xref: /openbmc/linux/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c (revision f019679ea5f2ab650c3348a79e7d9c3625f62899)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4  *
5  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/kernel.h>
10 #include <linux/clk.h>
11 #include <linux/iopoll.h>
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/of_device.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/time64.h>
22 
23 #include <linux/phy/phy.h>
24 #include <linux/phy/phy-mipi-dphy.h>
25 
26 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
27 
28 /*
29  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30  * is the first address, the other from the bit4 to bit0 is the second address.
31  * when you configure the registers, you must set both of them. The Clock Lane
32  * and Data Lane use the same registers with the same second address, but the
33  * first address is different.
34  */
35 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
36 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
37 #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
38 					 SECOND_ADDRESS(second))
39 
40 /* Analog Register Part: reg00 */
41 #define BANDGAP_POWER_MASK			BIT(7)
42 #define BANDGAP_POWER_DOWN			BIT(7)
43 #define BANDGAP_POWER_ON			0
44 #define LANE_EN_MASK				GENMASK(6, 2)
45 #define LANE_EN_CK				BIT(6)
46 #define LANE_EN_3				BIT(5)
47 #define LANE_EN_2				BIT(4)
48 #define LANE_EN_1				BIT(3)
49 #define LANE_EN_0				BIT(2)
50 #define POWER_WORK_MASK				GENMASK(1, 0)
51 #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
52 #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
53 /* Analog Register Part: reg01 */
54 #define REG_SYNCRST_MASK			BIT(2)
55 #define REG_SYNCRST_RESET			BIT(2)
56 #define REG_SYNCRST_NORMAL			0
57 #define REG_LDOPD_MASK				BIT(1)
58 #define REG_LDOPD_POWER_DOWN			BIT(1)
59 #define REG_LDOPD_POWER_ON			0
60 #define REG_PLLPD_MASK				BIT(0)
61 #define REG_PLLPD_POWER_DOWN			BIT(0)
62 #define REG_PLLPD_POWER_ON			0
63 /* Analog Register Part: reg03 */
64 #define REG_FBDIV_HI_MASK			BIT(5)
65 #define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
66 #define REG_PREDIV_MASK				GENMASK(4, 0)
67 #define REG_PREDIV(x)				UPDATE(x, 4, 0)
68 /* Analog Register Part: reg04 */
69 #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
70 #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
71 /* Analog Register Part: reg05 */
72 #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
73 #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
74 #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
75 #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
76 /* Analog Register Part: reg06 */
77 #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
78 #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
79 #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
80 #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
81 /* Analog Register Part: reg07 */
82 #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
83 #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
84 #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
85 #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
86 /* Analog Register Part: reg08 */
87 #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
88 #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
89 #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
90 /* Digital Register Part: reg00 */
91 #define REG_DIG_RSTN_MASK			BIT(0)
92 #define REG_DIG_RSTN_NORMAL			BIT(0)
93 #define REG_DIG_RSTN_RESET			0
94 /* Digital Register Part: reg01 */
95 #define INVERT_TXCLKESC_MASK			BIT(1)
96 #define INVERT_TXCLKESC_ENABLE			BIT(1)
97 #define INVERT_TXCLKESC_DISABLE			0
98 #define INVERT_TXBYTECLKHS_MASK			BIT(0)
99 #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
100 #define INVERT_TXBYTECLKHS_DISABLE		0
101 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
102 #define T_LPX_CNT_MASK				GENMASK(5, 0)
103 #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
104 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
105 #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
106 #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
107 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
108 #define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
109 #define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
110 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
111 #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
112 #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
113 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
114 #define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
115 #define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
116 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
117 #define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
118 #define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
119 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
120 #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
121 #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
122 #define LPDT_TX_PPI_SYNC_DISABLE		0
123 #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
124 #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
125 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
126 #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
127 #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
128 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
129 #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
130 #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
131 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
132 #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
133 #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
134 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
135 #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
136 #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
137 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
138 #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
139 #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
140 /* LVDS Register Part: reg00 */
141 #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
142 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
143 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
144 /* LVDS Register Part: reg01 */
145 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
146 #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
147 #define LVDS_DIGITAL_INTERNAL_DISABLE		0
148 /* LVDS Register Part: reg03 */
149 #define MODE_ENABLE_MASK			GENMASK(2, 0)
150 #define TTL_MODE_ENABLE				BIT(2)
151 #define LVDS_MODE_ENABLE			BIT(1)
152 #define MIPI_MODE_ENABLE			BIT(0)
153 /* LVDS Register Part: reg0b */
154 #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
155 #define LVDS_DATA_LANE0_EN			BIT(7)
156 #define LVDS_DATA_LANE1_EN			BIT(6)
157 #define LVDS_DATA_LANE2_EN			BIT(5)
158 #define LVDS_DATA_LANE3_EN			BIT(4)
159 #define LVDS_CLK_LANE_EN			BIT(3)
160 #define LVDS_PLL_POWER_MASK			BIT(2)
161 #define LVDS_PLL_POWER_OFF			BIT(2)
162 #define LVDS_PLL_POWER_ON			0
163 #define LVDS_BANDGAP_POWER_MASK			BIT(0)
164 #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
165 #define LVDS_BANDGAP_POWER_ON			0
166 
167 #define DSI_PHY_RSTZ		0xa0
168 #define PHY_ENABLECLK		BIT(2)
169 #define DSI_PHY_STATUS		0xb0
170 #define PHY_LOCK		BIT(0)
171 
172 struct inno_dsidphy {
173 	struct device *dev;
174 	struct clk *ref_clk;
175 	struct clk *pclk_phy;
176 	struct clk *pclk_host;
177 	void __iomem *phy_base;
178 	void __iomem *host_base;
179 	struct reset_control *rst;
180 	enum phy_mode mode;
181 	struct phy_configure_opts_mipi_dphy dphy_cfg;
182 
183 	struct clk *pll_clk;
184 	struct {
185 		struct clk_hw hw;
186 		u8 prediv;
187 		u16 fbdiv;
188 		unsigned long rate;
189 	} pll;
190 };
191 
192 enum {
193 	REGISTER_PART_ANALOG,
194 	REGISTER_PART_DIGITAL,
195 	REGISTER_PART_CLOCK_LANE,
196 	REGISTER_PART_DATA0_LANE,
197 	REGISTER_PART_DATA1_LANE,
198 	REGISTER_PART_DATA2_LANE,
199 	REGISTER_PART_DATA3_LANE,
200 	REGISTER_PART_LVDS,
201 };
202 
203 static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
204 {
205 	return container_of(hw, struct inno_dsidphy, pll.hw);
206 }
207 
208 static void phy_update_bits(struct inno_dsidphy *inno,
209 			    u8 first, u8 second, u8 mask, u8 val)
210 {
211 	u32 reg = PHY_REG(first, second) << 2;
212 	unsigned int tmp, orig;
213 
214 	orig = readl(inno->phy_base + reg);
215 	tmp = orig & ~mask;
216 	tmp |= val & mask;
217 	writel(tmp, inno->phy_base + reg);
218 }
219 
220 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
221 						unsigned long rate)
222 {
223 	unsigned long prate = clk_get_rate(inno->ref_clk);
224 	unsigned long best_freq = 0;
225 	unsigned long fref, fout;
226 	u8 min_prediv, max_prediv;
227 	u8 _prediv, best_prediv = 1;
228 	u16 _fbdiv, best_fbdiv = 1;
229 	u32 min_delta = UINT_MAX;
230 
231 	/*
232 	 * The PLL output frequency can be calculated using a simple formula:
233 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
234 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
235 	 */
236 	fref = prate / 2;
237 	if (rate > 1000000000UL)
238 		fout = 1000000000UL;
239 	else
240 		fout = rate;
241 
242 	/* 5Mhz < Fref / prediv < 40MHz */
243 	min_prediv = DIV_ROUND_UP(fref, 40000000);
244 	max_prediv = fref / 5000000;
245 
246 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
247 		u64 tmp;
248 		u32 delta;
249 
250 		tmp = (u64)fout * _prediv;
251 		do_div(tmp, fref);
252 		_fbdiv = tmp;
253 
254 		/*
255 		 * The possible settings of feedback divider are
256 		 * 12, 13, 14, 16, ~ 511
257 		 */
258 		if (_fbdiv == 15)
259 			continue;
260 
261 		if (_fbdiv < 12 || _fbdiv > 511)
262 			continue;
263 
264 		tmp = (u64)_fbdiv * fref;
265 		do_div(tmp, _prediv);
266 
267 		delta = abs(fout - tmp);
268 		if (!delta) {
269 			best_prediv = _prediv;
270 			best_fbdiv = _fbdiv;
271 			best_freq = tmp;
272 			break;
273 		} else if (delta < min_delta) {
274 			best_prediv = _prediv;
275 			best_fbdiv = _fbdiv;
276 			best_freq = tmp;
277 			min_delta = delta;
278 		}
279 	}
280 
281 	if (best_freq) {
282 		inno->pll.prediv = best_prediv;
283 		inno->pll.fbdiv = best_fbdiv;
284 		inno->pll.rate = best_freq;
285 	}
286 
287 	return best_freq;
288 }
289 
290 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
291 {
292 	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
293 	const struct {
294 		unsigned long rate;
295 		u8 hs_prepare;
296 		u8 clk_lane_hs_zero;
297 		u8 data_lane_hs_zero;
298 		u8 hs_trail;
299 	} timings[] = {
300 		{ 110000000, 0x20, 0x16, 0x02, 0x22},
301 		{ 150000000, 0x06, 0x16, 0x03, 0x45},
302 		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
303 		{ 250000000, 0x05, 0x17, 0x05, 0x16},
304 		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
305 		{ 400000000, 0x64, 0x19, 0x07, 0x33},
306 		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
307 		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
308 		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
309 		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
310 		{1000000000, 0x09, 0x20, 0x09, 0x27},
311 	};
312 	u32 t_txbyteclkhs, t_txclkesc;
313 	u32 txbyteclkhs, txclkesc, esc_clk_div;
314 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
315 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
316 	unsigned int i;
317 
318 	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
319 
320 	/* Select MIPI mode */
321 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
322 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
323 	/* Configure PLL */
324 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
325 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
326 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
327 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
328 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
329 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
330 	/* Enable PLL and LDO */
331 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
332 			REG_LDOPD_MASK | REG_PLLPD_MASK,
333 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
334 	/* Reset analog */
335 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
336 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
337 	udelay(1);
338 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
339 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
340 	/* Reset digital */
341 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
342 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
343 	udelay(1);
344 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
345 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
346 
347 	txbyteclkhs = inno->pll.rate / 8;
348 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
349 
350 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
351 	txclkesc = txbyteclkhs / esc_clk_div;
352 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
353 
354 	/*
355 	 * The value of counter for HS Ths-exit
356 	 * Ths-exit = Tpin_txbyteclkhs * value
357 	 */
358 	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
359 	/*
360 	 * The value of counter for HS Tclk-post
361 	 * Tclk-post = Tpin_txbyteclkhs * value
362 	 */
363 	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
364 	/*
365 	 * The value of counter for HS Tclk-pre
366 	 * Tclk-pre = Tpin_txbyteclkhs * value
367 	 */
368 	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
369 
370 	/*
371 	 * The value of counter for HS Tlpx Time
372 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
373 	 */
374 	lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
375 	if (lpx >= 2)
376 		lpx -= 2;
377 
378 	/*
379 	 * The value of counter for HS Tta-go
380 	 * Tta-go for turnaround
381 	 * Tta-go = Ttxclkesc * value
382 	 */
383 	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
384 	/*
385 	 * The value of counter for HS Tta-sure
386 	 * Tta-sure for turnaround
387 	 * Tta-sure = Ttxclkesc * value
388 	 */
389 	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
390 	/*
391 	 * The value of counter for HS Tta-wait
392 	 * Tta-wait for turnaround
393 	 * Tta-wait = Ttxclkesc * value
394 	 */
395 	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
396 
397 	for (i = 0; i < ARRAY_SIZE(timings); i++)
398 		if (inno->pll.rate <= timings[i].rate)
399 			break;
400 
401 	if (i == ARRAY_SIZE(timings))
402 		--i;
403 
404 	hs_prepare = timings[i].hs_prepare;
405 	hs_trail = timings[i].hs_trail;
406 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
407 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
408 	wakeup = 0x3ff;
409 
410 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
411 		if (i == REGISTER_PART_CLOCK_LANE)
412 			hs_zero = clk_lane_hs_zero;
413 		else
414 			hs_zero = data_lane_hs_zero;
415 
416 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
417 				T_LPX_CNT(lpx));
418 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
419 				T_HS_PREPARE_CNT(hs_prepare));
420 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
421 				T_HS_ZERO_CNT(hs_zero));
422 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
423 				T_HS_TRAIL_CNT(hs_trail));
424 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
425 				T_HS_EXIT_CNT(hs_exit));
426 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
427 				T_CLK_POST_CNT(clk_post));
428 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
429 				T_CLK_PRE_CNT(clk_pre));
430 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
431 				T_WAKEUP_CNT_HI(wakeup >> 8));
432 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
433 				T_WAKEUP_CNT_LO(wakeup));
434 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
435 				T_TA_GO_CNT(ta_go));
436 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
437 				T_TA_SURE_CNT(ta_sure));
438 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
439 				T_TA_WAIT_CNT(ta_wait));
440 	}
441 
442 	/* Enable all lanes on analog part */
443 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
444 			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
445 			LANE_EN_1 | LANE_EN_0);
446 }
447 
448 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
449 {
450 	u8 prediv = 2;
451 	u16 fbdiv = 28;
452 
453 	/* Sample clock reverse direction */
454 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
455 			SAMPLE_CLOCK_DIRECTION_MASK,
456 			SAMPLE_CLOCK_DIRECTION_REVERSE);
457 
458 	/* Select LVDS mode */
459 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
460 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
461 	/* Configure PLL */
462 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
463 			REG_PREDIV_MASK, REG_PREDIV(prediv));
464 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
465 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
466 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
467 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
468 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
469 	/* Enable PLL and Bandgap */
470 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
471 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
472 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
473 
474 	msleep(20);
475 
476 	/* Reset LVDS digital logic */
477 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
478 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
479 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
480 	udelay(1);
481 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
482 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
483 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
484 	/* Enable LVDS digital logic */
485 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
486 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
487 			LVDS_DIGITAL_INTERNAL_ENABLE);
488 	/* Enable LVDS analog driver */
489 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
490 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
491 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
492 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
493 }
494 
495 static int inno_dsidphy_power_on(struct phy *phy)
496 {
497 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
498 
499 	clk_prepare_enable(inno->pclk_phy);
500 	clk_prepare_enable(inno->ref_clk);
501 	pm_runtime_get_sync(inno->dev);
502 
503 	/* Bandgap power on */
504 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
505 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
506 	/* Enable power work */
507 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
508 			POWER_WORK_MASK, POWER_WORK_ENABLE);
509 
510 	switch (inno->mode) {
511 	case PHY_MODE_MIPI_DPHY:
512 		inno_dsidphy_mipi_mode_enable(inno);
513 		break;
514 	case PHY_MODE_LVDS:
515 		inno_dsidphy_lvds_mode_enable(inno);
516 		break;
517 	default:
518 		return -EINVAL;
519 	}
520 
521 	return 0;
522 }
523 
524 static int inno_dsidphy_power_off(struct phy *phy)
525 {
526 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
527 
528 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
529 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
530 			REG_LDOPD_MASK | REG_PLLPD_MASK,
531 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
532 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
533 			POWER_WORK_MASK, POWER_WORK_DISABLE);
534 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
535 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
536 
537 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
538 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
539 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
540 			LVDS_DIGITAL_INTERNAL_DISABLE);
541 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
542 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
543 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
544 
545 	pm_runtime_put(inno->dev);
546 	clk_disable_unprepare(inno->ref_clk);
547 	clk_disable_unprepare(inno->pclk_phy);
548 
549 	return 0;
550 }
551 
552 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
553 				   int submode)
554 {
555 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
556 
557 	switch (mode) {
558 	case PHY_MODE_MIPI_DPHY:
559 	case PHY_MODE_LVDS:
560 		inno->mode = mode;
561 		break;
562 	default:
563 		return -EINVAL;
564 	}
565 
566 	return 0;
567 }
568 
569 static int inno_dsidphy_configure(struct phy *phy,
570 				  union phy_configure_opts *opts)
571 {
572 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
573 	int ret;
574 
575 	if (inno->mode != PHY_MODE_MIPI_DPHY)
576 		return -EINVAL;
577 
578 	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
579 	if (ret)
580 		return ret;
581 
582 	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
583 
584 	return 0;
585 }
586 
587 static const struct phy_ops inno_dsidphy_ops = {
588 	.configure = inno_dsidphy_configure,
589 	.set_mode = inno_dsidphy_set_mode,
590 	.power_on = inno_dsidphy_power_on,
591 	.power_off = inno_dsidphy_power_off,
592 	.owner = THIS_MODULE,
593 };
594 
595 static int inno_dsidphy_probe(struct platform_device *pdev)
596 {
597 	struct device *dev = &pdev->dev;
598 	struct inno_dsidphy *inno;
599 	struct phy_provider *phy_provider;
600 	struct phy *phy;
601 	int ret;
602 
603 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
604 	if (!inno)
605 		return -ENOMEM;
606 
607 	inno->dev = dev;
608 	platform_set_drvdata(pdev, inno);
609 
610 	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
611 	if (IS_ERR(inno->phy_base))
612 		return PTR_ERR(inno->phy_base);
613 
614 	inno->ref_clk = devm_clk_get(dev, "ref");
615 	if (IS_ERR(inno->ref_clk)) {
616 		ret = PTR_ERR(inno->ref_clk);
617 		dev_err(dev, "failed to get ref clock: %d\n", ret);
618 		return ret;
619 	}
620 
621 	inno->pclk_phy = devm_clk_get(dev, "pclk");
622 	if (IS_ERR(inno->pclk_phy)) {
623 		ret = PTR_ERR(inno->pclk_phy);
624 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
625 		return ret;
626 	}
627 
628 	inno->rst = devm_reset_control_get(dev, "apb");
629 	if (IS_ERR(inno->rst)) {
630 		ret = PTR_ERR(inno->rst);
631 		dev_err(dev, "failed to get system reset control: %d\n", ret);
632 		return ret;
633 	}
634 
635 	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
636 	if (IS_ERR(phy)) {
637 		ret = PTR_ERR(phy);
638 		dev_err(dev, "failed to create phy: %d\n", ret);
639 		return ret;
640 	}
641 
642 	phy_set_drvdata(phy, inno);
643 
644 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
645 	if (IS_ERR(phy_provider)) {
646 		ret = PTR_ERR(phy_provider);
647 		dev_err(dev, "failed to register phy provider: %d\n", ret);
648 		return ret;
649 	}
650 
651 	pm_runtime_enable(dev);
652 
653 	return 0;
654 }
655 
656 static int inno_dsidphy_remove(struct platform_device *pdev)
657 {
658 	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
659 
660 	pm_runtime_disable(inno->dev);
661 
662 	return 0;
663 }
664 
665 static const struct of_device_id inno_dsidphy_of_match[] = {
666 	{ .compatible = "rockchip,px30-dsi-dphy", },
667 	{ .compatible = "rockchip,rk3128-dsi-dphy", },
668 	{ .compatible = "rockchip,rk3368-dsi-dphy", },
669 	{}
670 };
671 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
672 
673 static struct platform_driver inno_dsidphy_driver = {
674 	.driver = {
675 		.name = "inno-dsidphy",
676 		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
677 	},
678 	.probe = inno_dsidphy_probe,
679 	.remove = inno_dsidphy_remove,
680 };
681 module_platform_driver(inno_dsidphy_driver);
682 
683 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
684 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
685 MODULE_LICENSE("GPL v2");
686