xref: /openbmc/linux/drivers/phy/xilinx/phy-zynqmp.c (revision 8bdbc44c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * phy-zynqmp.c - PHY driver for Xilinx ZynqMP GT.
4  *
5  * Copyright (C) 2018-2020 Xilinx Inc.
6  *
7  * Author: Anurag Kumar Vulisha <anuragku@xilinx.com>
8  * Author: Subbaraya Sundeep <sundeep.lkml@gmail.com>
9  * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
10  *
11  * This driver is tested for USB, SGMII, SATA and Display Port currently.
12  * PCIe should also work but that is experimental as of now.
13  */
14 
15 #include <linux/clk.h>
16 #include <linux/delay.h>
17 #include <linux/io.h>
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/of.h>
21 #include <linux/phy/phy.h>
22 #include <linux/platform_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/slab.h>
25 
26 #include <dt-bindings/phy/phy.h>
27 
28 /*
29  * Lane Registers
30  */
31 
32 /* TX De-emphasis parameters */
33 #define L0_TX_ANA_TM_18			0x0048
34 #define L0_TX_ANA_TM_118		0x01d8
35 #define L0_TX_ANA_TM_118_FORCE_17_0	BIT(0)
36 
37 /* DN Resistor calibration code parameters */
38 #define L0_TXPMA_ST_3			0x0b0c
39 #define L0_DN_CALIB_CODE		0x3f
40 
41 /* PMA control parameters */
42 #define L0_TXPMD_TM_45			0x0cb4
43 #define L0_TXPMD_TM_48			0x0cc0
44 #define L0_TXPMD_TM_45_OVER_DP_MAIN	BIT(0)
45 #define L0_TXPMD_TM_45_ENABLE_DP_MAIN	BIT(1)
46 #define L0_TXPMD_TM_45_OVER_DP_POST1	BIT(2)
47 #define L0_TXPMD_TM_45_ENABLE_DP_POST1	BIT(3)
48 #define L0_TXPMD_TM_45_OVER_DP_POST2	BIT(4)
49 #define L0_TXPMD_TM_45_ENABLE_DP_POST2	BIT(5)
50 
51 /* PCS control parameters */
52 #define L0_TM_DIG_6			0x106c
53 #define L0_TM_DIS_DESCRAMBLE_DECODER	0x0f
54 #define L0_TX_DIG_61			0x00f4
55 #define L0_TM_DISABLE_SCRAMBLE_ENCODER	0x0f
56 
57 /* PLL Test Mode register parameters */
58 #define L0_TM_PLL_DIG_37		0x2094
59 #define L0_TM_COARSE_CODE_LIMIT		0x10
60 
61 /* PLL SSC step size offsets */
62 #define L0_PLL_SS_STEPS_0_LSB		0x2368
63 #define L0_PLL_SS_STEPS_1_MSB		0x236c
64 #define L0_PLL_SS_STEP_SIZE_0_LSB	0x2370
65 #define L0_PLL_SS_STEP_SIZE_1		0x2374
66 #define L0_PLL_SS_STEP_SIZE_2		0x2378
67 #define L0_PLL_SS_STEP_SIZE_3_MSB	0x237c
68 #define L0_PLL_STATUS_READ_1		0x23e4
69 
70 /* SSC step size parameters */
71 #define STEP_SIZE_0_MASK		0xff
72 #define STEP_SIZE_1_MASK		0xff
73 #define STEP_SIZE_2_MASK		0xff
74 #define STEP_SIZE_3_MASK		0x3
75 #define STEP_SIZE_SHIFT			8
76 #define FORCE_STEP_SIZE			0x10
77 #define FORCE_STEPS			0x20
78 #define STEPS_0_MASK			0xff
79 #define STEPS_1_MASK			0x07
80 
81 /* Reference clock selection parameters */
82 #define L0_Ln_REF_CLK_SEL(n)		(0x2860 + (n) * 4)
83 #define L0_REF_CLK_LCL_SEL		BIT(7)
84 #define L0_REF_CLK_SEL_MASK		0x9f
85 
86 /* Calibration digital logic parameters */
87 #define L3_TM_CALIB_DIG19		0xec4c
88 #define L3_CALIB_DONE_STATUS		0xef14
89 #define L3_TM_CALIB_DIG18		0xec48
90 #define L3_TM_CALIB_DIG19_NSW		0x07
91 #define L3_TM_CALIB_DIG18_NSW		0xe0
92 #define L3_TM_OVERRIDE_NSW_CODE         0x20
93 #define L3_CALIB_DONE			0x02
94 #define L3_NSW_SHIFT			5
95 #define L3_NSW_PIPE_SHIFT		4
96 #define L3_NSW_CALIB_SHIFT		3
97 
98 #define PHY_REG_OFFSET			0x4000
99 
100 /*
101  * Global Registers
102  */
103 
104 /* Refclk selection parameters */
105 #define PLL_REF_SEL(n)			(0x10000 + (n) * 4)
106 #define PLL_FREQ_MASK			0x1f
107 #define PLL_STATUS_LOCKED		0x10
108 
109 /* Inter Connect Matrix parameters */
110 #define ICM_CFG0			0x10010
111 #define ICM_CFG1			0x10014
112 #define ICM_CFG0_L0_MASK		0x07
113 #define ICM_CFG0_L1_MASK		0x70
114 #define ICM_CFG1_L2_MASK		0x07
115 #define ICM_CFG2_L3_MASK		0x70
116 #define ICM_CFG_SHIFT			4
117 
118 /* Inter Connect Matrix allowed protocols */
119 #define ICM_PROTOCOL_PD			0x0
120 #define ICM_PROTOCOL_PCIE		0x1
121 #define ICM_PROTOCOL_SATA		0x2
122 #define ICM_PROTOCOL_USB		0x3
123 #define ICM_PROTOCOL_DP			0x4
124 #define ICM_PROTOCOL_SGMII		0x5
125 
126 /* Test Mode common reset control  parameters */
127 #define TM_CMN_RST			0x10018
128 #define TM_CMN_RST_EN			0x1
129 #define TM_CMN_RST_SET			0x2
130 #define TM_CMN_RST_MASK			0x3
131 
132 /* Bus width parameters */
133 #define TX_PROT_BUS_WIDTH		0x10040
134 #define RX_PROT_BUS_WIDTH		0x10044
135 #define PROT_BUS_WIDTH_10		0x0
136 #define PROT_BUS_WIDTH_20		0x1
137 #define PROT_BUS_WIDTH_40		0x2
138 #define PROT_BUS_WIDTH_SHIFT(n)		((n) * 2)
139 #define PROT_BUS_WIDTH_MASK(n)		GENMASK((n) * 2 + 1, (n) * 2)
140 
141 /* Number of GT lanes */
142 #define NUM_LANES			4
143 
144 /* SIOU SATA control register */
145 #define SATA_CONTROL_OFFSET		0x0100
146 
147 /* Total number of controllers */
148 #define CONTROLLERS_PER_LANE		5
149 
150 /* Protocol Type parameters */
151 #define XPSGTR_TYPE_USB0		0  /* USB controller 0 */
152 #define XPSGTR_TYPE_USB1		1  /* USB controller 1 */
153 #define XPSGTR_TYPE_SATA_0		2  /* SATA controller lane 0 */
154 #define XPSGTR_TYPE_SATA_1		3  /* SATA controller lane 1 */
155 #define XPSGTR_TYPE_PCIE_0		4  /* PCIe controller lane 0 */
156 #define XPSGTR_TYPE_PCIE_1		5  /* PCIe controller lane 1 */
157 #define XPSGTR_TYPE_PCIE_2		6  /* PCIe controller lane 2 */
158 #define XPSGTR_TYPE_PCIE_3		7  /* PCIe controller lane 3 */
159 #define XPSGTR_TYPE_DP_0		8  /* Display Port controller lane 0 */
160 #define XPSGTR_TYPE_DP_1		9  /* Display Port controller lane 1 */
161 #define XPSGTR_TYPE_SGMII0		10 /* Ethernet SGMII controller 0 */
162 #define XPSGTR_TYPE_SGMII1		11 /* Ethernet SGMII controller 1 */
163 #define XPSGTR_TYPE_SGMII2		12 /* Ethernet SGMII controller 2 */
164 #define XPSGTR_TYPE_SGMII3		13 /* Ethernet SGMII controller 3 */
165 
166 /* Timeout values */
167 #define TIMEOUT_US			1000
168 
169 /* Lane 0/1/2/3 offset */
170 #define DIG_8(n)		((0x4000 * (n)) + 0x1074)
171 #define ILL13(n)		((0x4000 * (n)) + 0x1994)
172 #define DIG_10(n)		((0x4000 * (n)) + 0x107c)
173 #define RST_DLY(n)		((0x4000 * (n)) + 0x19a4)
174 #define BYP_15(n)		((0x4000 * (n)) + 0x1038)
175 #define BYP_12(n)		((0x4000 * (n)) + 0x102c)
176 #define MISC3(n)		((0x4000 * (n)) + 0x19ac)
177 #define EQ11(n)			((0x4000 * (n)) + 0x1978)
178 
179 static u32 save_reg_address[] = {
180 	/* Lane 0/1/2/3 Register */
181 	DIG_8(0), ILL13(0), DIG_10(0), RST_DLY(0), BYP_15(0), BYP_12(0), MISC3(0), EQ11(0),
182 	DIG_8(1), ILL13(1), DIG_10(1), RST_DLY(1), BYP_15(1), BYP_12(1), MISC3(1), EQ11(1),
183 	DIG_8(2), ILL13(2), DIG_10(2), RST_DLY(2), BYP_15(2), BYP_12(2), MISC3(2), EQ11(2),
184 	DIG_8(3), ILL13(3), DIG_10(3), RST_DLY(3), BYP_15(3), BYP_12(3), MISC3(3), EQ11(3),
185 };
186 
187 struct xpsgtr_dev;
188 
189 /**
190  * struct xpsgtr_ssc - structure to hold SSC settings for a lane
191  * @refclk_rate: PLL reference clock frequency
192  * @pll_ref_clk: value to be written to register for corresponding ref clk rate
193  * @steps: number of steps of SSC (Spread Spectrum Clock)
194  * @step_size: step size of each step
195  */
196 struct xpsgtr_ssc {
197 	u32 refclk_rate;
198 	u8  pll_ref_clk;
199 	u32 steps;
200 	u32 step_size;
201 };
202 
203 /**
204  * struct xpsgtr_phy - representation of a lane
205  * @phy: pointer to the kernel PHY device
206  * @type: controller which uses this lane
207  * @lane: lane number
208  * @protocol: protocol in which the lane operates
209  * @skip_phy_init: skip phy_init() if true
210  * @dev: pointer to the xpsgtr_dev instance
211  * @refclk: reference clock index
212  */
213 struct xpsgtr_phy {
214 	struct phy *phy;
215 	u8 type;
216 	u8 lane;
217 	u8 protocol;
218 	bool skip_phy_init;
219 	struct xpsgtr_dev *dev;
220 	unsigned int refclk;
221 };
222 
223 /**
224  * struct xpsgtr_dev - representation of a ZynMP GT device
225  * @dev: pointer to device
226  * @serdes: serdes base address
227  * @siou: siou base address
228  * @gtr_mutex: mutex for locking
229  * @phys: PHY lanes
230  * @refclk_sscs: spread spectrum settings for the reference clocks
231  * @clk: reference clocks
232  * @tx_term_fix: fix for GT issue
233  * @saved_icm_cfg0: stored value of ICM CFG0 register
234  * @saved_icm_cfg1: stored value of ICM CFG1 register
235  * @saved_regs: registers to be saved/restored during suspend/resume
236  */
237 struct xpsgtr_dev {
238 	struct device *dev;
239 	void __iomem *serdes;
240 	void __iomem *siou;
241 	struct mutex gtr_mutex; /* mutex for locking */
242 	struct xpsgtr_phy phys[NUM_LANES];
243 	const struct xpsgtr_ssc *refclk_sscs[NUM_LANES];
244 	struct clk *clk[NUM_LANES];
245 	bool tx_term_fix;
246 	unsigned int saved_icm_cfg0;
247 	unsigned int saved_icm_cfg1;
248 	u32 *saved_regs;
249 };
250 
251 /*
252  * Configuration Data
253  */
254 
255 /* lookup table to hold all settings needed for a ref clock frequency */
256 static const struct xpsgtr_ssc ssc_lookup[] = {
257 	{  19200000, 0x05,  608, 264020 },
258 	{  20000000, 0x06,  634, 243454 },
259 	{  24000000, 0x07,  760, 168973 },
260 	{  26000000, 0x08,  824, 143860 },
261 	{  27000000, 0x09,  856,  86551 },
262 	{  38400000, 0x0a, 1218,  65896 },
263 	{  40000000, 0x0b,  634, 243454 },
264 	{  52000000, 0x0c,  824, 143860 },
265 	{ 100000000, 0x0d, 1058,  87533 },
266 	{ 108000000, 0x0e,  856,  86551 },
267 	{ 125000000, 0x0f,  992, 119497 },
268 	{ 135000000, 0x10, 1070,  55393 },
269 	{ 150000000, 0x11,  792, 187091 }
270 };
271 
272 /*
273  * I/O Accessors
274  */
275 
xpsgtr_read(struct xpsgtr_dev * gtr_dev,u32 reg)276 static inline u32 xpsgtr_read(struct xpsgtr_dev *gtr_dev, u32 reg)
277 {
278 	return readl(gtr_dev->serdes + reg);
279 }
280 
xpsgtr_write(struct xpsgtr_dev * gtr_dev,u32 reg,u32 value)281 static inline void xpsgtr_write(struct xpsgtr_dev *gtr_dev, u32 reg, u32 value)
282 {
283 	writel(value, gtr_dev->serdes + reg);
284 }
285 
xpsgtr_clr_set(struct xpsgtr_dev * gtr_dev,u32 reg,u32 clr,u32 set)286 static inline void xpsgtr_clr_set(struct xpsgtr_dev *gtr_dev, u32 reg,
287 				  u32 clr, u32 set)
288 {
289 	u32 value = xpsgtr_read(gtr_dev, reg);
290 
291 	value &= ~clr;
292 	value |= set;
293 	xpsgtr_write(gtr_dev, reg, value);
294 }
295 
xpsgtr_read_phy(struct xpsgtr_phy * gtr_phy,u32 reg)296 static inline u32 xpsgtr_read_phy(struct xpsgtr_phy *gtr_phy, u32 reg)
297 {
298 	void __iomem *addr = gtr_phy->dev->serdes
299 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
300 
301 	return readl(addr);
302 }
303 
xpsgtr_write_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 value)304 static inline void xpsgtr_write_phy(struct xpsgtr_phy *gtr_phy,
305 				    u32 reg, u32 value)
306 {
307 	void __iomem *addr = gtr_phy->dev->serdes
308 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
309 
310 	writel(value, addr);
311 }
312 
xpsgtr_clr_set_phy(struct xpsgtr_phy * gtr_phy,u32 reg,u32 clr,u32 set)313 static inline void xpsgtr_clr_set_phy(struct xpsgtr_phy *gtr_phy,
314 				      u32 reg, u32 clr, u32 set)
315 {
316 	void __iomem *addr = gtr_phy->dev->serdes
317 			   + gtr_phy->lane * PHY_REG_OFFSET + reg;
318 
319 	writel((readl(addr) & ~clr) | set, addr);
320 }
321 
322 /**
323  * xpsgtr_save_lane_regs - Saves registers on suspend
324  * @gtr_dev: pointer to phy controller context structure
325  */
xpsgtr_save_lane_regs(struct xpsgtr_dev * gtr_dev)326 static void xpsgtr_save_lane_regs(struct xpsgtr_dev *gtr_dev)
327 {
328 	int i;
329 
330 	for (i = 0; i < ARRAY_SIZE(save_reg_address); i++)
331 		gtr_dev->saved_regs[i] = xpsgtr_read(gtr_dev,
332 						     save_reg_address[i]);
333 }
334 
335 /**
336  * xpsgtr_restore_lane_regs - Restores registers on resume
337  * @gtr_dev: pointer to phy controller context structure
338  */
xpsgtr_restore_lane_regs(struct xpsgtr_dev * gtr_dev)339 static void xpsgtr_restore_lane_regs(struct xpsgtr_dev *gtr_dev)
340 {
341 	int i;
342 
343 	for (i = 0; i < ARRAY_SIZE(save_reg_address); i++)
344 		xpsgtr_write(gtr_dev, save_reg_address[i],
345 			     gtr_dev->saved_regs[i]);
346 }
347 
348 /*
349  * Hardware Configuration
350  */
351 
352 /* Wait for the PLL to lock (with a timeout). */
xpsgtr_wait_pll_lock(struct phy * phy)353 static int xpsgtr_wait_pll_lock(struct phy *phy)
354 {
355 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
356 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
357 	unsigned int timeout = TIMEOUT_US;
358 	int ret;
359 
360 	dev_dbg(gtr_dev->dev, "Waiting for PLL lock\n");
361 
362 	while (1) {
363 		u32 reg = xpsgtr_read_phy(gtr_phy, L0_PLL_STATUS_READ_1);
364 
365 		if ((reg & PLL_STATUS_LOCKED) == PLL_STATUS_LOCKED) {
366 			ret = 0;
367 			break;
368 		}
369 
370 		if (--timeout == 0) {
371 			ret = -ETIMEDOUT;
372 			break;
373 		}
374 
375 		udelay(1);
376 	}
377 
378 	if (ret == -ETIMEDOUT)
379 		dev_err(gtr_dev->dev,
380 			"lane %u (type %u, protocol %u): PLL lock timeout\n",
381 			gtr_phy->lane, gtr_phy->type, gtr_phy->protocol);
382 
383 	return ret;
384 }
385 
386 /* Configure PLL and spread-sprectrum clock. */
xpsgtr_configure_pll(struct xpsgtr_phy * gtr_phy)387 static void xpsgtr_configure_pll(struct xpsgtr_phy *gtr_phy)
388 {
389 	const struct xpsgtr_ssc *ssc;
390 	u32 step_size;
391 
392 	ssc = gtr_phy->dev->refclk_sscs[gtr_phy->refclk];
393 	step_size = ssc->step_size;
394 
395 	xpsgtr_clr_set(gtr_phy->dev, PLL_REF_SEL(gtr_phy->lane),
396 		       PLL_FREQ_MASK, ssc->pll_ref_clk);
397 
398 	/* Enable lane clock sharing, if required */
399 	if (gtr_phy->refclk == gtr_phy->lane)
400 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
401 			       L0_REF_CLK_SEL_MASK, L0_REF_CLK_LCL_SEL);
402 	else
403 		xpsgtr_clr_set(gtr_phy->dev, L0_Ln_REF_CLK_SEL(gtr_phy->lane),
404 			       L0_REF_CLK_SEL_MASK, 1 << gtr_phy->refclk);
405 
406 	/* SSC step size [7:0] */
407 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_0_LSB,
408 			   STEP_SIZE_0_MASK, step_size & STEP_SIZE_0_MASK);
409 
410 	/* SSC step size [15:8] */
411 	step_size >>= STEP_SIZE_SHIFT;
412 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_1,
413 			   STEP_SIZE_1_MASK, step_size & STEP_SIZE_1_MASK);
414 
415 	/* SSC step size [23:16] */
416 	step_size >>= STEP_SIZE_SHIFT;
417 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_2,
418 			   STEP_SIZE_2_MASK, step_size & STEP_SIZE_2_MASK);
419 
420 	/* SSC steps [7:0] */
421 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_0_LSB,
422 			   STEPS_0_MASK, ssc->steps & STEPS_0_MASK);
423 
424 	/* SSC steps [10:8] */
425 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEPS_1_MSB,
426 			   STEPS_1_MASK,
427 			   (ssc->steps >> STEP_SIZE_SHIFT) & STEPS_1_MASK);
428 
429 	/* SSC step size [24:25] */
430 	step_size >>= STEP_SIZE_SHIFT;
431 	xpsgtr_clr_set_phy(gtr_phy, L0_PLL_SS_STEP_SIZE_3_MSB,
432 			   STEP_SIZE_3_MASK, (step_size & STEP_SIZE_3_MASK) |
433 			   FORCE_STEP_SIZE | FORCE_STEPS);
434 }
435 
436 /* Configure the lane protocol. */
xpsgtr_lane_set_protocol(struct xpsgtr_phy * gtr_phy)437 static void xpsgtr_lane_set_protocol(struct xpsgtr_phy *gtr_phy)
438 {
439 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
440 	u8 protocol = gtr_phy->protocol;
441 
442 	switch (gtr_phy->lane) {
443 	case 0:
444 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L0_MASK, protocol);
445 		break;
446 	case 1:
447 		xpsgtr_clr_set(gtr_dev, ICM_CFG0, ICM_CFG0_L1_MASK,
448 			       protocol << ICM_CFG_SHIFT);
449 		break;
450 	case 2:
451 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L0_MASK, protocol);
452 		break;
453 	case 3:
454 		xpsgtr_clr_set(gtr_dev, ICM_CFG1, ICM_CFG0_L1_MASK,
455 			       protocol << ICM_CFG_SHIFT);
456 		break;
457 	default:
458 		/* We already checked 0 <= lane <= 3 */
459 		break;
460 	}
461 }
462 
463 /* Bypass (de)scrambler and 8b/10b decoder and encoder. */
xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy * gtr_phy)464 static void xpsgtr_bypass_scrambler_8b10b(struct xpsgtr_phy *gtr_phy)
465 {
466 	xpsgtr_write_phy(gtr_phy, L0_TM_DIG_6, L0_TM_DIS_DESCRAMBLE_DECODER);
467 	xpsgtr_write_phy(gtr_phy, L0_TX_DIG_61, L0_TM_DISABLE_SCRAMBLE_ENCODER);
468 }
469 
470 /* DP-specific initialization. */
xpsgtr_phy_init_dp(struct xpsgtr_phy * gtr_phy)471 static void xpsgtr_phy_init_dp(struct xpsgtr_phy *gtr_phy)
472 {
473 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_45,
474 			 L0_TXPMD_TM_45_OVER_DP_MAIN |
475 			 L0_TXPMD_TM_45_ENABLE_DP_MAIN |
476 			 L0_TXPMD_TM_45_OVER_DP_POST1 |
477 			 L0_TXPMD_TM_45_OVER_DP_POST2 |
478 			 L0_TXPMD_TM_45_ENABLE_DP_POST2);
479 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_118,
480 			 L0_TX_ANA_TM_118_FORCE_17_0);
481 }
482 
483 /* SATA-specific initialization. */
xpsgtr_phy_init_sata(struct xpsgtr_phy * gtr_phy)484 static void xpsgtr_phy_init_sata(struct xpsgtr_phy *gtr_phy)
485 {
486 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
487 
488 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
489 
490 	writel(gtr_phy->lane, gtr_dev->siou + SATA_CONTROL_OFFSET);
491 }
492 
493 /* SGMII-specific initialization. */
xpsgtr_phy_init_sgmii(struct xpsgtr_phy * gtr_phy)494 static void xpsgtr_phy_init_sgmii(struct xpsgtr_phy *gtr_phy)
495 {
496 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
497 	u32 mask = PROT_BUS_WIDTH_MASK(gtr_phy->lane);
498 	u32 val = PROT_BUS_WIDTH_10 << PROT_BUS_WIDTH_SHIFT(gtr_phy->lane);
499 
500 	/* Set SGMII protocol TX and RX bus width to 10 bits. */
501 	xpsgtr_clr_set(gtr_dev, TX_PROT_BUS_WIDTH, mask, val);
502 	xpsgtr_clr_set(gtr_dev, RX_PROT_BUS_WIDTH, mask, val);
503 
504 	xpsgtr_bypass_scrambler_8b10b(gtr_phy);
505 }
506 
507 /* Configure TX de-emphasis and margining for DP. */
xpsgtr_phy_configure_dp(struct xpsgtr_phy * gtr_phy,unsigned int pre,unsigned int voltage)508 static void xpsgtr_phy_configure_dp(struct xpsgtr_phy *gtr_phy, unsigned int pre,
509 				    unsigned int voltage)
510 {
511 	static const u8 voltage_swing[4][4] = {
512 		{ 0x2a, 0x27, 0x24, 0x20 },
513 		{ 0x27, 0x23, 0x20, 0xff },
514 		{ 0x24, 0x20, 0xff, 0xff },
515 		{ 0xff, 0xff, 0xff, 0xff }
516 	};
517 	static const u8 pre_emphasis[4][4] = {
518 		{ 0x02, 0x02, 0x02, 0x02 },
519 		{ 0x01, 0x01, 0x01, 0xff },
520 		{ 0x00, 0x00, 0xff, 0xff },
521 		{ 0xff, 0xff, 0xff, 0xff }
522 	};
523 
524 	xpsgtr_write_phy(gtr_phy, L0_TXPMD_TM_48, voltage_swing[pre][voltage]);
525 	xpsgtr_write_phy(gtr_phy, L0_TX_ANA_TM_18, pre_emphasis[pre][voltage]);
526 }
527 
528 /*
529  * PHY Operations
530  */
531 
xpsgtr_phy_init_required(struct xpsgtr_phy * gtr_phy)532 static bool xpsgtr_phy_init_required(struct xpsgtr_phy *gtr_phy)
533 {
534 	/*
535 	 * As USB may save the snapshot of the states during hibernation, doing
536 	 * phy_init() will put the USB controller into reset, resulting in the
537 	 * losing of the saved snapshot. So try to avoid phy_init() for USB
538 	 * except when gtr_phy->skip_phy_init is false (this happens when FPD is
539 	 * shutdown during suspend or when gt lane is changed from current one)
540 	 */
541 	if (gtr_phy->protocol == ICM_PROTOCOL_USB && gtr_phy->skip_phy_init)
542 		return false;
543 	else
544 		return true;
545 }
546 
547 /*
548  * There is a functional issue in the GT. The TX termination resistance can be
549  * out of spec due to a issue in the calibration logic. This is the workaround
550  * to fix it, required for XCZU9EG silicon.
551  */
xpsgtr_phy_tx_term_fix(struct xpsgtr_phy * gtr_phy)552 static int xpsgtr_phy_tx_term_fix(struct xpsgtr_phy *gtr_phy)
553 {
554 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
555 	u32 timeout = TIMEOUT_US;
556 	u32 nsw;
557 
558 	/* Enabling Test Mode control for CMN Rest */
559 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
560 
561 	/* Set Test Mode reset */
562 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
563 
564 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18, 0x00);
565 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, L3_TM_OVERRIDE_NSW_CODE);
566 
567 	/*
568 	 * As a part of work around sequence for PMOS calibration fix,
569 	 * we need to configure any lane ICM_CFG to valid protocol. This
570 	 * will deassert the CMN_Resetn signal.
571 	 */
572 	xpsgtr_lane_set_protocol(gtr_phy);
573 
574 	/* Clear Test Mode reset */
575 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
576 
577 	dev_dbg(gtr_dev->dev, "calibrating...\n");
578 
579 	do {
580 		u32 reg = xpsgtr_read(gtr_dev, L3_CALIB_DONE_STATUS);
581 
582 		if ((reg & L3_CALIB_DONE) == L3_CALIB_DONE)
583 			break;
584 
585 		if (!--timeout) {
586 			dev_err(gtr_dev->dev, "calibration time out\n");
587 			return -ETIMEDOUT;
588 		}
589 
590 		udelay(1);
591 	} while (timeout > 0);
592 
593 	dev_dbg(gtr_dev->dev, "calibration done\n");
594 
595 	/* Reading NMOS Register Code */
596 	nsw = xpsgtr_read(gtr_dev, L0_TXPMA_ST_3) & L0_DN_CALIB_CODE;
597 
598 	/* Set Test Mode reset */
599 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_EN);
600 
601 	/* Writing NMOS register values back [5:3] */
602 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG19, nsw >> L3_NSW_CALIB_SHIFT);
603 
604 	/* Writing NMOS register value [2:0] */
605 	xpsgtr_write(gtr_dev, L3_TM_CALIB_DIG18,
606 		     ((nsw & L3_TM_CALIB_DIG19_NSW) << L3_NSW_SHIFT) |
607 		     (1 << L3_NSW_PIPE_SHIFT));
608 
609 	/* Clear Test Mode reset */
610 	xpsgtr_clr_set(gtr_dev, TM_CMN_RST, TM_CMN_RST_MASK, TM_CMN_RST_SET);
611 
612 	return 0;
613 }
614 
xpsgtr_phy_init(struct phy * phy)615 static int xpsgtr_phy_init(struct phy *phy)
616 {
617 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
618 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
619 	int ret = 0;
620 
621 	mutex_lock(&gtr_dev->gtr_mutex);
622 
623 	/* Configure and enable the clock when peripheral phy_init call */
624 	if (clk_prepare_enable(gtr_dev->clk[gtr_phy->refclk]))
625 		goto out;
626 
627 	/* Skip initialization if not required. */
628 	if (!xpsgtr_phy_init_required(gtr_phy))
629 		goto out;
630 
631 	if (gtr_dev->tx_term_fix) {
632 		ret = xpsgtr_phy_tx_term_fix(gtr_phy);
633 		if (ret < 0)
634 			goto out;
635 
636 		gtr_dev->tx_term_fix = false;
637 	}
638 
639 	/* Enable coarse code saturation limiting logic. */
640 	xpsgtr_write_phy(gtr_phy, L0_TM_PLL_DIG_37, L0_TM_COARSE_CODE_LIMIT);
641 
642 	/*
643 	 * Configure the PLL, the lane protocol, and perform protocol-specific
644 	 * initialization.
645 	 */
646 	xpsgtr_configure_pll(gtr_phy);
647 	xpsgtr_lane_set_protocol(gtr_phy);
648 
649 	switch (gtr_phy->protocol) {
650 	case ICM_PROTOCOL_DP:
651 		xpsgtr_phy_init_dp(gtr_phy);
652 		break;
653 
654 	case ICM_PROTOCOL_SATA:
655 		xpsgtr_phy_init_sata(gtr_phy);
656 		break;
657 
658 	case ICM_PROTOCOL_SGMII:
659 		xpsgtr_phy_init_sgmii(gtr_phy);
660 		break;
661 	}
662 
663 out:
664 	mutex_unlock(&gtr_dev->gtr_mutex);
665 	return ret;
666 }
667 
xpsgtr_phy_exit(struct phy * phy)668 static int xpsgtr_phy_exit(struct phy *phy)
669 {
670 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
671 	struct xpsgtr_dev *gtr_dev = gtr_phy->dev;
672 
673 	gtr_phy->skip_phy_init = false;
674 
675 	/* Ensure that disable clock only, which configure for lane */
676 	clk_disable_unprepare(gtr_dev->clk[gtr_phy->refclk]);
677 
678 	return 0;
679 }
680 
xpsgtr_phy_power_on(struct phy * phy)681 static int xpsgtr_phy_power_on(struct phy *phy)
682 {
683 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
684 	int ret = 0;
685 
686 	/* Skip initialization if not required. */
687 	if (!xpsgtr_phy_init_required(gtr_phy))
688 		return ret;
689 	/*
690 	 * Wait for the PLL to lock. For DP, only wait on DP0 to avoid
691 	 * cumulating waits for both lanes. The user is expected to initialize
692 	 * lane 0 last.
693 	 */
694 	if (gtr_phy->protocol != ICM_PROTOCOL_DP ||
695 	    gtr_phy->type == XPSGTR_TYPE_DP_0)
696 		ret = xpsgtr_wait_pll_lock(phy);
697 
698 	return ret;
699 }
700 
xpsgtr_phy_configure(struct phy * phy,union phy_configure_opts * opts)701 static int xpsgtr_phy_configure(struct phy *phy, union phy_configure_opts *opts)
702 {
703 	struct xpsgtr_phy *gtr_phy = phy_get_drvdata(phy);
704 
705 	if (gtr_phy->protocol != ICM_PROTOCOL_DP)
706 		return 0;
707 
708 	xpsgtr_phy_configure_dp(gtr_phy, opts->dp.pre[0], opts->dp.voltage[0]);
709 
710 	return 0;
711 }
712 
713 static const struct phy_ops xpsgtr_phyops = {
714 	.init		= xpsgtr_phy_init,
715 	.exit		= xpsgtr_phy_exit,
716 	.power_on	= xpsgtr_phy_power_on,
717 	.configure	= xpsgtr_phy_configure,
718 	.owner		= THIS_MODULE,
719 };
720 
721 /*
722  * OF Xlate Support
723  */
724 
725 /* Set the lane type and protocol based on the PHY type and instance number. */
xpsgtr_set_lane_type(struct xpsgtr_phy * gtr_phy,u8 phy_type,unsigned int phy_instance)726 static int xpsgtr_set_lane_type(struct xpsgtr_phy *gtr_phy, u8 phy_type,
727 				unsigned int phy_instance)
728 {
729 	unsigned int num_phy_types;
730 	const int *phy_types;
731 
732 	switch (phy_type) {
733 	case PHY_TYPE_SATA: {
734 		static const int types[] = {
735 			XPSGTR_TYPE_SATA_0,
736 			XPSGTR_TYPE_SATA_1,
737 		};
738 
739 		phy_types = types;
740 		num_phy_types = ARRAY_SIZE(types);
741 		gtr_phy->protocol = ICM_PROTOCOL_SATA;
742 		break;
743 	}
744 	case PHY_TYPE_USB3: {
745 		static const int types[] = {
746 			XPSGTR_TYPE_USB0,
747 			XPSGTR_TYPE_USB1,
748 		};
749 
750 		phy_types = types;
751 		num_phy_types = ARRAY_SIZE(types);
752 		gtr_phy->protocol = ICM_PROTOCOL_USB;
753 		break;
754 	}
755 	case PHY_TYPE_DP: {
756 		static const int types[] = {
757 			XPSGTR_TYPE_DP_0,
758 			XPSGTR_TYPE_DP_1,
759 		};
760 
761 		phy_types = types;
762 		num_phy_types = ARRAY_SIZE(types);
763 		gtr_phy->protocol = ICM_PROTOCOL_DP;
764 		break;
765 	}
766 	case PHY_TYPE_PCIE: {
767 		static const int types[] = {
768 			XPSGTR_TYPE_PCIE_0,
769 			XPSGTR_TYPE_PCIE_1,
770 			XPSGTR_TYPE_PCIE_2,
771 			XPSGTR_TYPE_PCIE_3,
772 		};
773 
774 		phy_types = types;
775 		num_phy_types = ARRAY_SIZE(types);
776 		gtr_phy->protocol = ICM_PROTOCOL_PCIE;
777 		break;
778 	}
779 	case PHY_TYPE_SGMII: {
780 		static const int types[] = {
781 			XPSGTR_TYPE_SGMII0,
782 			XPSGTR_TYPE_SGMII1,
783 			XPSGTR_TYPE_SGMII2,
784 			XPSGTR_TYPE_SGMII3,
785 		};
786 
787 		phy_types = types;
788 		num_phy_types = ARRAY_SIZE(types);
789 		gtr_phy->protocol = ICM_PROTOCOL_SGMII;
790 		break;
791 	}
792 	default:
793 		return -EINVAL;
794 	}
795 
796 	if (phy_instance >= num_phy_types)
797 		return -EINVAL;
798 
799 	gtr_phy->type = phy_types[phy_instance];
800 	return 0;
801 }
802 
803 /*
804  * Valid combinations of controllers and lanes (Interconnect Matrix).
805  */
806 static const unsigned int icm_matrix[NUM_LANES][CONTROLLERS_PER_LANE] = {
807 	{ XPSGTR_TYPE_PCIE_0, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
808 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII0 },
809 	{ XPSGTR_TYPE_PCIE_1, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB0,
810 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII1 },
811 	{ XPSGTR_TYPE_PCIE_2, XPSGTR_TYPE_SATA_0, XPSGTR_TYPE_USB0,
812 		XPSGTR_TYPE_DP_1, XPSGTR_TYPE_SGMII2 },
813 	{ XPSGTR_TYPE_PCIE_3, XPSGTR_TYPE_SATA_1, XPSGTR_TYPE_USB1,
814 		XPSGTR_TYPE_DP_0, XPSGTR_TYPE_SGMII3 }
815 };
816 
817 /* Translate OF phandle and args to PHY instance. */
xpsgtr_xlate(struct device * dev,struct of_phandle_args * args)818 static struct phy *xpsgtr_xlate(struct device *dev,
819 				struct of_phandle_args *args)
820 {
821 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
822 	struct xpsgtr_phy *gtr_phy;
823 	unsigned int phy_instance;
824 	unsigned int phy_lane;
825 	unsigned int phy_type;
826 	unsigned int refclk;
827 	unsigned int i;
828 	int ret;
829 
830 	if (args->args_count != 4) {
831 		dev_err(dev, "Invalid number of cells in 'phy' property\n");
832 		return ERR_PTR(-EINVAL);
833 	}
834 
835 	/*
836 	 * Get the PHY parameters from the OF arguments and derive the lane
837 	 * type.
838 	 */
839 	phy_lane = args->args[0];
840 	if (phy_lane >= ARRAY_SIZE(gtr_dev->phys)) {
841 		dev_err(dev, "Invalid lane number %u\n", phy_lane);
842 		return ERR_PTR(-ENODEV);
843 	}
844 
845 	gtr_phy = &gtr_dev->phys[phy_lane];
846 	phy_type = args->args[1];
847 	phy_instance = args->args[2];
848 
849 	guard(mutex)(&gtr_phy->phy->mutex);
850 	ret = xpsgtr_set_lane_type(gtr_phy, phy_type, phy_instance);
851 	if (ret < 0) {
852 		dev_err(gtr_dev->dev, "Invalid PHY type and/or instance\n");
853 		return ERR_PTR(ret);
854 	}
855 
856 	refclk = args->args[3];
857 	if (refclk >= ARRAY_SIZE(gtr_dev->refclk_sscs) ||
858 	    !gtr_dev->refclk_sscs[refclk]) {
859 		dev_err(dev, "Invalid reference clock number %u\n", refclk);
860 		return ERR_PTR(-EINVAL);
861 	}
862 
863 	gtr_phy->refclk = refclk;
864 
865 	/*
866 	 * Ensure that the Interconnect Matrix is obeyed, i.e a given lane type
867 	 * is allowed to operate on the lane.
868 	 */
869 	for (i = 0; i < CONTROLLERS_PER_LANE; i++) {
870 		if (icm_matrix[phy_lane][i] == gtr_phy->type)
871 			return gtr_phy->phy;
872 	}
873 
874 	return ERR_PTR(-EINVAL);
875 }
876 
877 /*
878  * Power Management
879  */
880 
xpsgtr_runtime_suspend(struct device * dev)881 static int xpsgtr_runtime_suspend(struct device *dev)
882 {
883 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
884 
885 	/* Save the snapshot ICM_CFG registers. */
886 	gtr_dev->saved_icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
887 	gtr_dev->saved_icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
888 
889 	xpsgtr_save_lane_regs(gtr_dev);
890 
891 	return 0;
892 }
893 
xpsgtr_runtime_resume(struct device * dev)894 static int xpsgtr_runtime_resume(struct device *dev)
895 {
896 	struct xpsgtr_dev *gtr_dev = dev_get_drvdata(dev);
897 	unsigned int icm_cfg0, icm_cfg1;
898 	unsigned int i;
899 	bool skip_phy_init;
900 
901 	xpsgtr_restore_lane_regs(gtr_dev);
902 
903 	icm_cfg0 = xpsgtr_read(gtr_dev, ICM_CFG0);
904 	icm_cfg1 = xpsgtr_read(gtr_dev, ICM_CFG1);
905 
906 	/* Return if no GT lanes got configured before suspend. */
907 	if (!gtr_dev->saved_icm_cfg0 && !gtr_dev->saved_icm_cfg1)
908 		return 0;
909 
910 	/* Check if the ICM configurations changed after suspend. */
911 	if (icm_cfg0 == gtr_dev->saved_icm_cfg0 &&
912 	    icm_cfg1 == gtr_dev->saved_icm_cfg1)
913 		skip_phy_init = true;
914 	else
915 		skip_phy_init = false;
916 
917 	/* Update the skip_phy_init for all gtr_phy instances. */
918 	for (i = 0; i < ARRAY_SIZE(gtr_dev->phys); i++)
919 		gtr_dev->phys[i].skip_phy_init = skip_phy_init;
920 
921 	return 0;
922 }
923 
924 static DEFINE_RUNTIME_DEV_PM_OPS(xpsgtr_pm_ops, xpsgtr_runtime_suspend,
925 				 xpsgtr_runtime_resume, NULL);
926 /*
927  * Probe & Platform Driver
928  */
929 
xpsgtr_get_ref_clocks(struct xpsgtr_dev * gtr_dev)930 static int xpsgtr_get_ref_clocks(struct xpsgtr_dev *gtr_dev)
931 {
932 	unsigned int refclk;
933 
934 	for (refclk = 0; refclk < ARRAY_SIZE(gtr_dev->refclk_sscs); ++refclk) {
935 		unsigned long rate;
936 		unsigned int i;
937 		struct clk *clk;
938 		char name[8];
939 
940 		snprintf(name, sizeof(name), "ref%u", refclk);
941 		clk = devm_clk_get_optional(gtr_dev->dev, name);
942 		if (IS_ERR(clk)) {
943 			return dev_err_probe(gtr_dev->dev, PTR_ERR(clk),
944 					     "Failed to get ref clock %u\n",
945 					     refclk);
946 		}
947 
948 		if (!clk)
949 			continue;
950 
951 		gtr_dev->clk[refclk] = clk;
952 
953 		/*
954 		 * Get the spread spectrum (SSC) settings for the reference
955 		 * clock rate.
956 		 */
957 		rate = clk_get_rate(clk);
958 
959 		for (i = 0 ; i < ARRAY_SIZE(ssc_lookup); i++) {
960 			/* Allow an error of 100 ppm */
961 			unsigned long error = ssc_lookup[i].refclk_rate / 10000;
962 
963 			if (abs(rate - ssc_lookup[i].refclk_rate) < error) {
964 				gtr_dev->refclk_sscs[refclk] = &ssc_lookup[i];
965 				break;
966 			}
967 		}
968 
969 		if (i == ARRAY_SIZE(ssc_lookup)) {
970 			dev_err(gtr_dev->dev,
971 				"Invalid rate %lu for reference clock %u\n",
972 				rate, refclk);
973 			return -EINVAL;
974 		}
975 	}
976 
977 	return 0;
978 }
979 
xpsgtr_probe(struct platform_device * pdev)980 static int xpsgtr_probe(struct platform_device *pdev)
981 {
982 	struct device_node *np = pdev->dev.of_node;
983 	struct xpsgtr_dev *gtr_dev;
984 	struct phy_provider *provider;
985 	unsigned int port;
986 	int ret;
987 
988 	gtr_dev = devm_kzalloc(&pdev->dev, sizeof(*gtr_dev), GFP_KERNEL);
989 	if (!gtr_dev)
990 		return -ENOMEM;
991 
992 	gtr_dev->dev = &pdev->dev;
993 	platform_set_drvdata(pdev, gtr_dev);
994 
995 	mutex_init(&gtr_dev->gtr_mutex);
996 
997 	if (of_device_is_compatible(np, "xlnx,zynqmp-psgtr"))
998 		gtr_dev->tx_term_fix =
999 			of_property_read_bool(np, "xlnx,tx-termination-fix");
1000 
1001 	/* Acquire resources. */
1002 	gtr_dev->serdes = devm_platform_ioremap_resource_byname(pdev, "serdes");
1003 	if (IS_ERR(gtr_dev->serdes))
1004 		return PTR_ERR(gtr_dev->serdes);
1005 
1006 	gtr_dev->siou = devm_platform_ioremap_resource_byname(pdev, "siou");
1007 	if (IS_ERR(gtr_dev->siou))
1008 		return PTR_ERR(gtr_dev->siou);
1009 
1010 	ret = xpsgtr_get_ref_clocks(gtr_dev);
1011 	if (ret)
1012 		return ret;
1013 
1014 	/* Create PHYs. */
1015 	for (port = 0; port < ARRAY_SIZE(gtr_dev->phys); ++port) {
1016 		struct xpsgtr_phy *gtr_phy = &gtr_dev->phys[port];
1017 		struct phy *phy;
1018 
1019 		gtr_phy->lane = port;
1020 		gtr_phy->dev = gtr_dev;
1021 
1022 		phy = devm_phy_create(&pdev->dev, np, &xpsgtr_phyops);
1023 		if (IS_ERR(phy)) {
1024 			dev_err(&pdev->dev, "failed to create PHY\n");
1025 			return PTR_ERR(phy);
1026 		}
1027 
1028 		gtr_phy->phy = phy;
1029 		phy_set_drvdata(phy, gtr_phy);
1030 	}
1031 
1032 	/* Register the PHY provider. */
1033 	provider = devm_of_phy_provider_register(&pdev->dev, xpsgtr_xlate);
1034 	if (IS_ERR(provider)) {
1035 		dev_err(&pdev->dev, "registering provider failed\n");
1036 		return PTR_ERR(provider);
1037 	}
1038 
1039 	pm_runtime_set_active(gtr_dev->dev);
1040 	pm_runtime_enable(gtr_dev->dev);
1041 
1042 	ret = pm_runtime_resume_and_get(gtr_dev->dev);
1043 	if (ret < 0) {
1044 		pm_runtime_disable(gtr_dev->dev);
1045 		return ret;
1046 	}
1047 
1048 	gtr_dev->saved_regs = devm_kmalloc(gtr_dev->dev,
1049 					   sizeof(save_reg_address),
1050 					   GFP_KERNEL);
1051 	if (!gtr_dev->saved_regs)
1052 		return -ENOMEM;
1053 
1054 	return 0;
1055 }
1056 
xpsgtr_remove(struct platform_device * pdev)1057 static int xpsgtr_remove(struct platform_device *pdev)
1058 {
1059 	struct xpsgtr_dev *gtr_dev = platform_get_drvdata(pdev);
1060 
1061 	pm_runtime_disable(gtr_dev->dev);
1062 	pm_runtime_put_noidle(gtr_dev->dev);
1063 	pm_runtime_set_suspended(gtr_dev->dev);
1064 
1065 	return 0;
1066 }
1067 
1068 static const struct of_device_id xpsgtr_of_match[] = {
1069 	{ .compatible = "xlnx,zynqmp-psgtr", },
1070 	{ .compatible = "xlnx,zynqmp-psgtr-v1.1", },
1071 	{},
1072 };
1073 MODULE_DEVICE_TABLE(of, xpsgtr_of_match);
1074 
1075 static struct platform_driver xpsgtr_driver = {
1076 	.probe = xpsgtr_probe,
1077 	.remove	= xpsgtr_remove,
1078 	.driver = {
1079 		.name = "xilinx-psgtr",
1080 		.of_match_table	= xpsgtr_of_match,
1081 		.pm =  pm_ptr(&xpsgtr_pm_ops),
1082 	},
1083 };
1084 
1085 module_platform_driver(xpsgtr_driver);
1086 
1087 MODULE_AUTHOR("Xilinx Inc.");
1088 MODULE_LICENSE("GPL v2");
1089 MODULE_DESCRIPTION("Xilinx ZynqMP High speed Gigabit Transceiver");
1090