(pctldev, &pinctrldev_list, node) {
349 /* Loop over the ranges */
350 mutex_lock(&pctldev->mutex);
351 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
352 /* Check if any gpio range overlapped with gpio chip */
353 if (range->base + range->npins - 1 < chip->base ||
354 range->base > chip->base + chip->ngpio - 1)
355 continue;
356 mutex_unlock(&pctldev->mutex);
357 mutex_unlock(&pinctrldev_list_mutex);
358 return true;
359 }
360 mutex_unlock(&pctldev->mutex);
361 }
362
363 mutex_unlock(&pinctrldev_list_mutex);
364
365 return false;
366 }
367 #else
pinctrl_ready_for_gpio_range(unsigned gpio)368 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
369 #endif
370
371 /**
372 * pinctrl_get_device_gpio_range() - find device for GPIO range
373 * @gpio: the pin to locate the pin controller for
374 * @outdev: the pin control device if found
375 * @outrange: the GPIO range if found
376 *
377 * Find the pin controller handling a certain GPIO pin from the pinspace of
378 * the GPIO subsystem, return the device and the matching GPIO range. Returns
379 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
380 * may still have not been registered.
381 */
pinctrl_get_device_gpio_range(unsigned gpio,struct pinctrl_dev ** outdev,struct pinctrl_gpio_range ** outrange)382 static int pinctrl_get_device_gpio_range(unsigned gpio,
383 struct pinctrl_dev **outdev,
384 struct pinctrl_gpio_range **outrange)
385 {
386 struct pinctrl_dev *pctldev;
387
388 mutex_lock(&pinctrldev_list_mutex);
389
390 /* Loop over the pin controllers */
391 list_for_each_entry(pctldev, &pinctrldev_list, node) {
392 struct pinctrl_gpio_range *range;
393
394 range = pinctrl_match_gpio_range(pctldev, gpio);
395 if (range) {
396 *outdev = pctldev;
397 *outrange = range;
398 mutex_unlock(&pinctrldev_list_mutex);
399 return 0;
400 }
401 }
402
403 mutex_unlock(&pinctrldev_list_mutex);
404
405 return -EPROBE_DEFER;
406 }
407
408 /**
409 * pinctrl_add_gpio_range() - register a GPIO range for a controller
410 * @pctldev: pin controller device to add the range to
411 * @range: the GPIO range to add
412 *
413 * This adds a range of GPIOs to be handled by a certain pin controller. Call
414 * this to register handled ranges after registering your pin controller.
415 */
pinctrl_add_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)416 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
417 struct pinctrl_gpio_range *range)
418 {
419 mutex_lock(&pctldev->mutex);
420 list_add_tail(&range->node, &pctldev->gpio_ranges);
421 mutex_unlock(&pctldev->mutex);
422 }
423 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
424
pinctrl_add_gpio_ranges(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * ranges,unsigned nranges)425 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
426 struct pinctrl_gpio_range *ranges,
427 unsigned nranges)
428 {
429 int i;
430
431 for (i = 0; i < nranges; i++)
432 pinctrl_add_gpio_range(pctldev, &ranges[i]);
433 }
434 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
435
pinctrl_find_and_add_gpio_range(const char * devname,struct pinctrl_gpio_range * range)436 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
437 struct pinctrl_gpio_range *range)
438 {
439 struct pinctrl_dev *pctldev;
440
441 pctldev = get_pinctrl_dev_from_devname(devname);
442
443 /*
444 * If we can't find this device, let's assume that is because
445 * it has not probed yet, so the driver trying to register this
446 * range need to defer probing.
447 */
448 if (!pctldev) {
449 return ERR_PTR(-EPROBE_DEFER);
450 }
451 pinctrl_add_gpio_range(pctldev, range);
452
453 return pctldev;
454 }
455 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
456
pinctrl_get_group_pins(struct pinctrl_dev * pctldev,const char * pin_group,const unsigned ** pins,unsigned * num_pins)457 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
458 const unsigned **pins, unsigned *num_pins)
459 {
460 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
461 int gs;
462
463 if (!pctlops->get_group_pins)
464 return -EINVAL;
465
466 gs = pinctrl_get_group_selector(pctldev, pin_group);
467 if (gs < 0)
468 return gs;
469
470 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
471 }
472 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
473
474 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev * pctldev,unsigned int pin)475 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
476 unsigned int pin)
477 {
478 struct pinctrl_gpio_range *range;
479
480 /* Loop over the ranges */
481 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
482 /* Check if we're in the valid range */
483 if (range->pins) {
484 int a;
485 for (a = 0; a < range->npins; a++) {
486 if (range->pins[a] == pin)
487 return range;
488 }
489 } else if (pin >= range->pin_base &&
490 pin < range->pin_base + range->npins)
491 return range;
492 }
493
494 return NULL;
495 }
496 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
497
498 /**
499 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
500 * @pctldev: the pin controller device to look in
501 * @pin: a controller-local number to find the range for
502 */
503 struct pinctrl_gpio_range *
pinctrl_find_gpio_range_from_pin(struct pinctrl_dev * pctldev,unsigned int pin)504 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
505 unsigned int pin)
506 {
507 struct pinctrl_gpio_range *range;
508
509 mutex_lock(&pctldev->mutex);
510 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
511 mutex_unlock(&pctldev->mutex);
512
513 return range;
514 }
515 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
516
517 /**
518 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
519 * @pctldev: pin controller device to remove the range from
520 * @range: the GPIO range to remove
521 */
pinctrl_remove_gpio_range(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range)522 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
523 struct pinctrl_gpio_range *range)
524 {
525 mutex_lock(&pctldev->mutex);
526 list_del(&range->node);
527 mutex_unlock(&pctldev->mutex);
528 }
529 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
530
531 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
532
533 /**
534 * pinctrl_generic_get_group_count() - returns the number of pin groups
535 * @pctldev: pin controller device
536 */
pinctrl_generic_get_group_count(struct pinctrl_dev * pctldev)537 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
538 {
539 return pctldev->num_groups;
540 }
541 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
542
543 /**
544 * pinctrl_generic_get_group_name() - returns the name of a pin group
545 * @pctldev: pin controller device
546 * @selector: group number
547 */
pinctrl_generic_get_group_name(struct pinctrl_dev * pctldev,unsigned int selector)548 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
549 unsigned int selector)
550 {
551 struct group_desc *group;
552
553 group = radix_tree_lookup(&pctldev->pin_group_tree,
554 selector);
555 if (!group)
556 return NULL;
557
558 return group->name;
559 }
560 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
561
562 /**
563 * pinctrl_generic_get_group_pins() - gets the pin group pins
564 * @pctldev: pin controller device
565 * @selector: group number
566 * @pins: pins in the group
567 * @num_pins: number of pins in the group
568 */
pinctrl_generic_get_group_pins(struct pinctrl_dev * pctldev,unsigned int selector,const unsigned int ** pins,unsigned int * num_pins)569 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
570 unsigned int selector,
571 const unsigned int **pins,
572 unsigned int *num_pins)
573 {
574 struct group_desc *group;
575
576 group = radix_tree_lookup(&pctldev->pin_group_tree,
577 selector);
578 if (!group) {
579 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
580 __func__, selector);
581 return -EINVAL;
582 }
583
584 *pins = group->pins;
585 *num_pins = group->num_pins;
586
587 return 0;
588 }
589 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
590
591 /**
592 * pinctrl_generic_get_group() - returns a pin group based on the number
593 * @pctldev: pin controller device
594 * @selector: group number
595 */
pinctrl_generic_get_group(struct pinctrl_dev * pctldev,unsigned int selector)596 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
597 unsigned int selector)
598 {
599 struct group_desc *group;
600
601 group = radix_tree_lookup(&pctldev->pin_group_tree,
602 selector);
603 if (!group)
604 return NULL;
605
606 return group;
607 }
608 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
609
pinctrl_generic_group_name_to_selector(struct pinctrl_dev * pctldev,const char * function)610 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
611 const char *function)
612 {
613 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
614 int ngroups = ops->get_groups_count(pctldev);
615 int selector = 0;
616
617 /* See if this pctldev has this group */
618 while (selector < ngroups) {
619 const char *gname = ops->get_group_name(pctldev, selector);
620
621 if (gname && !strcmp(function, gname))
622 return selector;
623
624 selector++;
625 }
626
627 return -EINVAL;
628 }
629
630 /**
631 * pinctrl_generic_add_group() - adds a new pin group
632 * @pctldev: pin controller device
633 * @name: name of the pin group
634 * @pins: pins in the pin group
635 * @num_pins: number of pins in the pin group
636 * @data: pin controller driver specific data
637 *
638 * Note that the caller must take care of locking.
639 */
pinctrl_generic_add_group(struct pinctrl_dev * pctldev,const char * name,int * pins,int num_pins,void * data)640 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
641 int *pins, int num_pins, void *data)
642 {
643 struct group_desc *group;
644 int selector, error;
645
646 if (!name)
647 return -EINVAL;
648
649 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
650 if (selector >= 0)
651 return selector;
652
653 selector = pctldev->num_groups;
654
655 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
656 if (!group)
657 return -ENOMEM;
658
659 group->name = name;
660 group->pins = pins;
661 group->num_pins = num_pins;
662 group->data = data;
663
664 error = radix_tree_insert(&pctldev->pin_group_tree, selector, group);
665 if (error)
666 return error;
667
668 pctldev->num_groups++;
669
670 return selector;
671 }
672 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
673
674 /**
675 * pinctrl_generic_remove_group() - removes a numbered pin group
676 * @pctldev: pin controller device
677 * @selector: group number
678 *
679 * Note that the caller must take care of locking.
680 */
pinctrl_generic_remove_group(struct pinctrl_dev * pctldev,unsigned int selector)681 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
682 unsigned int selector)
683 {
684 struct group_desc *group;
685
686 group = radix_tree_lookup(&pctldev->pin_group_tree,
687 selector);
688 if (!group)
689 return -ENOENT;
690
691 radix_tree_delete(&pctldev->pin_group_tree, selector);
692 devm_kfree(pctldev->dev, group);
693
694 pctldev->num_groups--;
695
696 return 0;
697 }
698 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
699
700 /**
701 * pinctrl_generic_free_groups() - removes all pin groups
702 * @pctldev: pin controller device
703 *
704 * Note that the caller must take care of locking. The pinctrl groups
705 * are allocated with devm_kzalloc() so no need to free them here.
706 */
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)707 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
708 {
709 struct radix_tree_iter iter;
710 void __rcu **slot;
711
712 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
713 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
714
715 pctldev->num_groups = 0;
716 }
717
718 #else
pinctrl_generic_free_groups(struct pinctrl_dev * pctldev)719 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
720 {
721 }
722 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
723
724 /**
725 * pinctrl_get_group_selector() - returns the group selector for a group
726 * @pctldev: the pin controller handling the group
727 * @pin_group: the pin group to look up
728 */
pinctrl_get_group_selector(struct pinctrl_dev * pctldev,const char * pin_group)729 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
730 const char *pin_group)
731 {
732 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
733 unsigned ngroups = pctlops->get_groups_count(pctldev);
734 unsigned group_selector = 0;
735
736 while (group_selector < ngroups) {
737 const char *gname = pctlops->get_group_name(pctldev,
738 group_selector);
739 if (gname && !strcmp(gname, pin_group)) {
740 dev_dbg(pctldev->dev,
741 "found group selector %u for %s\n",
742 group_selector,
743 pin_group);
744 return group_selector;
745 }
746
747 group_selector++;
748 }
749
750 dev_err(pctldev->dev, "does not have pin group %s\n",
751 pin_group);
752
753 return -EINVAL;
754 }
755
pinctrl_gpio_can_use_line(unsigned gpio)756 bool pinctrl_gpio_can_use_line(unsigned gpio)
757 {
758 struct pinctrl_dev *pctldev;
759 struct pinctrl_gpio_range *range;
760 bool result;
761 int pin;
762
763 /*
764 * Try to obtain GPIO range, if it fails
765 * we're probably dealing with GPIO driver
766 * without a backing pin controller - bail out.
767 */
768 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
769 return true;
770
771 mutex_lock(&pctldev->mutex);
772
773 /* Convert to the pin controllers number space */
774 pin = gpio_to_pin(range, gpio);
775
776 result = pinmux_can_be_used_for_gpio(pctldev, pin);
777
778 mutex_unlock(&pctldev->mutex);
779
780 return result;
781 }
782 EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
783
784 /**
785 * pinctrl_gpio_request() - request a single pin to be used as GPIO
786 * @gpio: the GPIO pin number from the GPIO subsystem number space
787 *
788 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
789 * as part of their gpio_request() semantics, platforms and individual drivers
790 * shall *NOT* request GPIO pins to be muxed in.
791 */
pinctrl_gpio_request(unsigned gpio)792 int pinctrl_gpio_request(unsigned gpio)
793 {
794 struct pinctrl_dev *pctldev;
795 struct pinctrl_gpio_range *range;
796 int ret;
797 int pin;
798
799 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
800 if (ret) {
801 if (pinctrl_ready_for_gpio_range(gpio))
802 ret = 0;
803 return ret;
804 }
805
806 mutex_lock(&pctldev->mutex);
807
808 /* Convert to the pin controllers number space */
809 pin = gpio_to_pin(range, gpio);
810
811 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
812
813 mutex_unlock(&pctldev->mutex);
814
815 return ret;
816 }
817 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
818
819 /**
820 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
821 * @gpio: the GPIO pin number from the GPIO subsystem number space
822 *
823 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
824 * as part of their gpio_free() semantics, platforms and individual drivers
825 * shall *NOT* request GPIO pins to be muxed out.
826 */
pinctrl_gpio_free(unsigned gpio)827 void pinctrl_gpio_free(unsigned gpio)
828 {
829 struct pinctrl_dev *pctldev;
830 struct pinctrl_gpio_range *range;
831 int ret;
832 int pin;
833
834 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
835 if (ret) {
836 return;
837 }
838 mutex_lock(&pctldev->mutex);
839
840 /* Convert to the pin controllers number space */
841 pin = gpio_to_pin(range, gpio);
842
843 pinmux_free_gpio(pctldev, pin, range);
844
845 mutex_unlock(&pctldev->mutex);
846 }
847 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
848
pinctrl_gpio_direction(unsigned gpio,bool input)849 static int pinctrl_gpio_direction(unsigned gpio, bool input)
850 {
851 struct pinctrl_dev *pctldev;
852 struct pinctrl_gpio_range *range;
853 int ret;
854 int pin;
855
856 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
857 if (ret) {
858 return ret;
859 }
860
861 mutex_lock(&pctldev->mutex);
862
863 /* Convert to the pin controllers number space */
864 pin = gpio_to_pin(range, gpio);
865 ret = pinmux_gpio_direction(pctldev, range, pin, input);
866
867 mutex_unlock(&pctldev->mutex);
868
869 return ret;
870 }
871
872 /**
873 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
874 * @gpio: the GPIO pin number from the GPIO subsystem number space
875 *
876 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
877 * as part of their gpio_direction_input() semantics, platforms and individual
878 * drivers shall *NOT* touch pin control GPIO calls.
879 */
pinctrl_gpio_direction_input(unsigned gpio)880 int pinctrl_gpio_direction_input(unsigned gpio)
881 {
882 return pinctrl_gpio_direction(gpio, true);
883 }
884 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
885
886 /**
887 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
888 * @gpio: the GPIO pin number from the GPIO subsystem number space
889 *
890 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
891 * as part of their gpio_direction_output() semantics, platforms and individual
892 * drivers shall *NOT* touch pin control GPIO calls.
893 */
pinctrl_gpio_direction_output(unsigned gpio)894 int pinctrl_gpio_direction_output(unsigned gpio)
895 {
896 return pinctrl_gpio_direction(gpio, false);
897 }
898 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
899
900 /**
901 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
902 * @gpio: the GPIO pin number from the GPIO subsystem number space
903 * @config: the configuration to apply to the GPIO
904 *
905 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
906 * they need to call the underlying pin controller to change GPIO config
907 * (for example set debounce time).
908 */
pinctrl_gpio_set_config(unsigned gpio,unsigned long config)909 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
910 {
911 unsigned long configs[] = { config };
912 struct pinctrl_gpio_range *range;
913 struct pinctrl_dev *pctldev;
914 int ret, pin;
915
916 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
917 if (ret)
918 return ret;
919
920 mutex_lock(&pctldev->mutex);
921 pin = gpio_to_pin(range, gpio);
922 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
923 mutex_unlock(&pctldev->mutex);
924
925 return ret;
926 }
927 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
928
find_state(struct pinctrl * p,const char * name)929 static struct pinctrl_state *find_state(struct pinctrl *p,
930 const char *name)
931 {
932 struct pinctrl_state *state;
933
934 list_for_each_entry(state, &p->states, node)
935 if (!strcmp(state->name, name))
936 return state;
937
938 return NULL;
939 }
940
create_state(struct pinctrl * p,const char * name)941 static struct pinctrl_state *create_state(struct pinctrl *p,
942 const char *name)
943 {
944 struct pinctrl_state *state;
945
946 state = kzalloc(sizeof(*state), GFP_KERNEL);
947 if (!state)
948 return ERR_PTR(-ENOMEM);
949
950 state->name = name;
951 INIT_LIST_HEAD(&state->settings);
952
953 list_add_tail(&state->node, &p->states);
954
955 return state;
956 }
957
add_setting(struct pinctrl * p,struct pinctrl_dev * pctldev,const struct pinctrl_map * map)958 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
959 const struct pinctrl_map *map)
960 {
961 struct pinctrl_state *state;
962 struct pinctrl_setting *setting;
963 int ret;
964
965 state = find_state(p, map->name);
966 if (!state)
967 state = create_state(p, map->name);
968 if (IS_ERR(state))
969 return PTR_ERR(state);
970
971 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
972 return 0;
973
974 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
975 if (!setting)
976 return -ENOMEM;
977
978 setting->type = map->type;
979
980 if (pctldev)
981 setting->pctldev = pctldev;
982 else
983 setting->pctldev =
984 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
985 if (!setting->pctldev) {
986 kfree(setting);
987 /* Do not defer probing of hogs (circular loop) */
988 if (!strcmp(map->ctrl_dev_name, map->dev_name))
989 return -ENODEV;
990 /*
991 * OK let us guess that the driver is not there yet, and
992 * let's defer obtaining this pinctrl handle to later...
993 */
994 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
995 map->ctrl_dev_name);
996 return -EPROBE_DEFER;
997 }
998
999 setting->dev_name = map->dev_name;
1000
1001 switch (map->type) {
1002 case PIN_MAP_TYPE_MUX_GROUP:
1003 ret = pinmux_map_to_setting(map, setting);
1004 break;
1005 case PIN_MAP_TYPE_CONFIGS_PIN:
1006 case PIN_MAP_TYPE_CONFIGS_GROUP:
1007 ret = pinconf_map_to_setting(map, setting);
1008 break;
1009 default:
1010 ret = -EINVAL;
1011 break;
1012 }
1013 if (ret < 0) {
1014 kfree(setting);
1015 return ret;
1016 }
1017
1018 list_add_tail(&setting->node, &state->settings);
1019
1020 return 0;
1021 }
1022
find_pinctrl(struct device * dev)1023 static struct pinctrl *find_pinctrl(struct device *dev)
1024 {
1025 struct pinctrl *p;
1026
1027 mutex_lock(&pinctrl_list_mutex);
1028 list_for_each_entry(p, &pinctrl_list, node)
1029 if (p->dev == dev) {
1030 mutex_unlock(&pinctrl_list_mutex);
1031 return p;
1032 }
1033
1034 mutex_unlock(&pinctrl_list_mutex);
1035 return NULL;
1036 }
1037
1038 static void pinctrl_free(struct pinctrl *p, bool inlist);
1039
create_pinctrl(struct device * dev,struct pinctrl_dev * pctldev)1040 static struct pinctrl *create_pinctrl(struct device *dev,
1041 struct pinctrl_dev *pctldev)
1042 {
1043 struct pinctrl *p;
1044 const char *devname;
1045 struct pinctrl_maps *maps_node;
1046 const struct pinctrl_map *map;
1047 int ret;
1048
1049 /*
1050 * create the state cookie holder struct pinctrl for each
1051 * mapping, this is what consumers will get when requesting
1052 * a pin control handle with pinctrl_get()
1053 */
1054 p = kzalloc(sizeof(*p), GFP_KERNEL);
1055 if (!p)
1056 return ERR_PTR(-ENOMEM);
1057 p->dev = dev;
1058 INIT_LIST_HEAD(&p->states);
1059 INIT_LIST_HEAD(&p->dt_maps);
1060
1061 ret = pinctrl_dt_to_map(p, pctldev);
1062 if (ret < 0) {
1063 kfree(p);
1064 return ERR_PTR(ret);
1065 }
1066
1067 devname = dev_name(dev);
1068
1069 mutex_lock(&pinctrl_maps_mutex);
1070 /* Iterate over the pin control maps to locate the right ones */
1071 for_each_pin_map(maps_node, map) {
1072 /* Map must be for this device */
1073 if (strcmp(map->dev_name, devname))
1074 continue;
1075 /*
1076 * If pctldev is not null, we are claiming hog for it,
1077 * that means, setting that is served by pctldev by itself.
1078 *
1079 * Thus we must skip map that is for this device but is served
1080 * by other device.
1081 */
1082 if (pctldev &&
1083 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1084 continue;
1085
1086 ret = add_setting(p, pctldev, map);
1087 /*
1088 * At this point the adding of a setting may:
1089 *
1090 * - Defer, if the pinctrl device is not yet available
1091 * - Fail, if the pinctrl device is not yet available,
1092 * AND the setting is a hog. We cannot defer that, since
1093 * the hog will kick in immediately after the device
1094 * is registered.
1095 *
1096 * If the error returned was not -EPROBE_DEFER then we
1097 * accumulate the errors to see if we end up with
1098 * an -EPROBE_DEFER later, as that is the worst case.
1099 */
1100 if (ret == -EPROBE_DEFER) {
1101 mutex_unlock(&pinctrl_maps_mutex);
1102 pinctrl_free(p, false);
1103 return ERR_PTR(ret);
1104 }
1105 }
1106 mutex_unlock(&pinctrl_maps_mutex);
1107
1108 if (ret < 0) {
1109 /* If some other error than deferral occurred, return here */
1110 pinctrl_free(p, false);
1111 return ERR_PTR(ret);
1112 }
1113
1114 kref_init(&p->users);
1115
1116 /* Add the pinctrl handle to the global list */
1117 mutex_lock(&pinctrl_list_mutex);
1118 list_add_tail(&p->node, &pinctrl_list);
1119 mutex_unlock(&pinctrl_list_mutex);
1120
1121 return p;
1122 }
1123
1124 /**
1125 * pinctrl_get() - retrieves the pinctrl handle for a device
1126 * @dev: the device to obtain the handle for
1127 */
pinctrl_get(struct device * dev)1128 struct pinctrl *pinctrl_get(struct device *dev)
1129 {
1130 struct pinctrl *p;
1131
1132 if (WARN_ON(!dev))
1133 return ERR_PTR(-EINVAL);
1134
1135 /*
1136 * See if somebody else (such as the device core) has already
1137 * obtained a handle to the pinctrl for this device. In that case,
1138 * return another pointer to it.
1139 */
1140 p = find_pinctrl(dev);
1141 if (p) {
1142 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1143 kref_get(&p->users);
1144 return p;
1145 }
1146
1147 return create_pinctrl(dev, NULL);
1148 }
1149 EXPORT_SYMBOL_GPL(pinctrl_get);
1150
pinctrl_free_setting(bool disable_setting,struct pinctrl_setting * setting)1151 static void pinctrl_free_setting(bool disable_setting,
1152 struct pinctrl_setting *setting)
1153 {
1154 switch (setting->type) {
1155 case PIN_MAP_TYPE_MUX_GROUP:
1156 if (disable_setting)
1157 pinmux_disable_setting(setting);
1158 pinmux_free_setting(setting);
1159 break;
1160 case PIN_MAP_TYPE_CONFIGS_PIN:
1161 case PIN_MAP_TYPE_CONFIGS_GROUP:
1162 pinconf_free_setting(setting);
1163 break;
1164 default:
1165 break;
1166 }
1167 }
1168
pinctrl_free(struct pinctrl * p,bool inlist)1169 static void pinctrl_free(struct pinctrl *p, bool inlist)
1170 {
1171 struct pinctrl_state *state, *n1;
1172 struct pinctrl_setting *setting, *n2;
1173
1174 mutex_lock(&pinctrl_list_mutex);
1175 list_for_each_entry_safe(state, n1, &p->states, node) {
1176 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1177 pinctrl_free_setting(state == p->state, setting);
1178 list_del(&setting->node);
1179 kfree(setting);
1180 }
1181 list_del(&state->node);
1182 kfree(state);
1183 }
1184
1185 pinctrl_dt_free_maps(p);
1186
1187 if (inlist)
1188 list_del(&p->node);
1189 kfree(p);
1190 mutex_unlock(&pinctrl_list_mutex);
1191 }
1192
1193 /**
1194 * pinctrl_release() - release the pinctrl handle
1195 * @kref: the kref in the pinctrl being released
1196 */
pinctrl_release(struct kref * kref)1197 static void pinctrl_release(struct kref *kref)
1198 {
1199 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1200
1201 pinctrl_free(p, true);
1202 }
1203
1204 /**
1205 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1206 * @p: the pinctrl handle to release
1207 */
pinctrl_put(struct pinctrl * p)1208 void pinctrl_put(struct pinctrl *p)
1209 {
1210 kref_put(&p->users, pinctrl_release);
1211 }
1212 EXPORT_SYMBOL_GPL(pinctrl_put);
1213
1214 /**
1215 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1216 * @p: the pinctrl handle to retrieve the state from
1217 * @name: the state name to retrieve
1218 */
pinctrl_lookup_state(struct pinctrl * p,const char * name)1219 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1220 const char *name)
1221 {
1222 struct pinctrl_state *state;
1223
1224 state = find_state(p, name);
1225 if (!state) {
1226 if (pinctrl_dummy_state) {
1227 /* create dummy state */
1228 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1229 name);
1230 state = create_state(p, name);
1231 } else
1232 state = ERR_PTR(-ENODEV);
1233 }
1234
1235 return state;
1236 }
1237 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1238
pinctrl_link_add(struct pinctrl_dev * pctldev,struct device * consumer)1239 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1240 struct device *consumer)
1241 {
1242 if (pctldev->desc->link_consumers)
1243 device_link_add(consumer, pctldev->dev,
1244 DL_FLAG_PM_RUNTIME |
1245 DL_FLAG_AUTOREMOVE_CONSUMER);
1246 }
1247
1248 /**
1249 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1250 * @p: the pinctrl handle for the device that requests configuration
1251 * @state: the state handle to select/activate/program
1252 */
pinctrl_commit_state(struct pinctrl * p,struct pinctrl_state * state)1253 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1254 {
1255 struct pinctrl_setting *setting, *setting2;
1256 struct pinctrl_state *old_state = READ_ONCE(p->state);
1257 int ret;
1258
1259 if (old_state) {
1260 /*
1261 * For each pinmux setting in the old state, forget SW's record
1262 * of mux owner for that pingroup. Any pingroups which are
1263 * still owned by the new state will be re-acquired by the call
1264 * to pinmux_enable_setting() in the loop below.
1265 */
1266 list_for_each_entry(setting, &old_state->settings, node) {
1267 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1268 continue;
1269 pinmux_disable_setting(setting);
1270 }
1271 }
1272
1273 p->state = NULL;
1274
1275 /* Apply all the settings for the new state - pinmux first */
1276 list_for_each_entry(setting, &state->settings, node) {
1277 switch (setting->type) {
1278 case PIN_MAP_TYPE_MUX_GROUP:
1279 ret = pinmux_enable_setting(setting);
1280 break;
1281 case PIN_MAP_TYPE_CONFIGS_PIN:
1282 case PIN_MAP_TYPE_CONFIGS_GROUP:
1283 ret = 0;
1284 break;
1285 default:
1286 ret = -EINVAL;
1287 break;
1288 }
1289
1290 if (ret < 0)
1291 goto unapply_new_state;
1292
1293 /* Do not link hogs (circular dependency) */
1294 if (p != setting->pctldev->p)
1295 pinctrl_link_add(setting->pctldev, p->dev);
1296 }
1297
1298 /* Apply all the settings for the new state - pinconf after */
1299 list_for_each_entry(setting, &state->settings, node) {
1300 switch (setting->type) {
1301 case PIN_MAP_TYPE_MUX_GROUP:
1302 ret = 0;
1303 break;
1304 case PIN_MAP_TYPE_CONFIGS_PIN:
1305 case PIN_MAP_TYPE_CONFIGS_GROUP:
1306 ret = pinconf_apply_setting(setting);
1307 break;
1308 default:
1309 ret = -EINVAL;
1310 break;
1311 }
1312
1313 if (ret < 0) {
1314 goto unapply_new_state;
1315 }
1316
1317 /* Do not link hogs (circular dependency) */
1318 if (p != setting->pctldev->p)
1319 pinctrl_link_add(setting->pctldev, p->dev);
1320 }
1321
1322 p->state = state;
1323
1324 return 0;
1325
1326 unapply_new_state:
1327 dev_err(p->dev, "Error applying setting, reverse things back\n");
1328
1329 list_for_each_entry(setting2, &state->settings, node) {
1330 if (&setting2->node == &setting->node)
1331 break;
1332 /*
1333 * All we can do here is pinmux_disable_setting.
1334 * That means that some pins are muxed differently now
1335 * than they were before applying the setting (We can't
1336 * "unmux a pin"!), but it's not a big deal since the pins
1337 * are free to be muxed by another apply_setting.
1338 */
1339 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1340 pinmux_disable_setting(setting2);
1341 }
1342
1343 /* There's no infinite recursive loop here because p->state is NULL */
1344 if (old_state)
1345 pinctrl_select_state(p, old_state);
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1352 * @p: the pinctrl handle for the device that requests configuration
1353 * @state: the state handle to select/activate/program
1354 */
pinctrl_select_state(struct pinctrl * p,struct pinctrl_state * state)1355 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1356 {
1357 if (p->state == state)
1358 return 0;
1359
1360 return pinctrl_commit_state(p, state);
1361 }
1362 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1363
devm_pinctrl_release(struct device * dev,void * res)1364 static void devm_pinctrl_release(struct device *dev, void *res)
1365 {
1366 pinctrl_put(*(struct pinctrl **)res);
1367 }
1368
1369 /**
1370 * devm_pinctrl_get() - Resource managed pinctrl_get()
1371 * @dev: the device to obtain the handle for
1372 *
1373 * If there is a need to explicitly destroy the returned struct pinctrl,
1374 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1375 */
devm_pinctrl_get(struct device * dev)1376 struct pinctrl *devm_pinctrl_get(struct device *dev)
1377 {
1378 struct pinctrl **ptr, *p;
1379
1380 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1381 if (!ptr)
1382 return ERR_PTR(-ENOMEM);
1383
1384 p = pinctrl_get(dev);
1385 if (!IS_ERR(p)) {
1386 *ptr = p;
1387 devres_add(dev, ptr);
1388 } else {
1389 devres_free(ptr);
1390 }
1391
1392 return p;
1393 }
1394 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1395
devm_pinctrl_match(struct device * dev,void * res,void * data)1396 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1397 {
1398 struct pinctrl **p = res;
1399
1400 return *p == data;
1401 }
1402
1403 /**
1404 * devm_pinctrl_put() - Resource managed pinctrl_put()
1405 * @p: the pinctrl handle to release
1406 *
1407 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1408 * this function will not need to be called and the resource management
1409 * code will ensure that the resource is freed.
1410 */
devm_pinctrl_put(struct pinctrl * p)1411 void devm_pinctrl_put(struct pinctrl *p)
1412 {
1413 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1414 devm_pinctrl_match, p));
1415 }
1416 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1417
1418 /**
1419 * pinctrl_register_mappings() - register a set of pin controller mappings
1420 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1421 * keeps a reference to the passed in maps, so they should _not_ be
1422 * marked with __initdata.
1423 * @num_maps: the number of maps in the mapping table
1424 */
pinctrl_register_mappings(const struct pinctrl_map * maps,unsigned num_maps)1425 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1426 unsigned num_maps)
1427 {
1428 int i, ret;
1429 struct pinctrl_maps *maps_node;
1430
1431 pr_debug("add %u pinctrl maps\n", num_maps);
1432
1433 /* First sanity check the new mapping */
1434 for (i = 0; i < num_maps; i++) {
1435 if (!maps[i].dev_name) {
1436 pr_err("failed to register map %s (%d): no device given\n",
1437 maps[i].name, i);
1438 return -EINVAL;
1439 }
1440
1441 if (!maps[i].name) {
1442 pr_err("failed to register map %d: no map name given\n",
1443 i);
1444 return -EINVAL;
1445 }
1446
1447 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1448 !maps[i].ctrl_dev_name) {
1449 pr_err("failed to register map %s (%d): no pin control device given\n",
1450 maps[i].name, i);
1451 return -EINVAL;
1452 }
1453
1454 switch (maps[i].type) {
1455 case PIN_MAP_TYPE_DUMMY_STATE:
1456 break;
1457 case PIN_MAP_TYPE_MUX_GROUP:
1458 ret = pinmux_validate_map(&maps[i], i);
1459 if (ret < 0)
1460 return ret;
1461 break;
1462 case PIN_MAP_TYPE_CONFIGS_PIN:
1463 case PIN_MAP_TYPE_CONFIGS_GROUP:
1464 ret = pinconf_validate_map(&maps[i], i);
1465 if (ret < 0)
1466 return ret;
1467 break;
1468 default:
1469 pr_err("failed to register map %s (%d): invalid type given\n",
1470 maps[i].name, i);
1471 return -EINVAL;
1472 }
1473 }
1474
1475 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1476 if (!maps_node)
1477 return -ENOMEM;
1478
1479 maps_node->maps = maps;
1480 maps_node->num_maps = num_maps;
1481
1482 mutex_lock(&pinctrl_maps_mutex);
1483 list_add_tail(&maps_node->node, &pinctrl_maps);
1484 mutex_unlock(&pinctrl_maps_mutex);
1485
1486 return 0;
1487 }
1488 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1489
1490 /**
1491 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1492 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1493 * when registering the mappings.
1494 */
pinctrl_unregister_mappings(const struct pinctrl_map * map)1495 void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1496 {
1497 struct pinctrl_maps *maps_node;
1498
1499 mutex_lock(&pinctrl_maps_mutex);
1500 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1501 if (maps_node->maps == map) {
1502 list_del(&maps_node->node);
1503 kfree(maps_node);
1504 mutex_unlock(&pinctrl_maps_mutex);
1505 return;
1506 }
1507 }
1508 mutex_unlock(&pinctrl_maps_mutex);
1509 }
1510 EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1511
1512 /**
1513 * pinctrl_force_sleep() - turn a given controller device into sleep state
1514 * @pctldev: pin controller device
1515 */
pinctrl_force_sleep(struct pinctrl_dev * pctldev)1516 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1517 {
1518 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1519 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1520 return 0;
1521 }
1522 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1523
1524 /**
1525 * pinctrl_force_default() - turn a given controller device into default state
1526 * @pctldev: pin controller device
1527 */
pinctrl_force_default(struct pinctrl_dev * pctldev)1528 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1529 {
1530 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1531 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1532 return 0;
1533 }
1534 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1535
1536 /**
1537 * pinctrl_init_done() - tell pinctrl probe is done
1538 *
1539 * We'll use this time to switch the pins from "init" to "default" unless the
1540 * driver selected some other state.
1541 *
1542 * @dev: device to that's done probing
1543 */
pinctrl_init_done(struct device * dev)1544 int pinctrl_init_done(struct device *dev)
1545 {
1546 struct dev_pin_info *pins = dev->pins;
1547 int ret;
1548
1549 if (!pins)
1550 return 0;
1551
1552 if (IS_ERR(pins->init_state))
1553 return 0; /* No such state */
1554
1555 if (pins->p->state != pins->init_state)
1556 return 0; /* Not at init anyway */
1557
1558 if (IS_ERR(pins->default_state))
1559 return 0; /* No default state */
1560
1561 ret = pinctrl_select_state(pins->p, pins->default_state);
1562 if (ret)
1563 dev_err(dev, "failed to activate default pinctrl state\n");
1564
1565 return ret;
1566 }
1567
pinctrl_select_bound_state(struct device * dev,struct pinctrl_state * state)1568 static int pinctrl_select_bound_state(struct device *dev,
1569 struct pinctrl_state *state)
1570 {
1571 struct dev_pin_info *pins = dev->pins;
1572 int ret;
1573
1574 if (IS_ERR(state))
1575 return 0; /* No such state */
1576 ret = pinctrl_select_state(pins->p, state);
1577 if (ret)
1578 dev_err(dev, "failed to activate pinctrl state %s\n",
1579 state->name);
1580 return ret;
1581 }
1582
1583 /**
1584 * pinctrl_select_default_state() - select default pinctrl state
1585 * @dev: device to select default state for
1586 */
pinctrl_select_default_state(struct device * dev)1587 int pinctrl_select_default_state(struct device *dev)
1588 {
1589 if (!dev->pins)
1590 return 0;
1591
1592 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1593 }
1594 EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1595
1596 #ifdef CONFIG_PM
1597
1598 /**
1599 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1600 * @dev: device to select default state for
1601 */
pinctrl_pm_select_default_state(struct device * dev)1602 int pinctrl_pm_select_default_state(struct device *dev)
1603 {
1604 return pinctrl_select_default_state(dev);
1605 }
1606 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1607
1608 /**
1609 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1610 * @dev: device to select sleep state for
1611 */
pinctrl_pm_select_sleep_state(struct device * dev)1612 int pinctrl_pm_select_sleep_state(struct device *dev)
1613 {
1614 if (!dev->pins)
1615 return 0;
1616
1617 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1618 }
1619 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1620
1621 /**
1622 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1623 * @dev: device to select idle state for
1624 */
pinctrl_pm_select_idle_state(struct device * dev)1625 int pinctrl_pm_select_idle_state(struct device *dev)
1626 {
1627 if (!dev->pins)
1628 return 0;
1629
1630 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1631 }
1632 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1633 #endif
1634
1635 #ifdef CONFIG_DEBUG_FS
1636
pinctrl_pins_show(struct seq_file * s,void * what)1637 static int pinctrl_pins_show(struct seq_file *s, void *what)
1638 {
1639 struct pinctrl_dev *pctldev = s->private;
1640 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1641 unsigned i, pin;
1642 #ifdef CONFIG_GPIOLIB
1643 struct pinctrl_gpio_range *range;
1644 struct gpio_chip *chip;
1645 int gpio_num;
1646 #endif
1647
1648 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1649
1650 mutex_lock(&pctldev->mutex);
1651
1652 /* The pin number can be retrived from the pin controller descriptor */
1653 for (i = 0; i < pctldev->desc->npins; i++) {
1654 struct pin_desc *desc;
1655
1656 pin = pctldev->desc->pins[i].number;
1657 desc = pin_desc_get(pctldev, pin);
1658 /* Pin space may be sparse */
1659 if (!desc)
1660 continue;
1661
1662 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1663
1664 #ifdef CONFIG_GPIOLIB
1665 gpio_num = -1;
1666 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1667 if ((pin >= range->pin_base) &&
1668 (pin < (range->pin_base + range->npins))) {
1669 gpio_num = range->base + (pin - range->pin_base);
1670 break;
1671 }
1672 }
1673 if (gpio_num >= 0)
1674 /*
1675 * FIXME: gpio_num comes from the global GPIO numberspace.
1676 * we need to get rid of the range->base eventually and
1677 * get the descriptor directly from the gpio_chip.
1678 */
1679 chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1680 else
1681 chip = NULL;
1682 if (chip)
1683 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1684 else
1685 seq_puts(s, "0:? ");
1686 #endif
1687
1688 /* Driver-specific info per pin */
1689 if (ops->pin_dbg_show)
1690 ops->pin_dbg_show(pctldev, s, pin);
1691
1692 seq_puts(s, "\n");
1693 }
1694
1695 mutex_unlock(&pctldev->mutex);
1696
1697 return 0;
1698 }
1699 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1700
pinctrl_groups_show(struct seq_file * s,void * what)1701 static int pinctrl_groups_show(struct seq_file *s, void *what)
1702 {
1703 struct pinctrl_dev *pctldev = s->private;
1704 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1705 unsigned ngroups, selector = 0;
1706
1707 mutex_lock(&pctldev->mutex);
1708
1709 ngroups = ops->get_groups_count(pctldev);
1710
1711 seq_puts(s, "registered pin groups:\n");
1712 while (selector < ngroups) {
1713 const unsigned *pins = NULL;
1714 unsigned num_pins = 0;
1715 const char *gname = ops->get_group_name(pctldev, selector);
1716 const char *pname;
1717 int ret = 0;
1718 int i;
1719
1720 if (ops->get_group_pins)
1721 ret = ops->get_group_pins(pctldev, selector,
1722 &pins, &num_pins);
1723 if (ret)
1724 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1725 gname);
1726 else {
1727 seq_printf(s, "group: %s\n", gname);
1728 for (i = 0; i < num_pins; i++) {
1729 pname = pin_get_name(pctldev, pins[i]);
1730 if (WARN_ON(!pname)) {
1731 mutex_unlock(&pctldev->mutex);
1732 return -EINVAL;
1733 }
1734 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1735 }
1736 seq_puts(s, "\n");
1737 }
1738 selector++;
1739 }
1740
1741 mutex_unlock(&pctldev->mutex);
1742
1743 return 0;
1744 }
1745 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1746
pinctrl_gpioranges_show(struct seq_file * s,void * what)1747 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1748 {
1749 struct pinctrl_dev *pctldev = s->private;
1750 struct pinctrl_gpio_range *range;
1751
1752 seq_puts(s, "GPIO ranges handled:\n");
1753
1754 mutex_lock(&pctldev->mutex);
1755
1756 /* Loop over the ranges */
1757 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1758 if (range->pins) {
1759 int a;
1760 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1761 range->id, range->name,
1762 range->base, (range->base + range->npins - 1));
1763 for (a = 0; a < range->npins - 1; a++)
1764 seq_printf(s, "%u, ", range->pins[a]);
1765 seq_printf(s, "%u}\n", range->pins[a]);
1766 }
1767 else
1768 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1769 range->id, range->name,
1770 range->base, (range->base + range->npins - 1),
1771 range->pin_base,
1772 (range->pin_base + range->npins - 1));
1773 }
1774
1775 mutex_unlock(&pctldev->mutex);
1776
1777 return 0;
1778 }
1779 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1780
pinctrl_devices_show(struct seq_file * s,void * what)1781 static int pinctrl_devices_show(struct seq_file *s, void *what)
1782 {
1783 struct pinctrl_dev *pctldev;
1784
1785 seq_puts(s, "name [pinmux] [pinconf]\n");
1786
1787 mutex_lock(&pinctrldev_list_mutex);
1788
1789 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1790 seq_printf(s, "%s ", pctldev->desc->name);
1791 if (pctldev->desc->pmxops)
1792 seq_puts(s, "yes ");
1793 else
1794 seq_puts(s, "no ");
1795 if (pctldev->desc->confops)
1796 seq_puts(s, "yes");
1797 else
1798 seq_puts(s, "no");
1799 seq_puts(s, "\n");
1800 }
1801
1802 mutex_unlock(&pinctrldev_list_mutex);
1803
1804 return 0;
1805 }
1806 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1807
map_type(enum pinctrl_map_type type)1808 static inline const char *map_type(enum pinctrl_map_type type)
1809 {
1810 static const char * const names[] = {
1811 "INVALID",
1812 "DUMMY_STATE",
1813 "MUX_GROUP",
1814 "CONFIGS_PIN",
1815 "CONFIGS_GROUP",
1816 };
1817
1818 if (type >= ARRAY_SIZE(names))
1819 return "UNKNOWN";
1820
1821 return names[type];
1822 }
1823
pinctrl_maps_show(struct seq_file * s,void * what)1824 static int pinctrl_maps_show(struct seq_file *s, void *what)
1825 {
1826 struct pinctrl_maps *maps_node;
1827 const struct pinctrl_map *map;
1828
1829 seq_puts(s, "Pinctrl maps:\n");
1830
1831 mutex_lock(&pinctrl_maps_mutex);
1832 for_each_pin_map(maps_node, map) {
1833 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1834 map->dev_name, map->name, map_type(map->type),
1835 map->type);
1836
1837 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1838 seq_printf(s, "controlling device %s\n",
1839 map->ctrl_dev_name);
1840
1841 switch (map->type) {
1842 case PIN_MAP_TYPE_MUX_GROUP:
1843 pinmux_show_map(s, map);
1844 break;
1845 case PIN_MAP_TYPE_CONFIGS_PIN:
1846 case PIN_MAP_TYPE_CONFIGS_GROUP:
1847 pinconf_show_map(s, map);
1848 break;
1849 default:
1850 break;
1851 }
1852
1853 seq_putc(s, '\n');
1854 }
1855 mutex_unlock(&pinctrl_maps_mutex);
1856
1857 return 0;
1858 }
1859 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1860
pinctrl_show(struct seq_file * s,void * what)1861 static int pinctrl_show(struct seq_file *s, void *what)
1862 {
1863 struct pinctrl *p;
1864 struct pinctrl_state *state;
1865 struct pinctrl_setting *setting;
1866
1867 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1868
1869 mutex_lock(&pinctrl_list_mutex);
1870
1871 list_for_each_entry(p, &pinctrl_list, node) {
1872 seq_printf(s, "device: %s current state: %s\n",
1873 dev_name(p->dev),
1874 p->state ? p->state->name : "none");
1875
1876 list_for_each_entry(state, &p->states, node) {
1877 seq_printf(s, " state: %s\n", state->name);
1878
1879 list_for_each_entry(setting, &state->settings, node) {
1880 struct pinctrl_dev *pctldev = setting->pctldev;
1881
1882 seq_printf(s, " type: %s controller %s ",
1883 map_type(setting->type),
1884 pinctrl_dev_get_name(pctldev));
1885
1886 switch (setting->type) {
1887 case PIN_MAP_TYPE_MUX_GROUP:
1888 pinmux_show_setting(s, setting);
1889 break;
1890 case PIN_MAP_TYPE_CONFIGS_PIN:
1891 case PIN_MAP_TYPE_CONFIGS_GROUP:
1892 pinconf_show_setting(s, setting);
1893 break;
1894 default:
1895 break;
1896 }
1897 }
1898 }
1899 }
1900
1901 mutex_unlock(&pinctrl_list_mutex);
1902
1903 return 0;
1904 }
1905 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1906
1907 static struct dentry *debugfs_root;
1908
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1909 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1910 {
1911 struct dentry *device_root;
1912 const char *debugfs_name;
1913
1914 if (pctldev->desc->name &&
1915 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1916 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1917 "%s-%s", dev_name(pctldev->dev),
1918 pctldev->desc->name);
1919 if (!debugfs_name) {
1920 pr_warn("failed to determine debugfs dir name for %s\n",
1921 dev_name(pctldev->dev));
1922 return;
1923 }
1924 } else {
1925 debugfs_name = dev_name(pctldev->dev);
1926 }
1927
1928 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1929 pctldev->device_root = device_root;
1930
1931 if (IS_ERR(device_root) || !device_root) {
1932 pr_warn("failed to create debugfs directory for %s\n",
1933 dev_name(pctldev->dev));
1934 return;
1935 }
1936 debugfs_create_file("pins", 0444,
1937 device_root, pctldev, &pinctrl_pins_fops);
1938 debugfs_create_file("pingroups", 0444,
1939 device_root, pctldev, &pinctrl_groups_fops);
1940 debugfs_create_file("gpio-ranges", 0444,
1941 device_root, pctldev, &pinctrl_gpioranges_fops);
1942 if (pctldev->desc->pmxops)
1943 pinmux_init_device_debugfs(device_root, pctldev);
1944 if (pctldev->desc->confops)
1945 pinconf_init_device_debugfs(device_root, pctldev);
1946 }
1947
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1948 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1949 {
1950 debugfs_remove_recursive(pctldev->device_root);
1951 }
1952
pinctrl_init_debugfs(void)1953 static void pinctrl_init_debugfs(void)
1954 {
1955 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1956 if (IS_ERR(debugfs_root) || !debugfs_root) {
1957 pr_warn("failed to create debugfs directory\n");
1958 debugfs_root = NULL;
1959 return;
1960 }
1961
1962 debugfs_create_file("pinctrl-devices", 0444,
1963 debugfs_root, NULL, &pinctrl_devices_fops);
1964 debugfs_create_file("pinctrl-maps", 0444,
1965 debugfs_root, NULL, &pinctrl_maps_fops);
1966 debugfs_create_file("pinctrl-handles", 0444,
1967 debugfs_root, NULL, &pinctrl_fops);
1968 }
1969
1970 #else /* CONFIG_DEBUG_FS */
1971
pinctrl_init_device_debugfs(struct pinctrl_dev * pctldev)1972 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1973 {
1974 }
1975
pinctrl_init_debugfs(void)1976 static void pinctrl_init_debugfs(void)
1977 {
1978 }
1979
pinctrl_remove_device_debugfs(struct pinctrl_dev * pctldev)1980 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1981 {
1982 }
1983
1984 #endif
1985
pinctrl_check_ops(struct pinctrl_dev * pctldev)1986 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1987 {
1988 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1989
1990 if (!ops ||
1991 !ops->get_groups_count ||
1992 !ops->get_group_name)
1993 return -EINVAL;
1994
1995 return 0;
1996 }
1997
1998 /**
1999 * pinctrl_init_controller() - init a pin controller device
2000 * @pctldesc: descriptor for this pin controller
2001 * @dev: parent device for this pin controller
2002 * @driver_data: private pin controller data for this pin controller
2003 */
2004 static struct pinctrl_dev *
pinctrl_init_controller(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2005 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
2006 void *driver_data)
2007 {
2008 struct pinctrl_dev *pctldev;
2009 int ret;
2010
2011 if (!pctldesc)
2012 return ERR_PTR(-EINVAL);
2013 if (!pctldesc->name)
2014 return ERR_PTR(-EINVAL);
2015
2016 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2017 if (!pctldev)
2018 return ERR_PTR(-ENOMEM);
2019
2020 /* Initialize pin control device struct */
2021 pctldev->owner = pctldesc->owner;
2022 pctldev->desc = pctldesc;
2023 pctldev->driver_data = driver_data;
2024 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2025 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2026 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2027 #endif
2028 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2029 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2030 #endif
2031 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2032 INIT_LIST_HEAD(&pctldev->node);
2033 pctldev->dev = dev;
2034 mutex_init(&pctldev->mutex);
2035
2036 /* check core ops for sanity */
2037 ret = pinctrl_check_ops(pctldev);
2038 if (ret) {
2039 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2040 goto out_err;
2041 }
2042
2043 /* If we're implementing pinmuxing, check the ops for sanity */
2044 if (pctldesc->pmxops) {
2045 ret = pinmux_check_ops(pctldev);
2046 if (ret)
2047 goto out_err;
2048 }
2049
2050 /* If we're implementing pinconfig, check the ops for sanity */
2051 if (pctldesc->confops) {
2052 ret = pinconf_check_ops(pctldev);
2053 if (ret)
2054 goto out_err;
2055 }
2056
2057 /* Register all the pins */
2058 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2059 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2060 if (ret) {
2061 dev_err(dev, "error during pin registration\n");
2062 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2063 pctldesc->npins);
2064 goto out_err;
2065 }
2066
2067 return pctldev;
2068
2069 out_err:
2070 mutex_destroy(&pctldev->mutex);
2071 kfree(pctldev);
2072 return ERR_PTR(ret);
2073 }
2074
pinctrl_uninit_controller(struct pinctrl_dev * pctldev,struct pinctrl_desc * pctldesc)2075 static void pinctrl_uninit_controller(struct pinctrl_dev *pctldev, struct pinctrl_desc *pctldesc)
2076 {
2077 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2078 pctldesc->npins);
2079 mutex_destroy(&pctldev->mutex);
2080 kfree(pctldev);
2081 }
2082
pinctrl_claim_hogs(struct pinctrl_dev * pctldev)2083 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2084 {
2085 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2086 if (PTR_ERR(pctldev->p) == -ENODEV) {
2087 dev_dbg(pctldev->dev, "no hogs found\n");
2088
2089 return 0;
2090 }
2091
2092 if (IS_ERR(pctldev->p)) {
2093 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2094 PTR_ERR(pctldev->p));
2095
2096 return PTR_ERR(pctldev->p);
2097 }
2098
2099 pctldev->hog_default =
2100 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2101 if (IS_ERR(pctldev->hog_default)) {
2102 dev_dbg(pctldev->dev,
2103 "failed to lookup the default state\n");
2104 } else {
2105 if (pinctrl_select_state(pctldev->p,
2106 pctldev->hog_default))
2107 dev_err(pctldev->dev,
2108 "failed to select default state\n");
2109 }
2110
2111 pctldev->hog_sleep =
2112 pinctrl_lookup_state(pctldev->p,
2113 PINCTRL_STATE_SLEEP);
2114 if (IS_ERR(pctldev->hog_sleep))
2115 dev_dbg(pctldev->dev,
2116 "failed to lookup the sleep state\n");
2117
2118 return 0;
2119 }
2120
pinctrl_enable(struct pinctrl_dev * pctldev)2121 int pinctrl_enable(struct pinctrl_dev *pctldev)
2122 {
2123 int error;
2124
2125 error = pinctrl_claim_hogs(pctldev);
2126 if (error) {
2127 dev_err(pctldev->dev, "could not claim hogs: %i\n", error);
2128 return error;
2129 }
2130
2131 mutex_lock(&pinctrldev_list_mutex);
2132 list_add_tail(&pctldev->node, &pinctrldev_list);
2133 mutex_unlock(&pinctrldev_list_mutex);
2134
2135 pinctrl_init_device_debugfs(pctldev);
2136
2137 return 0;
2138 }
2139 EXPORT_SYMBOL_GPL(pinctrl_enable);
2140
2141 /**
2142 * pinctrl_register() - register a pin controller device
2143 * @pctldesc: descriptor for this pin controller
2144 * @dev: parent device for this pin controller
2145 * @driver_data: private pin controller data for this pin controller
2146 *
2147 * Note that pinctrl_register() is known to have problems as the pin
2148 * controller driver functions are called before the driver has a
2149 * struct pinctrl_dev handle. To avoid issues later on, please use the
2150 * new pinctrl_register_and_init() below instead.
2151 */
pinctrl_register(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data)2152 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2153 struct device *dev, void *driver_data)
2154 {
2155 struct pinctrl_dev *pctldev;
2156 int error;
2157
2158 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2159 if (IS_ERR(pctldev))
2160 return pctldev;
2161
2162 error = pinctrl_enable(pctldev);
2163 if (error) {
2164 pinctrl_uninit_controller(pctldev, pctldesc);
2165 return ERR_PTR(error);
2166 }
2167
2168 return pctldev;
2169 }
2170 EXPORT_SYMBOL_GPL(pinctrl_register);
2171
2172 /**
2173 * pinctrl_register_and_init() - register and init pin controller device
2174 * @pctldesc: descriptor for this pin controller
2175 * @dev: parent device for this pin controller
2176 * @driver_data: private pin controller data for this pin controller
2177 * @pctldev: pin controller device
2178 *
2179 * Note that pinctrl_enable() still needs to be manually called after
2180 * this once the driver is ready.
2181 */
pinctrl_register_and_init(struct pinctrl_desc * pctldesc,struct device * dev,void * driver_data,struct pinctrl_dev ** pctldev)2182 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2183 struct device *dev, void *driver_data,
2184 struct pinctrl_dev **pctldev)
2185 {
2186 struct pinctrl_dev *p;
2187
2188 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2189 if (IS_ERR(p))
2190 return PTR_ERR(p);
2191
2192 /*
2193 * We have pinctrl_start() call functions in the pin controller
2194 * driver with create_pinctrl() for at least dt_node_to_map(). So
2195 * let's make sure pctldev is properly initialized for the
2196 * pin controller driver before we do anything.
2197 */
2198 *pctldev = p;
2199
2200 return 0;
2201 }
2202 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2203
2204 /**
2205 * pinctrl_unregister() - unregister pinmux
2206 * @pctldev: pin controller to unregister
2207 *
2208 * Called by pinmux drivers to unregister a pinmux.
2209 */
pinctrl_unregister(struct pinctrl_dev * pctldev)2210 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2211 {
2212 struct pinctrl_gpio_range *range, *n;
2213
2214 if (!pctldev)
2215 return;
2216
2217 mutex_lock(&pctldev->mutex);
2218 pinctrl_remove_device_debugfs(pctldev);
2219 mutex_unlock(&pctldev->mutex);
2220
2221 if (!IS_ERR_OR_NULL(pctldev->p))
2222 pinctrl_put(pctldev->p);
2223
2224 mutex_lock(&pinctrldev_list_mutex);
2225 mutex_lock(&pctldev->mutex);
2226 /* TODO: check that no pinmuxes are still active? */
2227 list_del(&pctldev->node);
2228 pinmux_generic_free_functions(pctldev);
2229 pinctrl_generic_free_groups(pctldev);
2230 /* Destroy descriptor tree */
2231 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2232 pctldev->desc->npins);
2233 /* remove gpio ranges map */
2234 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2235 list_del(&range->node);
2236
2237 mutex_unlock(&pctldev->mutex);
2238 mutex_destroy(&pctldev->mutex);
2239 kfree(pctldev);
2240 mutex_unlock(&pinctrldev_list_mutex);
2241 }
2242 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2243
devm_pinctrl_dev_release(struct device * dev,void * res)2244 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2245 {
2246 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2247
2248 pinctrl_unregister(pctldev);
2249 }
2250
devm_pinctrl_dev_match(struct device * dev,void * res,void * data)2251 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2252 {
2253 struct pctldev **r = res;
2254
2255 if (WARN_ON(!r || !*r))
2256 return 0;
2257
2258 return *r == data;
2259 }
2260
2261 /**
2262 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2263 * @dev: parent device for this pin controller
2264 * @pctldesc: descriptor for this pin controller
2265 * @driver_data: private pin controller data for this pin controller
2266 *
2267 * Returns an error pointer if pincontrol register failed. Otherwise
2268 * it returns valid pinctrl handle.
2269 *
2270 * The pinctrl device will be automatically released when the device is unbound.
2271 */
devm_pinctrl_register(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data)2272 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2273 struct pinctrl_desc *pctldesc,
2274 void *driver_data)
2275 {
2276 struct pinctrl_dev **ptr, *pctldev;
2277
2278 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2279 if (!ptr)
2280 return ERR_PTR(-ENOMEM);
2281
2282 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2283 if (IS_ERR(pctldev)) {
2284 devres_free(ptr);
2285 return pctldev;
2286 }
2287
2288 *ptr = pctldev;
2289 devres_add(dev, ptr);
2290
2291 return pctldev;
2292 }
2293 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2294
2295 /**
2296 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2297 * @dev: parent device for this pin controller
2298 * @pctldesc: descriptor for this pin controller
2299 * @driver_data: private pin controller data for this pin controller
2300 * @pctldev: pin controller device
2301 *
2302 * Returns zero on success or an error number on failure.
2303 *
2304 * The pinctrl device will be automatically released when the device is unbound.
2305 */
devm_pinctrl_register_and_init(struct device * dev,struct pinctrl_desc * pctldesc,void * driver_data,struct pinctrl_dev ** pctldev)2306 int devm_pinctrl_register_and_init(struct device *dev,
2307 struct pinctrl_desc *pctldesc,
2308 void *driver_data,
2309 struct pinctrl_dev **pctldev)
2310 {
2311 struct pinctrl_dev **ptr;
2312 int error;
2313
2314 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2315 if (!ptr)
2316 return -ENOMEM;
2317
2318 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2319 if (error) {
2320 devres_free(ptr);
2321 return error;
2322 }
2323
2324 *ptr = *pctldev;
2325 devres_add(dev, ptr);
2326
2327 return 0;
2328 }
2329 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2330
2331 /**
2332 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2333 * @dev: device for which resource was allocated
2334 * @pctldev: the pinctrl device to unregister.
2335 */
devm_pinctrl_unregister(struct device * dev,struct pinctrl_dev * pctldev)2336 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2337 {
2338 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2339 devm_pinctrl_dev_match, pctldev));
2340 }
2341 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2342
pinctrl_init(void)2343 static int __init pinctrl_init(void)
2344 {
2345 pr_info("initialized pinctrl subsystem\n");
2346 pinctrl_init_debugfs();
2347 return 0;
2348 }
2349
2350 /* init early since many drivers really need to initialized pinmux early */
2351 core_initcall(pinctrl_init);
2352