1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT. 4 * 5 * Copyright (C) 2018-2020 Xilinx Inc. 6 * 7 * Author: Anurag Kumar Vulisha <anuragku@xilinx.com> 8 * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com> 9 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com> 10 * 11 * This driver is tested for USB, SATA and Display Port currently. 12 * Other controllers PCIe and SGMII should also work but that is 13 * experimental as of now. 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/delay.h> 18 #include <linux/io.h> 19 #include <linux/kernel.h> 20 #include <linux/module.h> 21 #include <linux/of.h> 22 #include <linux/phy/phy.h> 23 #include <linux/platform_device.h> 24 #include <linux/slab.h> 25 26 #include <dt-bindings/phy/phy.h> 27 28 /* 29 * Lane Registers 30 */ 31 32 /* TX De-emphasis parameters */ 33 #define L0_TX_ANA_TM_18 0x0048 34 #define L0_TX_ANA_TM_118 0x01d8 35 #define L0_TX_ANA_TM_118_FORCE_17_0 BIT(0) 36 37 /* DN Resistor calibration code parameters */ 38 #define L0_TXPMA_ST_3 0x0b0c 39 #define L0_DN_CALIB_CODE 0x3f 40 41 /* PMA control parameters */ 42 #define L0_TXPMD_TM_45 0x0cb4 43 #define L0_TXPMD_TM_48 0x0cc0 44 #define L0_TXPMD_TM_45_OVER_DP_MAIN BIT(0) 45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN BIT(1) 46 #define L0_TXPMD_TM_45_OVER_DP_POST1 BIT(2) 47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1 BIT(3) 48 #define L0_TXPMD_TM_45_OVER_DP_POST2 BIT(4) 49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2 BIT(5) 50 51 /* PCS control parameters */ 52 #define L0_TM_DIG_6 0x106c 53 #define L0_TM_DIS_DESCRAMBLE_DECODER 0x0f 54 #define L0_TX_DIG_61 0x00f4 55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER 0x0f 56 57 /* PLL Test Mode register parameters */ 58 #define L0_TM_PLL_DIG_37 0x2094 59 #define L0_TM_COARSE_CODE_LIMIT 0x10 60 61 /* PLL SSC step size offsets */ 62 #define L0_PLL_SS_STEPS_0_LSB 0x2368 63 #define L0_PLL_SS_STEPS_1_MSB 0x236c 64 #define L0_PLL_SS_STEP_SIZE_0_LSB 0x2370 65 #define L0_PLL_SS_STEP_SIZE_1 0x2374 66 #define L0_PLL_SS_STEP_SIZE_2 0x2378 67 #define L0_PLL_SS_STEP_SIZE_3_MSB 0x237c 68 #define L0_PLL_STATUS_READ_1 0x23e4 69 70 /* SSC step size parameters */ 71 #define STEP_SIZE_0_MASK 0xff 72 #define STEP_SIZE_1_MASK 0xff 73 #define STEP_SIZE_2_MASK 0xff 74 #define STEP_SIZE_3_MASK 0x3 75 #define STEP_SIZE_SHIFT 8 76 #define FORCE_STEP_SIZE 0x10 77 #define FORCE_STEPS 0x20 78 #define STEPS_0_MASK 0xff 79 #define STEPS_1_MASK 0x07 80 81 /* Reference clock selection parameters */ 82 #define L0_Ln_REF_CLK_SEL(n) (0x2860 + (n) * 4) 83 #define L0_REF_CLK_SEL_MASK 0x8f 84 85 /* Calibration digital logic parameters */ 86 #define L3_TM_CALIB_DIG19 0xec4c 87 #define L3_CALIB_DONE_STATUS 0xef14 88 #define L3_TM_CALIB_DIG18 0xec48 89 #define L3_TM_CALIB_DIG19_NSW 0x07 90 #define L3_TM_CALIB_DIG18_NSW 0xe0 91 #define L3_TM_OVERRIDE_NSW_CODE 0x20 92 #define L3_CALIB_DONE 0x02 93 #define L3_NSW_SHIFT 5 94 #define L3_NSW_PIPE_SHIFT 4 95 #define L3_NSW_CALIB_SHIFT 3 96 97 #define PHY_REG_OFFSET 0x4000 98 99 /* 100 * Global Registers 101 */ 102 103 /* Refclk selection parameters */ 104 #define PLL_REF_SEL(n) (0x10000 + (n) * 4) 105 #define PLL_FREQ_MASK 0x1f 106 #define PLL_STATUS_LOCKED 0x10 107 108 /* Inter Connect Matrix parameters */ 109 #define ICM_CFG0 0x10010 110 #define ICM_CFG1 0x10014 111 #define ICM_CFG0_L0_MASK 0x07 112 #define ICM_CFG0_L1_MASK 0x70 113 #define ICM_CFG1_L2_MASK 0x07 114 #define ICM_CFG2_L3_MASK 0x70 115 #define ICM_CFG_SHIFT 4 116 117 /* Inter Connect Matrix allowed protocols */ 118 #define ICM_PROTOCOL_PD 0x0 119 #define ICM_PROTOCOL_PCIE 0x1 120 #define ICM_PROTOCOL_SATA 0x2 121 #define ICM_PROTOCOL_USB 0x3 122 #define ICM_PROTOCOL_DP 0x4 123 #define ICM_PROTOCOL_SGMII 0x5 124 125 /* Test Mode common reset control parameters */ 126 #define TM_CMN_RST 0x10018 127 #define TM_CMN_RST_EN 0x1 128 #define TM_CMN_RST_SET 0x2 129 #define TM_CMN_RST_MASK 0x3 130 131 /* Bus width parameters */ 132 #define TX_PROT_BUS_WIDTH 0x10040 133 #define RX_PROT_BUS_WIDTH 0x10044 134 #define PROT_BUS_WIDTH_10 0x0 135 #define PROT_BUS_WIDTH_20 0x1 136 #define PROT_BUS_WIDTH_40 0x2 137 #define PROT_BUS_WIDTH_SHIFT 2 138 139 /* Number of GT lanes */ 140 #define NUM_LANES 4 141 142 /* SIOU SATA control register */ 143 #define SATA_CONTROL_OFFSET 0x0100 144 145 /* Total number of controllers */ 146 #define CONTROLLERS_PER_LANE 5 147 148 /* Protocol Type parameters */ 149 #define XPSGTR_TYPE_USB0 0 /* USB controller 0 */ 150 #define XPSGTR_TYPE_USB1 1 /* USB controller 1 */ 151 #define XPSGTR_TYPE_SATA_0 2 /* SATA controller lane 0 */ 152 #define XPSGTR_TYPE_SATA_1 3 /* SATA controller lane 1 */ 153 #define XPSGTR_TYPE_PCIE_0 4 /* PCIe controller lane 0 */ 154 #define XPSGTR_TYPE_PCIE_1 5 /* PCIe controller lane 1 */ 155 #define XPSGTR_TYPE_PCIE_2 6 /* PCIe controller lane 2 */ 156 #define XPSGTR_TYPE_PCIE_3 7 /* PCIe controller lane 3 */ 157 #define XPSGTR_TYPE_DP_0 8 /* Display Port controller lane 0 */ 158 #define XPSGTR_TYPE_DP_1 9 /* Display Port controller lane 1 */ 159 #define XPSGTR_TYPE_SGMII0 10 /* Ethernet SGMII controller 0 */ 160 #define XPSGTR_TYPE_SGMII1 11 /* Ethernet SGMII controller 1 */ 161 #define XPSGTR_TYPE_SGMII2 12 /* Ethernet SGMII controller 2 */ 162 #define XPSGTR_TYPE_SGMII3 13 /* Ethernet SGMII controller 3 */ 163 164 /* Timeout values */ 165 #define TIMEOUT_US 1000 166 167 struct xpsgtr_dev; 168 169 /** 170 * struct xpsgtr_ssc - structure to hold SSC settings for a lane 171 * @refclk_rate: PLL reference clock frequency 172 * @pll_ref_clk: value to be written to register for corresponding ref clk rate 173 * @steps: number of steps of SSC (Spread Spectrum Clock) 174 * @step_size: step size of each step 175 */ 176 struct xpsgtr_ssc { 177 u32 refclk_rate; 178 u8 pll_ref_clk; 179 u32 steps; 180 u32 step_size; 181 }; 182 183 /** 184 * struct xpsgtr_phy - representation of a lane 185 * @phy: pointer to the kernel PHY device 186 * @type: controller which uses this lane 187 * @lane: lane number 188 * @protocol: protocol in which the lane operates 189 * @skip_phy_init: skip phy_init() if true 190 * @dev: pointer to the xpsgtr_dev instance 191 * @refclk: reference clock index 192 */ 193 struct xpsgtr_phy { 194 struct phy *phy; 195 u8 type; 196 u8 lane; 197 u8 protocol; 198 bool skip_phy_init; 199 struct xpsgtr_dev *dev; 200 unsigned int refclk; 201 }; 202 203 /** 204 * struct xpsgtr_dev - representation of a ZynMP GT device 205 * @dev: pointer to device 206 * @serdes: serdes base address 207 * @siou: siou base address 208 * @gtr_mutex: mutex for locking 209 * @phys: PHY lanes 210 * @refclk_sscs: spread spectrum settings for the reference clocks 211 * @tx_term_fix: fix for GT issue 212 * @saved_icm_cfg0: stored value of ICM CFG0 register 213 * @saved_icm_cfg1: stored value of ICM CFG1 register 214 */ 215 struct xpsgtr_dev { 216 struct device *dev; 217 void __iomem *serdes; 218 void __iomem *siou; 219 struct mutex gtr_mutex; /* mutex for locking */ 220 struct xpsgtr_phy phys[NUM_LANES]; 221 const struct xpsgtr_ssc *refclk_sscs[NUM_LANES]; 222 bool tx_term_fix; 223 unsigned int saved_icm_cfg0; 224 unsigned int saved_icm_cfg1; 225 }; 226 227 /* 228 * Configuration Data 229 */ 230 231 /* lookup table to hold all settings needed for a ref clock frequency */ 232 static const struct xpsgtr_ssc ssc_lookup[] = { 233 { 19200000, 0x05, 608, 264020 }, 234 { 20000000, 0x06, 634, 243454 }, 235 { 24000000, 0x07, 760, 168973 }, 236 { 26000000, 0x08, 824, 143860 }, 237 { 27000000, 0x09, 856, 86551 }, 238 { 38400000, 0x0a, 1218, 65896 }, 239 { 40000000, 0x0b, 634, 243454 }, 240 { 52000000, 0x0c, 824, 143860 }, 241 { 100000000, 0x0d, 1058, 87533 }, 242 { 108000000, 0x0e, 856, 86551 }, 243 { 125000000, 0x0f, 992, 119497 }, 244 { 135000000, 0x10, 1070, 55393 }, 245 { 150000000, 0x11, 792, 187091 } 246 }; 247 248 /* 249 * I/O Accessors 250 */ 251 252 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg) 253 { 254 return readl(gtr_dev->serdes + reg); 255 } 256 257 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value) 258 { 259 writel(value, gtr_dev->serdes + reg); 260 } 261 262 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg, 263 u32 clr, u32 set) 264 { 265 u32 value = xpsgtr_read(gtr_dev, reg); 266 267 value &= ~clr; 268 value |= set; 269 xpsgtr_write(gtr_dev, reg, value); 270 } 271 272 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg) 273 { 274 void __iomem *addr = gtr_phy->dev->serdes 275 + gtr_phy->lane * PHY_REG_OFFSET + reg; 276 277 return readl(addr); 278 } 279 280 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy, 281 u32 reg, u32 value) 282 { 283 void __iomem *addr = gtr_phy->dev->serdes 284 + gtr_phy->lane * PHY_REG_OFFSET + reg; 285 286 writel(value, addr); 287 } 288 289 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy, 290 u32 reg, u32 clr, u32 set) 291 { 292 void __iomem *addr = gtr_phy->dev->serdes 293 + gtr_phy->lane * PHY_REG_OFFSET + reg; 294 295 writel((readl(addr) & ~clr) | set, addr); 296 } 297 298 /* 299 * Hardware Configuration 300 */ 301 302 /* Wait for the PLL to lock (with a timeout). */ 303 static int xpsgtr_wait_pll_lock(struct phy *phy) 304 { 305 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 306 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 307 unsigned int timeout = TIMEOUT_US; 308 int ret; 309 310 dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n"); 311 312 while (1) { 313 u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1); 314 315 if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) { 316 ret = 0; 317 break; 318 } 319 320 if (--timeout == 0) { 321 ret = -ETIMEDOUT; 322 break; 323 } 324 325 udelay(1); 326 } 327 328 if (ret == -ETIMEDOUT) 329 dev_err(gtr_dev->dev, 330 "lane %u (type %u, protocol %u): PLL lock timeout\n", 331 gtr_phy->lane, gtr_phy->type, gtr_phy->protocol); 332 333 return ret; 334 } 335 336 /* Configure PLL and spread-sprectrum clock. */ 337 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy) 338 { 339 const struct xpsgtr_ssc *ssc; 340 u32 step_size; 341 342 ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk]; 343 step_size = ssc->step_size; 344 345 xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane), 346 PLL_FREQ_MASK, ssc->pll_ref_clk); 347 348 /* Enable lane clock sharing, if required */ 349 if (gtr_phy->refclk != gtr_phy->lane) { 350 /* Lane3 Ref Clock Selection Register */ 351 xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane), 352 L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk); 353 } 354 355 /* SSC step size [7:0] */ 356 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB, 357 STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK); 358 359 /* SSC step size [15:8] */ 360 step_size >>= STEP_SIZE_SHIFT; 361 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1, 362 STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK); 363 364 /* SSC step size [23:16] */ 365 step_size >>= STEP_SIZE_SHIFT; 366 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2, 367 STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK); 368 369 /* SSC steps [7:0] */ 370 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB, 371 STEPS_0_MASK, ssc->steps & STEPS_0_MASK); 372 373 /* SSC steps [10:8] */ 374 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB, 375 STEPS_1_MASK, 376 (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK); 377 378 /* SSC step size [24:25] */ 379 step_size >>= STEP_SIZE_SHIFT; 380 xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB, 381 STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) | 382 FORCE_STEP_SIZE | FORCE_STEPS); 383 } 384 385 /* Configure the lane protocol. */ 386 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy) 387 { 388 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 389 u8 protocol = gtr_phy->protocol; 390 391 switch (gtr_phy->lane) { 392 case 0: 393 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol); 394 break; 395 case 1: 396 xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK, 397 protocol << ICM_CFG_SHIFT); 398 break; 399 case 2: 400 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol); 401 break; 402 case 3: 403 xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK, 404 protocol << ICM_CFG_SHIFT); 405 break; 406 default: 407 /* We already checked 0 <= lane <= 3 */ 408 break; 409 } 410 } 411 412 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */ 413 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy) 414 { 415 xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER); 416 xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER); 417 } 418 419 /* DP-specific initialization. */ 420 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy) 421 { 422 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45, 423 L0_TXPMD_TM_45_OVER_DP_MAIN | 424 L0_TXPMD_TM_45_ENABLE_DP_MAIN | 425 L0_TXPMD_TM_45_OVER_DP_POST1 | 426 L0_TXPMD_TM_45_OVER_DP_POST2 | 427 L0_TXPMD_TM_45_ENABLE_DP_POST2); 428 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118, 429 L0_TX_ANA_TM_118_FORCE_17_0); 430 } 431 432 /* SATA-specific initialization. */ 433 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy) 434 { 435 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 436 437 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 438 439 writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET); 440 } 441 442 /* SGMII-specific initialization. */ 443 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy) 444 { 445 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 446 447 /* Set SGMII protocol TX and RX bus width to 10 bits. */ 448 xpsgtr_write(gtr_dev, TX_PROT_BUS_WIDTH, 449 PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT)); 450 xpsgtr_write(gtr_dev, RX_PROT_BUS_WIDTH, 451 PROT_BUS_WIDTH_10 << (gtr_phy->lane * PROT_BUS_WIDTH_SHIFT)); 452 453 xpsgtr_bypass_scrambler_8b10b(gtr_phy); 454 } 455 456 /* Configure TX de-emphasis and margining for DP. */ 457 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre, 458 unsigned int voltage) 459 { 460 static const u8 voltage_swing[4][4] = { 461 { 0x2a, 0x27, 0x24, 0x20 }, 462 { 0x27, 0x23, 0x20, 0xff }, 463 { 0x24, 0x20, 0xff, 0xff }, 464 { 0xff, 0xff, 0xff, 0xff } 465 }; 466 static const u8 pre_emphasis[4][4] = { 467 { 0x02, 0x02, 0x02, 0x02 }, 468 { 0x01, 0x01, 0x01, 0xff }, 469 { 0x00, 0x00, 0xff, 0xff }, 470 { 0xff, 0xff, 0xff, 0xff } 471 }; 472 473 xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]); 474 xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]); 475 } 476 477 /* 478 * PHY Operations 479 */ 480 481 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy) 482 { 483 /* 484 * As USB may save the snapshot of the states during hibernation, doing 485 * phy_init() will put the USB controller into reset, resulting in the 486 * losing of the saved snapshot. So try to avoid phy_init() for USB 487 * except when gtr_phy->skip_phy_init is false (this happens when FPD is 488 * shutdown during suspend or when gt lane is changed from current one) 489 */ 490 if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init) 491 return false; 492 else 493 return true; 494 } 495 496 /* 497 * There is a functional issue in the GT. The TX termination resistance can be 498 * out of spec due to a issue in the calibration logic. This is the workaround 499 * to fix it, required for XCZU9EG silicon. 500 */ 501 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy) 502 { 503 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 504 u32 timeout = TIMEOUT_US; 505 u32 nsw; 506 507 /* Enabling Test Mode control for CMN Rest */ 508 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 509 510 /* Set Test Mode reset */ 511 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 512 513 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00); 514 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE); 515 516 /* 517 * As a part of work around sequence for PMOS calibration fix, 518 * we need to configure any lane ICM_CFG to valid protocol. This 519 * will deassert the CMN_Resetn signal. 520 */ 521 xpsgtr_lane_set_protocol(gtr_phy); 522 523 /* Clear Test Mode reset */ 524 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 525 526 dev_dbg(gtr_dev->dev, "calibrating...\n"); 527 528 do { 529 u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS); 530 531 if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE) 532 break; 533 534 if (!--timeout) { 535 dev_err(gtr_dev->dev, "calibration time out\n"); 536 return -ETIMEDOUT; 537 } 538 539 udelay(1); 540 } while (timeout > 0); 541 542 dev_dbg(gtr_dev->dev, "calibration done\n"); 543 544 /* Reading NMOS Register Code */ 545 nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE; 546 547 /* Set Test Mode reset */ 548 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN); 549 550 /* Writing NMOS register values back [5:3] */ 551 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT); 552 553 /* Writing NMOS register value [2:0] */ 554 xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 555 ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) | 556 (1 << L3_NSW_PIPE_SHIFT)); 557 558 /* Clear Test Mode reset */ 559 xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET); 560 561 return 0; 562 } 563 564 static int xpsgtr_phy_init(struct phy *phy) 565 { 566 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 567 struct xpsgtr_dev *gtr_dev = gtr_phy->dev; 568 int ret = 0; 569 570 mutex_lock(>r_dev->gtr_mutex); 571 572 /* Skip initialization if not required. */ 573 if (!xpsgtr_phy_init_required(gtr_phy)) 574 goto out; 575 576 if (gtr_dev->tx_term_fix) { 577 ret = xpsgtr_phy_tx_term_fix(gtr_phy); 578 if (ret < 0) 579 goto out; 580 581 gtr_dev->tx_term_fix = false; 582 } 583 584 /* Enable coarse code saturation limiting logic. */ 585 xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT); 586 587 /* 588 * Configure the PLL, the lane protocol, and perform protocol-specific 589 * initialization. 590 */ 591 xpsgtr_configure_pll(gtr_phy); 592 xpsgtr_lane_set_protocol(gtr_phy); 593 594 switch (gtr_phy->protocol) { 595 case ICM_PROTOCOL_DP: 596 xpsgtr_phy_init_dp(gtr_phy); 597 break; 598 599 case ICM_PROTOCOL_SATA: 600 xpsgtr_phy_init_sata(gtr_phy); 601 break; 602 603 case ICM_PROTOCOL_SGMII: 604 xpsgtr_phy_init_sgmii(gtr_phy); 605 break; 606 } 607 608 out: 609 mutex_unlock(>r_dev->gtr_mutex); 610 return ret; 611 } 612 613 static int xpsgtr_phy_exit(struct phy *phy) 614 { 615 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 616 617 gtr_phy->skip_phy_init = false; 618 619 return 0; 620 } 621 622 static int xpsgtr_phy_power_on(struct phy *phy) 623 { 624 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 625 int ret = 0; 626 627 /* 628 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid 629 * cumulating waits for both lanes. The user is expected to initialize 630 * lane 0 last. 631 */ 632 if (gtr_phy->protocol != ICM_PROTOCOL_DP || 633 gtr_phy->type == XPSGTR_TYPE_DP_0) 634 ret = xpsgtr_wait_pll_lock(phy); 635 636 return ret; 637 } 638 639 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts) 640 { 641 struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy); 642 643 if (gtr_phy->protocol != ICM_PROTOCOL_DP) 644 return 0; 645 646 xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]); 647 648 return 0; 649 } 650 651 static const struct phy_ops xpsgtr_phyops = { 652 .init = xpsgtr_phy_init, 653 .exit = xpsgtr_phy_exit, 654 .power_on = xpsgtr_phy_power_on, 655 .configure = xpsgtr_phy_configure, 656 .owner = THIS_MODULE, 657 }; 658 659 /* 660 * OF Xlate Support 661 */ 662 663 /* Set the lane type and protocol based on the PHY type and instance number. */ 664 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type, 665 unsigned int phy_instance) 666 { 667 unsigned int num_phy_types; 668 const int *phy_types; 669 670 switch (phy_type) { 671 case PHY_TYPE_SATA: { 672 static const int types[] = { 673 XPSGTR_TYPE_SATA_0, 674 XPSGTR_TYPE_SATA_1, 675 }; 676 677 phy_types = types; 678 num_phy_types = ARRAY_SIZE(types); 679 gtr_phy->protocol = ICM_PROTOCOL_SATA; 680 break; 681 } 682 case PHY_TYPE_USB3: { 683 static const int types[] = { 684 XPSGTR_TYPE_USB0, 685 XPSGTR_TYPE_USB1, 686 }; 687 688 phy_types = types; 689 num_phy_types = ARRAY_SIZE(types); 690 gtr_phy->protocol = ICM_PROTOCOL_USB; 691 break; 692 } 693 case PHY_TYPE_DP: { 694 static const int types[] = { 695 XPSGTR_TYPE_DP_0, 696 XPSGTR_TYPE_DP_1, 697 }; 698 699 phy_types = types; 700 num_phy_types = ARRAY_SIZE(types); 701 gtr_phy->protocol = ICM_PROTOCOL_DP; 702 break; 703 } 704 case PHY_TYPE_PCIE: { 705 static const int types[] = { 706 XPSGTR_TYPE_PCIE_0, 707 XPSGTR_TYPE_PCIE_1, 708 XPSGTR_TYPE_PCIE_2, 709 XPSGTR_TYPE_PCIE_3, 710 }; 711 712 phy_types = types; 713 num_phy_types = ARRAY_SIZE(types); 714 gtr_phy->protocol = ICM_PROTOCOL_PCIE; 715 break; 716 } 717 case PHY_TYPE_SGMII: { 718 static const int types[] = { 719 XPSGTR_TYPE_SGMII0, 720 XPSGTR_TYPE_SGMII1, 721 XPSGTR_TYPE_SGMII2, 722 XPSGTR_TYPE_SGMII3, 723 }; 724 725 phy_types = types; 726 num_phy_types = ARRAY_SIZE(types); 727 gtr_phy->protocol = ICM_PROTOCOL_SGMII; 728 break; 729 } 730 default: 731 return -EINVAL; 732 } 733 734 if (phy_instance >= num_phy_types) 735 return -EINVAL; 736 737 gtr_phy->type = phy_types[phy_instance]; 738 return 0; 739 } 740 741 /* 742 * Valid combinations of controllers and lanes (Interconnect Matrix). 743 */ 744 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = { 745 { XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, 746 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 }, 747 { XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0, 748 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 }, 749 { XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0, 750 XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 }, 751 { XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1, 752 XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 } 753 }; 754 755 /* Translate OF phandle and args to PHY instance. */ 756 static struct phy *xpsgtr_xlate(struct device *dev, 757 struct of_phandle_args *args) 758 { 759 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 760 struct xpsgtr_phy *gtr_phy; 761 unsigned int phy_instance; 762 unsigned int phy_lane; 763 unsigned int phy_type; 764 unsigned int refclk; 765 unsigned int i; 766 int ret; 767 768 if (args->args_count != 4) { 769 dev_err(dev, "Invalid number of cells in 'phy' property\n"); 770 return ERR_PTR(-EINVAL); 771 } 772 773 /* 774 * Get the PHY parameters from the OF arguments and derive the lane 775 * type. 776 */ 777 phy_lane = args->args[0]; 778 if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) { 779 dev_err(dev, "Invalid lane number %u\n", phy_lane); 780 return ERR_PTR(-ENODEV); 781 } 782 783 gtr_phy = >r_dev->phys[phy_lane]; 784 phy_type = args->args[1]; 785 phy_instance = args->args[2]; 786 787 ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance); 788 if (ret < 0) { 789 dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n"); 790 return ERR_PTR(ret); 791 } 792 793 refclk = args->args[3]; 794 if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) || 795 !gtr_dev->refclk_sscs[refclk]) { 796 dev_err(dev, "Invalid reference clock number %u\n", refclk); 797 return ERR_PTR(-EINVAL); 798 } 799 800 gtr_phy->refclk = refclk; 801 802 /* 803 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type 804 * is allowed to operate on the lane. 805 */ 806 for (i = 0; i < CONTROLLERS_PER_LANE; i++) { 807 if (icm_matrix[phy_lane][i] == gtr_phy->type) 808 return gtr_phy->phy; 809 } 810 811 return ERR_PTR(-EINVAL); 812 } 813 814 /* 815 * Power Management 816 */ 817 818 static int __maybe_unused xpsgtr_suspend(struct device *dev) 819 { 820 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 821 822 /* Save the snapshot ICM_CFG registers. */ 823 gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 824 gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 825 826 return 0; 827 } 828 829 static int __maybe_unused xpsgtr_resume(struct device *dev) 830 { 831 struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev); 832 unsigned int icm_cfg0, icm_cfg1; 833 unsigned int i; 834 bool skip_phy_init; 835 836 icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0); 837 icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1); 838 839 /* Return if no GT lanes got configured before suspend. */ 840 if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1) 841 return 0; 842 843 /* Check if the ICM configurations changed after suspend. */ 844 if (icm_cfg0 == gtr_dev->saved_icm_cfg0 && 845 icm_cfg1 == gtr_dev->saved_icm_cfg1) 846 skip_phy_init = true; 847 else 848 skip_phy_init = false; 849 850 /* Update the skip_phy_init for all gtr_phy instances. */ 851 for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++) 852 gtr_dev->phys[i].skip_phy_init = skip_phy_init; 853 854 return 0; 855 } 856 857 static const struct dev_pm_ops xpsgtr_pm_ops = { 858 SET_SYSTEM_SLEEP_PM_OPS(xpsgtr_suspend, xpsgtr_resume) 859 }; 860 861 /* 862 * Probe & Platform Driver 863 */ 864 865 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev) 866 { 867 unsigned int refclk; 868 869 for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) { 870 unsigned long rate; 871 unsigned int i; 872 struct clk *clk; 873 char name[8]; 874 875 snprintf(name, sizeof(name), "ref%u", refclk); 876 clk = devm_clk_get_optional(gtr_dev->dev, name); 877 if (IS_ERR(clk)) { 878 if (PTR_ERR(clk) != -EPROBE_DEFER) 879 dev_err(gtr_dev->dev, 880 "Failed to get reference clock %u: %ld\n", 881 refclk, PTR_ERR(clk)); 882 return PTR_ERR(clk); 883 } 884 885 if (!clk) 886 continue; 887 888 /* 889 * Get the spread spectrum (SSC) settings for the reference 890 * clock rate. 891 */ 892 rate = clk_get_rate(clk); 893 894 for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) { 895 if (rate == ssc_lookup[i].refclk_rate) { 896 gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i]; 897 break; 898 } 899 } 900 901 if (i == ARRAY_SIZE(ssc_lookup)) { 902 dev_err(gtr_dev->dev, 903 "Invalid rate %lu for reference clock %u\n", 904 rate, refclk); 905 return -EINVAL; 906 } 907 } 908 909 return 0; 910 } 911 912 static int xpsgtr_probe(struct platform_device *pdev) 913 { 914 struct device_node *np = pdev->dev.of_node; 915 struct xpsgtr_dev *gtr_dev; 916 struct phy_provider *provider; 917 unsigned int port; 918 int ret; 919 920 gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL); 921 if (!gtr_dev) 922 return -ENOMEM; 923 924 gtr_dev->dev = &pdev->dev; 925 platform_set_drvdata(pdev, gtr_dev); 926 927 mutex_init(>r_dev->gtr_mutex); 928 929 if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr")) 930 gtr_dev->tx_term_fix = 931 of_property_read_bool(np, "xlnx,tx-termination-fix"); 932 933 /* Acquire resources. */ 934 gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes"); 935 if (IS_ERR(gtr_dev->serdes)) 936 return PTR_ERR(gtr_dev->serdes); 937 938 gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou"); 939 if (IS_ERR(gtr_dev->siou)) 940 return PTR_ERR(gtr_dev->siou); 941 942 ret = xpsgtr_get_ref_clocks(gtr_dev); 943 if (ret) 944 return ret; 945 946 /* Create PHYs. */ 947 for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) { 948 struct xpsgtr_phy *gtr_phy = >r_dev->phys[port]; 949 struct phy *phy; 950 951 gtr_phy->lane = port; 952 gtr_phy->dev = gtr_dev; 953 954 phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops); 955 if (IS_ERR(phy)) { 956 dev_err(&pdev->dev, "failed to create PHY\n"); 957 return PTR_ERR(phy); 958 } 959 960 gtr_phy->phy = phy; 961 phy_set_drvdata(phy, gtr_phy); 962 } 963 964 /* Register the PHY provider. */ 965 provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate); 966 if (IS_ERR(provider)) { 967 dev_err(&pdev->dev, "registering provider failed\n"); 968 return PTR_ERR(provider); 969 } 970 return 0; 971 } 972 973 static const struct of_device_id xpsgtr_of_match[] = { 974 { .compatible = "xlnx,zynqmp-psgtr", }, 975 { .compatible = "xlnx,zynqmp-psgtr-v1.1", }, 976 {}, 977 }; 978 MODULE_DEVICE_TABLE(of, xpsgtr_of_match); 979 980 static struct platform_driver xpsgtr_driver = { 981 .probe = xpsgtr_probe, 982 .driver = { 983 .name = "xilinx-psgtr", 984 .of_match_table = xpsgtr_of_match, 985 .pm = &xpsgtr_pm_ops, 986 }, 987 }; 988 989 module_platform_driver(xpsgtr_driver); 990 991 MODULE_AUTHOR("Xilinx Inc."); 992 MODULE_LICENSE("GPL v2"); 993 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver"); 994