1 /* 2 * Copyright (C) 2016 IBM Corp. 3 * 4 * This program is free software; you can redistribute it and/or modify 5 * it under the terms of the GNU General Public License as published by 6 * the Free Software Foundation; either version 2 of the License, or 7 * (at your option) any later version. 8 */ 9 10 #ifndef PINCTRL_ASPEED 11 #define PINCTRL_ASPEED 12 13 #include <linux/pinctrl/pinctrl.h> 14 #include <linux/pinctrl/pinmux.h> 15 #include <linux/pinctrl/pinconf.h> 16 #include <linux/pinctrl/pinconf-generic.h> 17 #include <linux/regmap.h> 18 19 /* 20 * The ASPEED SoCs provide typically more than 200 pins for GPIO and other 21 * functions. The SoC function enabled on a pin is determined on a priority 22 * basis where a given pin can provide a number of different signal types. 23 * 24 * The signal active on a pin is described by both a priority level and 25 * compound logical expressions involving multiple operators, registers and 26 * bits. Some difficulty arises as the pin's function bit masks for each 27 * priority level are frequently not the same (i.e. cannot just flip a bit to 28 * change from a high to low priority signal), or even in the same register. 29 * Further, not all signals can be unmuxed, as some expressions depend on 30 * values in the hardware strapping register (which is treated as read-only). 31 * 32 * SoC Multi-function Pin Expression Examples 33 * ------------------------------------------ 34 * 35 * Here are some sample mux configurations from the AST2400 and AST2500 36 * datasheets to illustrate the corner cases, roughly in order of least to most 37 * corner. The signal priorities are in decending order from P0 (highest). 38 * 39 * D6 is a pin with a single function (beside GPIO); a high priority signal 40 * that participates in one function: 41 * 42 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 43 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 44 * D6 GPIOA0 MAC1LINK SCU80[0]=1 GPIOA0 45 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 46 * 47 * C5 is a multi-signal pin (high and low priority signals). Here we touch 48 * different registers for the different functions that enable each signal: 49 * 50 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 51 * C5 GPIOA4 SCL9 SCU90[22]=1 TIMER5 SCU80[4]=1 GPIOA4 52 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 53 * 54 * E19 is a single-signal pin with two functions that influence the active 55 * signal. In this case both bits have the same meaning - enable a dedicated 56 * LPC reset pin. However it's not always the case that the bits in the 57 * OR-relationship have the same meaning. 58 * 59 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 60 * E19 GPIOB4 LPCRST# SCU80[12]=1 | Strap[14]=1 GPIOB4 61 * -----+---------+-----------+-----------------------------+-----------+---------------+---------- 62 * 63 * For example, pin B19 has a low-priority signal that's enabled by two 64 * distinct SoC functions: A specific SIOPBI bit in register SCUA4, and an ACPI 65 * bit in the STRAP register. The ACPI bit configures signals on pins in 66 * addition to B19. Both of the low priority functions as well as the high 67 * priority function must be disabled for GPIOF1 to be used. 68 * 69 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 70 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 71 * B19 GPIOF1 NDCD4 SCU80[25]=1 SIOPBI# SCUA4[12]=1 | Strap[19]=0 GPIOF1 72 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 73 * 74 * For pin E18, the SoC ANDs the expected state of three bits to determine the 75 * pin's active signal: 76 * 77 * * SCU3C[3]: Enable external SOC reset function 78 * * SCU80[15]: Enable SPICS1# or EXTRST# function pin 79 * * SCU90[31]: Select SPI interface CS# output 80 * 81 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 82 * E18 GPIOB7 EXTRST# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=0 SPICS1# SCU3C[3]=1 & SCU80[15]=1 & SCU90[31]=1 GPIOB7 83 * -----+---------+-----------+-----------------------------------------+-----------+----------------------------------------+---------- 84 * 85 * (Bits SCU3C[3] and SCU80[15] appear to only be used in the expressions for 86 * selecting the signals on pin E18) 87 * 88 * Pin T5 is a multi-signal pin with a more complex configuration: 89 * 90 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 91 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 92 * T5 GPIOL1 VPIDE SCU90[5:4]!=0 & SCU84[17]=1 NDCD1 SCU84[17]=1 GPIOL1 93 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 94 * 95 * The high priority signal configuration is best thought of in terms of its 96 * exploded form, with reference to the SCU90[5:4] bits: 97 * 98 * * SCU90[5:4]=00: disable 99 * * SCU90[5:4]=01: 18 bits (R6/G6/B6) video mode. 100 * * SCU90[5:4]=10: 24 bits (R8/G8/B8) video mode. 101 * * SCU90[5:4]=11: 30 bits (R10/G10/B10) video mode. 102 * 103 * Re-writing: 104 * 105 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 106 * T5 GPIOL1 VPIDE (SCU90[5:4]=1 & SCU84[17]=1) NDCD1 SCU84[17]=1 GPIOL1 107 * | (SCU90[5:4]=2 & SCU84[17]=1) 108 * | (SCU90[5:4]=3 & SCU84[17]=1) 109 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 110 * 111 * For reference the SCU84[17] bit configure the "UART1 NDCD1 or Video VPIDE 112 * function pin", where the signal itself is determined by whether SCU94[5:4] 113 * is disabled or in one of the 18, 24 or 30bit video modes. 114 * 115 * Other video-input-related pins require an explicit state in SCU90[5:4], e.g. 116 * W1 and U5: 117 * 118 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 119 * W1 GPIOL6 VPIB0 SCU90[5:4]=3 & SCU84[22]=1 TXD1 SCU84[22]=1 GPIOL6 120 * U5 GPIOL7 VPIB1 SCU90[5:4]=3 & SCU84[23]=1 RXD1 SCU84[23]=1 GPIOL7 121 * -----+---------+-----------+------------------------------+-----------+---------------+---------- 122 * 123 * The examples of T5 and W1 are particularly fertile, as they also demonstrate 124 * that despite operating as part of the video input bus each signal needs to 125 * be enabled individually via it's own SCU84 (in the cases of T5 and W1) 126 * register bit. This is a little crazy if the bus doesn't have optional 127 * signals, but is used to decent effect with some of the UARTs where not all 128 * signals are required. However, this isn't done consistently - UART1 is 129 * enabled on a per-pin basis, and by contrast, all signals for UART6 are 130 * enabled by a single bit. 131 * 132 * Further, the high and low priority signals listed in the table above share 133 * a configuration bit. The VPI signals should operate in concert in a single 134 * function, but the UART signals should retain the ability to be configured 135 * independently. This pushes the implementation down the path of tagging a 136 * signal's expressions with the function they participate in, rather than 137 * defining masks affecting multiple signals per function. The latter approach 138 * fails in this instance where applying the configuration for the UART pin of 139 * interest will stomp on the state of other UART signals when disabling the 140 * VPI functions on the current pin. 141 * 142 * Ball | Default | P0 Signal | P0 Expression | P1 Signal | P1 Expression | Other 143 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 144 * A12 RGMII1TXCK GPIOT0 SCUA0[0]=1 RMII1TXEN Strap[6]=0 RGMII1TXCK 145 * B12 RGMII1TXCTL GPIOT1 SCUA0[1]=1 – Strap[6]=0 RGMII1TXCTL 146 * -----+------------+-----------+---------------------------+-----------+---------------+------------ 147 * 148 * A12 demonstrates that the "Other" signal isn't always GPIO - in this case 149 * GPIOT0 is a high-priority signal and RGMII1TXCK is Other. Thus, GPIO 150 * should be treated like any other signal type with full function expression 151 * requirements, and not assumed to be the default case. Separately, GPIOT0 and 152 * GPIOT1's signal descriptor bits are distinct, therefore we must iterate all 153 * pins in the function's group to disable the higher-priority signals such 154 * that the signal for the function of interest is correctly enabled. 155 * 156 * Finally, three priority levels aren't always enough; the AST2500 brings with 157 * it 18 pins of five priority levels, however the 18 pins only use three of 158 * the five priority levels. 159 * 160 * Ultimately the requirement to control pins in the examples above drive the 161 * design: 162 * 163 * * Pins provide signals according to functions activated in the mux 164 * configuration 165 * 166 * * Pins provide up to five signal types in a priority order 167 * 168 * * For priorities levels defined on a pin, each priority provides one signal 169 * 170 * * Enabling lower priority signals requires higher priority signals be 171 * disabled 172 * 173 * * A function represents a set of signals; functions are distinct if their 174 * sets of signals are not equal 175 * 176 * * Signals participate in one or more functions 177 * 178 * * A function is described by an expression of one or more signal 179 * descriptors, which compare bit values in a register 180 * 181 * * A signal expression is the smallest set of signal descriptors whose 182 * comparisons must evaluate 'true' for a signal to be enabled on a pin. 183 * 184 * * A function's signal is active on a pin if evaluating all signal 185 * descriptors in the pin's signal expression for the function yields a 'true' 186 * result 187 * 188 * * A signal at a given priority on a given pin is active if any of the 189 * functions in which the signal participates are active, and no higher 190 * priority signal on the pin is active 191 * 192 * * GPIO is configured per-pin 193 * 194 * And so: 195 * 196 * * To disable a signal, any function(s) activating the signal must be 197 * disabled 198 * 199 * * Each pin must know the signal expressions of functions in which it 200 * participates, for the purpose of enabling the Other function. This is done 201 * by deactivating all functions that activate higher priority signals on the 202 * pin. 203 * 204 * As a concrete example: 205 * 206 * * T5 provides three signals types: VPIDE, NDCD1 and GPIO 207 * 208 * * The VPIDE signal participates in 3 functions: VPI18, VPI24 and VPI30 209 * 210 * * The NDCD1 signal participates in just its own NDCD1 function 211 * 212 * * VPIDE is high priority, NDCD1 is low priority, and GPIOL1 is the least 213 * prioritised 214 * 215 * * The prerequisit for activating the NDCD1 signal is that the VPI18, VPI24 216 * and VPI30 functions all be disabled 217 * 218 * * Similarly, all of VPI18, VPI24, VPI30 and NDCD1 functions must be disabled 219 * to provide GPIOL6 220 * 221 * Considerations 222 * -------------- 223 * 224 * If pinctrl allows us to allocate a pin we can configure a function without 225 * concern for the function of already allocated pins, if pin groups are 226 * created with respect to the SoC functions in which they participate. This is 227 * intuitive, but it did not feel obvious from the bit/pin relationships. 228 * 229 * Conversely, failing to allocate all pins in a group indicates some bits (as 230 * well as pins) required for the group's configuration will already be in use, 231 * likely in a way that's inconsistent with the requirements of the failed 232 * group. 233 */ 234 235 /* 236 * The "Multi-function Pins Mapping and Control" table in the SoC datasheet 237 * references registers by the device/offset mnemonic. The register macros 238 * below are named the same way to ease transcription and verification (as 239 * opposed to naming them e.g. PINMUX_CTRL_[0-9]). Further, signal expressions 240 * reference registers beyond those dedicated to pinmux, such as the system 241 * reset control and MAC clock configuration registers. The AST2500 goes a step 242 * further and references registers in the graphics IP block, but that isn't 243 * handled yet. 244 */ 245 #define SCU2C 0x2C /* Misc. Control Register */ 246 #define SCU3C 0x3C /* System Reset Control/Status Register */ 247 #define SCU48 0x48 /* MAC Interface Clock Delay Setting */ 248 #define HW_STRAP1 0x70 /* AST2400 strapping is 33 bits, is split */ 249 #define SCU80 0x80 /* Multi-function Pin Control #1 */ 250 #define SCU84 0x84 /* Multi-function Pin Control #2 */ 251 #define SCU88 0x88 /* Multi-function Pin Control #3 */ 252 #define SCU8C 0x8C /* Multi-function Pin Control #4 */ 253 #define SCU90 0x90 /* Multi-function Pin Control #5 */ 254 #define SCU94 0x94 /* Multi-function Pin Control #6 */ 255 #define SCUA0 0xA0 /* Multi-function Pin Control #7 */ 256 #define SCUA4 0xA4 /* Multi-function Pin Control #8 */ 257 #define SCUA8 0xA8 /* Multi-function Pin Control #9 */ 258 #define HW_STRAP2 0xD0 /* Strapping */ 259 260 /** 261 * A signal descriptor, which describes the register, bits and the 262 * enable/disable values that should be compared or written. 263 * 264 * @reg: The register offset from base in bytes 265 * @mask: The mask to apply to the register. The lowest set bit of the mask is 266 * used to derive the shift value. 267 * @enable: The value that enables the function. Value should be in the LSBs, 268 * not at the position of the mask. 269 * @disable: The value that disables the function. Value should be in the 270 * LSBs, not at the position of the mask. 271 */ 272 struct aspeed_sig_desc { 273 unsigned int reg; 274 u32 mask; 275 u32 enable; 276 u32 disable; 277 }; 278 279 /** 280 * Describes a signal expression. The expression is evaluated by ANDing the 281 * evaluation of the descriptors. 282 * 283 * @signal: The signal name for the priority level on the pin. If the signal 284 * type is GPIO, then the signal name must begin with the string 285 * "GPIO", e.g. GPIOA0, GPIOT4 etc. 286 * @function: The name of the function the signal participates in for the 287 * associated expression 288 * @ndescs: The number of signal descriptors in the expression 289 * @descs: Pointer to an array of signal descriptors that comprise the 290 * function expression 291 */ 292 struct aspeed_sig_expr { 293 const char *signal; 294 const char *function; 295 int ndescs; 296 const struct aspeed_sig_desc *descs; 297 }; 298 299 /** 300 * A struct capturing the list of expressions enabling signals at each priority 301 * for a given pin. The signal configuration for a priority level is evaluated 302 * by ORing the evaluation of the signal expressions in the respective 303 * priority's list. 304 * 305 * @name: A name for the pin 306 * @prios: A pointer to an array of expression list pointers 307 * 308 */ 309 struct aspeed_pin_desc { 310 const char *name; 311 const struct aspeed_sig_expr ***prios; 312 }; 313 314 /* Macro hell */ 315 316 /** 317 * Short-hand macro for describing a configuration enabled by the state of one 318 * bit. The disable value is derived. 319 * 320 * @reg: The signal's associated register, offset from base 321 * @idx: The signal's bit index in the register 322 * @val: The value (0 or 1) that enables the function 323 */ 324 #define SIG_DESC_BIT(reg, idx, val) \ 325 { reg, BIT_MASK(idx), val, (((val) + 1) & 1) } 326 327 /** 328 * A further short-hand macro describing a configuration enabled with a set bit. 329 * 330 * @reg: The configuration's associated register, offset from base 331 * @idx: The configuration's bit index in the register 332 */ 333 #define SIG_DESC_SET(reg, idx) SIG_DESC_BIT(reg, idx, 1) 334 335 #define SIG_DESC_LIST_SYM(sig, func) sig_descs_ ## sig ## _ ## func 336 #define SIG_DESC_LIST_DECL(sig, func, ...) \ 337 static const struct aspeed_sig_desc SIG_DESC_LIST_SYM(sig, func)[] = \ 338 { __VA_ARGS__ } 339 340 #define SIG_EXPR_SYM(sig, func) sig_expr_ ## sig ## _ ## func 341 #define SIG_EXPR_DECL_(sig, func) \ 342 static const struct aspeed_sig_expr SIG_EXPR_SYM(sig, func) = \ 343 { \ 344 .signal = #sig, \ 345 .function = #func, \ 346 .ndescs = ARRAY_SIZE(SIG_DESC_LIST_SYM(sig, func)), \ 347 .descs = &(SIG_DESC_LIST_SYM(sig, func))[0], \ 348 } 349 350 /** 351 * Declare a signal expression. 352 * 353 * @sig: A macro symbol name for the signal (is subjected to stringification 354 * and token pasting) 355 * @func: The function in which the signal is participating 356 * @...: Signal descriptors that define the signal expression 357 * 358 * For example, the following declares the ROMD8 signal for the ROM16 function: 359 * 360 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 361 * 362 * And with multiple signal descriptors: 363 * 364 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 365 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 366 */ 367 #define SIG_EXPR_DECL(sig, func, ...) \ 368 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ 369 SIG_EXPR_DECL_(sig, func) 370 371 /** 372 * Declare a pointer to a signal expression 373 * 374 * @sig: The macro symbol name for the signal (subjected to token pasting) 375 * @func: The macro symbol name for the function (subjected to token pasting) 376 */ 377 #define SIG_EXPR_PTR(sig, func) (&SIG_EXPR_SYM(sig, func)) 378 379 #define SIG_EXPR_LIST_SYM(sig) sig_exprs_ ## sig 380 381 /** 382 * Declare a signal expression list for reference in a struct aspeed_pin_prio. 383 * 384 * @sig: A macro symbol name for the signal (is subjected to token pasting) 385 * @...: Signal expression structure pointers (use SIG_EXPR_PTR()) 386 * 387 * For example, the 16-bit ROM bus can be enabled by one of two possible signal 388 * expressions: 389 * 390 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 391 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 392 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 393 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 394 * SIG_EXPR_PTR(ROMD8, ROM16S)); 395 */ 396 #define SIG_EXPR_LIST_DECL(sig, ...) \ 397 static const struct aspeed_sig_expr *SIG_EXPR_LIST_SYM(sig)[] = \ 398 { __VA_ARGS__, NULL } 399 400 /** 401 * A short-hand macro for declaring a function expression and an expression 402 * list with a single function. 403 * 404 * @func: A macro symbol name for the function (is subjected to token pasting) 405 * @...: Function descriptors that define the function expression 406 * 407 * For example, signal NCTS6 participates in its own function with one group: 408 * 409 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 410 */ 411 #define SIG_EXPR_LIST_DECL_SINGLE(sig, func, ...) \ 412 SIG_DESC_LIST_DECL(sig, func, __VA_ARGS__); \ 413 SIG_EXPR_DECL_(sig, func); \ 414 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, func)) 415 416 #define SIG_EXPR_LIST_DECL_DUAL(sig, f0, f1) \ 417 SIG_EXPR_LIST_DECL(sig, SIG_EXPR_PTR(sig, f0), SIG_EXPR_PTR(sig, f1)) 418 419 #define SIG_EXPR_LIST_PTR(sig) (&SIG_EXPR_LIST_SYM(sig)[0]) 420 421 #define PIN_EXPRS_SYM(pin) pin_exprs_ ## pin 422 #define PIN_EXPRS_PTR(pin) (&PIN_EXPRS_SYM(pin)[0]) 423 #define PIN_SYM(pin) pin_ ## pin 424 425 #define MS_PIN_DECL_(pin, ...) \ 426 static const struct aspeed_sig_expr **PIN_EXPRS_SYM(pin)[] = \ 427 { __VA_ARGS__, NULL }; \ 428 static const struct aspeed_pin_desc PIN_SYM(pin) = \ 429 { #pin, PIN_EXPRS_PTR(pin) } 430 431 /** 432 * Declare a multi-signal pin 433 * 434 * @pin: The pin number 435 * @other: Macro name for "other" functionality (subjected to stringification) 436 * @high: Macro name for the highest priority signal functions 437 * @low: Macro name for the low signal functions 438 * 439 * For example: 440 * 441 * #define A8 56 442 * SIG_EXPR_DECL(ROMD8, ROM16, SIG_DESC_SET(SCU90, 6)); 443 * SIG_EXPR_DECL(ROMD8, ROM16S, SIG_DESC_SET(HW_STRAP1, 4), 444 * { HW_STRAP1, GENMASK(1, 0), 0, 0 }); 445 * SIG_EXPR_LIST_DECL(ROMD8, SIG_EXPR_PTR(ROMD8, ROM16), 446 * SIG_EXPR_PTR(ROMD8, ROM16S)); 447 * SIG_EXPR_LIST_DECL_SINGLE(NCTS6, NCTS6, SIG_DESC_SET(SCU90, 7)); 448 * MS_PIN_DECL(A8, GPIOH0, ROMD8, NCTS6); 449 */ 450 #define MS_PIN_DECL(pin, other, high, low) \ 451 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 452 MS_PIN_DECL_(pin, \ 453 SIG_EXPR_LIST_PTR(high), \ 454 SIG_EXPR_LIST_PTR(low), \ 455 SIG_EXPR_LIST_PTR(other)) 456 457 #define PIN_GROUP_SYM(func) pins_ ## func 458 #define FUNC_GROUP_SYM(func) groups_ ## func 459 #define FUNC_GROUP_DECL(func, ...) \ 460 static const int PIN_GROUP_SYM(func)[] = { __VA_ARGS__ }; \ 461 static const char *FUNC_GROUP_SYM(func)[] = { #func } 462 463 /** 464 * Declare a single signal pin 465 * 466 * @pin: The pin number 467 * @other: Macro name for "other" functionality (subjected to stringification) 468 * @sig: Macro name for the signal (subjected to stringification) 469 * 470 * For example: 471 * 472 * #define E3 80 473 * SIG_EXPR_LIST_DECL_SINGLE(SCL5, I2C5, I2C5_DESC); 474 * SS_PIN_DECL(E3, GPIOK0, SCL5); 475 */ 476 #define SS_PIN_DECL(pin, other, sig) \ 477 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 478 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)) 479 480 /** 481 * Single signal, single function pin declaration 482 * 483 * @pin: The pin number 484 * @other: Macro name for "other" functionality (subjected to stringification) 485 * @sig: Macro name for the signal (subjected to stringification) 486 * @...: Signal descriptors that define the function expression 487 * 488 * For example: 489 * 490 * SSSF_PIN_DECL(A4, GPIOA2, TIMER3, SIG_DESC_SET(SCU80, 2)); 491 */ 492 #define SSSF_PIN_DECL(pin, other, sig, ...) \ 493 SIG_EXPR_LIST_DECL_SINGLE(sig, sig, __VA_ARGS__); \ 494 SIG_EXPR_LIST_DECL_SINGLE(other, other); \ 495 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(sig), SIG_EXPR_LIST_PTR(other)); \ 496 FUNC_GROUP_DECL(sig, pin) 497 498 #define GPIO_PIN_DECL(pin, gpio) \ 499 SIG_EXPR_LIST_DECL_SINGLE(gpio, gpio); \ 500 MS_PIN_DECL_(pin, SIG_EXPR_LIST_PTR(gpio)) 501 502 struct aspeed_pinctrl_data { 503 struct regmap *map; 504 505 const struct pinctrl_pin_desc *pins; 506 const unsigned int npins; 507 508 const struct aspeed_pin_group *groups; 509 const unsigned int ngroups; 510 511 const struct aspeed_pin_function *functions; 512 const unsigned int nfunctions; 513 }; 514 515 #define ASPEED_PINCTRL_PIN(name_) \ 516 [name_] = { \ 517 .number = name_, \ 518 .name = #name_, \ 519 .drv_data = (void *) &(PIN_SYM(name_)) \ 520 } 521 522 struct aspeed_pin_group { 523 const char *name; 524 const unsigned int *pins; 525 const unsigned int npins; 526 }; 527 528 #define ASPEED_PINCTRL_GROUP(name_) { \ 529 .name = #name_, \ 530 .pins = &(PIN_GROUP_SYM(name_))[0], \ 531 .npins = ARRAY_SIZE(PIN_GROUP_SYM(name_)), \ 532 } 533 534 struct aspeed_pin_function { 535 const char *name; 536 const char *const *groups; 537 unsigned int ngroups; 538 }; 539 540 #define ASPEED_PINCTRL_FUNC(name_, ...) { \ 541 .name = #name_, \ 542 .groups = &FUNC_GROUP_SYM(name_)[0], \ 543 .ngroups = ARRAY_SIZE(FUNC_GROUP_SYM(name_)), \ 544 } 545 546 int aspeed_pinctrl_get_groups_count(struct pinctrl_dev *pctldev); 547 const char *aspeed_pinctrl_get_group_name(struct pinctrl_dev *pctldev, 548 unsigned int group); 549 int aspeed_pinctrl_get_group_pins(struct pinctrl_dev *pctldev, 550 unsigned int group, const unsigned int **pins, 551 unsigned int *npins); 552 void aspeed_pinctrl_pin_dbg_show(struct pinctrl_dev *pctldev, 553 struct seq_file *s, unsigned int offset); 554 int aspeed_pinmux_get_fn_count(struct pinctrl_dev *pctldev); 555 const char *aspeed_pinmux_get_fn_name(struct pinctrl_dev *pctldev, 556 unsigned int function); 557 int aspeed_pinmux_get_fn_groups(struct pinctrl_dev *pctldev, 558 unsigned int function, const char * const **groups, 559 unsigned int * const num_groups); 560 int aspeed_pinmux_set_mux(struct pinctrl_dev *pctldev, unsigned int function, 561 unsigned int group); 562 int aspeed_gpio_request_enable(struct pinctrl_dev *pctldev, 563 struct pinctrl_gpio_range *range, 564 unsigned int offset); 565 int aspeed_pinctrl_probe(struct platform_device *pdev, 566 struct pinctrl_desc *pdesc, 567 struct aspeed_pinctrl_data *pdata); 568 569 #endif /* PINCTRL_ASPEED */ 570