xref: /openbmc/linux/drivers/phy/rockchip/phy-rockchip-inno-dsidphy.c (revision b0e55fef624e511e060fa05e4ca96cae6d902f04)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4  *
5  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6  */
7 
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/iopoll.h>
11 #include <linux/clk-provider.h>
12 #include <linux/delay.h>
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/of_device.h>
16 #include <linux/platform_device.h>
17 #include <linux/reset.h>
18 #include <linux/phy/phy.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/mfd/syscon.h>
21 
22 #define PSEC_PER_SEC	1000000000000LL
23 
24 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
25 
26 /*
27  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
28  * is the first address, the other from the bit4 to bit0 is the second address.
29  * when you configure the registers, you must set both of them. The Clock Lane
30  * and Data Lane use the same registers with the same second address, but the
31  * first address is different.
32  */
33 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
34 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
35 #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
36 					 SECOND_ADDRESS(second))
37 
38 /* Analog Register Part: reg00 */
39 #define BANDGAP_POWER_MASK			BIT(7)
40 #define BANDGAP_POWER_DOWN			BIT(7)
41 #define BANDGAP_POWER_ON			0
42 #define LANE_EN_MASK				GENMASK(6, 2)
43 #define LANE_EN_CK				BIT(6)
44 #define LANE_EN_3				BIT(5)
45 #define LANE_EN_2				BIT(4)
46 #define LANE_EN_1				BIT(3)
47 #define LANE_EN_0				BIT(2)
48 #define POWER_WORK_MASK				GENMASK(1, 0)
49 #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
50 #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
51 /* Analog Register Part: reg01 */
52 #define REG_SYNCRST_MASK			BIT(2)
53 #define REG_SYNCRST_RESET			BIT(2)
54 #define REG_SYNCRST_NORMAL			0
55 #define REG_LDOPD_MASK				BIT(1)
56 #define REG_LDOPD_POWER_DOWN			BIT(1)
57 #define REG_LDOPD_POWER_ON			0
58 #define REG_PLLPD_MASK				BIT(0)
59 #define REG_PLLPD_POWER_DOWN			BIT(0)
60 #define REG_PLLPD_POWER_ON			0
61 /* Analog Register Part: reg03 */
62 #define REG_FBDIV_HI_MASK			BIT(5)
63 #define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
64 #define REG_PREDIV_MASK				GENMASK(4, 0)
65 #define REG_PREDIV(x)				UPDATE(x, 4, 0)
66 /* Analog Register Part: reg04 */
67 #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
68 #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
69 /* Analog Register Part: reg05 */
70 #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
71 #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
72 #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
73 #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
74 /* Analog Register Part: reg06 */
75 #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
76 #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
77 #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
78 #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
79 /* Analog Register Part: reg07 */
80 #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
81 #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
82 #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
83 #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
84 /* Analog Register Part: reg08 */
85 #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
86 #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
87 #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
88 /* Digital Register Part: reg00 */
89 #define REG_DIG_RSTN_MASK			BIT(0)
90 #define REG_DIG_RSTN_NORMAL			BIT(0)
91 #define REG_DIG_RSTN_RESET			0
92 /* Digital Register Part: reg01 */
93 #define INVERT_TXCLKESC_MASK			BIT(1)
94 #define INVERT_TXCLKESC_ENABLE			BIT(1)
95 #define INVERT_TXCLKESC_DISABLE			0
96 #define INVERT_TXBYTECLKHS_MASK			BIT(0)
97 #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
98 #define INVERT_TXBYTECLKHS_DISABLE		0
99 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
100 #define T_LPX_CNT_MASK				GENMASK(5, 0)
101 #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
102 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
103 #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
104 #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
105 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
106 #define T_HS_ZERO_CNT_MASK			GENMASK(5, 0)
107 #define T_HS_ZERO_CNT(x)			UPDATE(x, 5, 0)
108 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
109 #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
110 #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
111 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
112 #define T_HS_EXIT_CNT_MASK			GENMASK(4, 0)
113 #define T_HS_EXIT_CNT(x)			UPDATE(x, 4, 0)
114 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
115 #define T_CLK_POST_CNT_MASK			GENMASK(3, 0)
116 #define T_CLK_POST_CNT(x)			UPDATE(x, 3, 0)
117 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
118 #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
119 #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
120 #define LPDT_TX_PPI_SYNC_DISABLE		0
121 #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
122 #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
123 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
124 #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
125 #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
126 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
127 #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
128 #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
129 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
130 #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
131 #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
132 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
133 #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
134 #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
135 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
136 #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
137 #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
138 /* LVDS Register Part: reg00 */
139 #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
140 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
141 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
142 /* LVDS Register Part: reg01 */
143 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
144 #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
145 #define LVDS_DIGITAL_INTERNAL_DISABLE		0
146 /* LVDS Register Part: reg03 */
147 #define MODE_ENABLE_MASK			GENMASK(2, 0)
148 #define TTL_MODE_ENABLE				BIT(2)
149 #define LVDS_MODE_ENABLE			BIT(1)
150 #define MIPI_MODE_ENABLE			BIT(0)
151 /* LVDS Register Part: reg0b */
152 #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
153 #define LVDS_DATA_LANE0_EN			BIT(7)
154 #define LVDS_DATA_LANE1_EN			BIT(6)
155 #define LVDS_DATA_LANE2_EN			BIT(5)
156 #define LVDS_DATA_LANE3_EN			BIT(4)
157 #define LVDS_CLK_LANE_EN			BIT(3)
158 #define LVDS_PLL_POWER_MASK			BIT(2)
159 #define LVDS_PLL_POWER_OFF			BIT(2)
160 #define LVDS_PLL_POWER_ON			0
161 #define LVDS_BANDGAP_POWER_MASK			BIT(0)
162 #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
163 #define LVDS_BANDGAP_POWER_ON			0
164 
165 #define DSI_PHY_RSTZ		0xa0
166 #define PHY_ENABLECLK		BIT(2)
167 #define DSI_PHY_STATUS		0xb0
168 #define PHY_LOCK		BIT(0)
169 
170 struct mipi_dphy_timing {
171 	unsigned int clkmiss;
172 	unsigned int clkpost;
173 	unsigned int clkpre;
174 	unsigned int clkprepare;
175 	unsigned int clksettle;
176 	unsigned int clktermen;
177 	unsigned int clktrail;
178 	unsigned int clkzero;
179 	unsigned int dtermen;
180 	unsigned int eot;
181 	unsigned int hsexit;
182 	unsigned int hsprepare;
183 	unsigned int hszero;
184 	unsigned int hssettle;
185 	unsigned int hsskip;
186 	unsigned int hstrail;
187 	unsigned int init;
188 	unsigned int lpx;
189 	unsigned int taget;
190 	unsigned int tago;
191 	unsigned int tasure;
192 	unsigned int wakeup;
193 };
194 
195 struct inno_dsidphy {
196 	struct device *dev;
197 	struct clk *ref_clk;
198 	struct clk *pclk_phy;
199 	struct clk *pclk_host;
200 	void __iomem *phy_base;
201 	void __iomem *host_base;
202 	struct reset_control *rst;
203 	enum phy_mode mode;
204 
205 	struct {
206 		struct clk_hw hw;
207 		u8 prediv;
208 		u16 fbdiv;
209 		unsigned long rate;
210 	} pll;
211 };
212 
213 enum {
214 	REGISTER_PART_ANALOG,
215 	REGISTER_PART_DIGITAL,
216 	REGISTER_PART_CLOCK_LANE,
217 	REGISTER_PART_DATA0_LANE,
218 	REGISTER_PART_DATA1_LANE,
219 	REGISTER_PART_DATA2_LANE,
220 	REGISTER_PART_DATA3_LANE,
221 	REGISTER_PART_LVDS,
222 };
223 
224 static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw)
225 {
226 	return container_of(hw, struct inno_dsidphy, pll.hw);
227 }
228 
229 static void phy_update_bits(struct inno_dsidphy *inno,
230 			    u8 first, u8 second, u8 mask, u8 val)
231 {
232 	u32 reg = PHY_REG(first, second) << 2;
233 	unsigned int tmp, orig;
234 
235 	orig = readl(inno->phy_base + reg);
236 	tmp = orig & ~mask;
237 	tmp |= val & mask;
238 	writel(tmp, inno->phy_base + reg);
239 }
240 
241 static void mipi_dphy_timing_get_default(struct mipi_dphy_timing *timing,
242 					 unsigned long period)
243 {
244 	/* Global Operation Timing Parameters */
245 	timing->clkmiss = 0;
246 	timing->clkpost = 70000 + 52 * period;
247 	timing->clkpre = 8 * period;
248 	timing->clkprepare = 65000;
249 	timing->clksettle = 95000;
250 	timing->clktermen = 0;
251 	timing->clktrail = 80000;
252 	timing->clkzero = 260000;
253 	timing->dtermen = 0;
254 	timing->eot = 0;
255 	timing->hsexit = 120000;
256 	timing->hsprepare = 65000 + 4 * period;
257 	timing->hszero = 145000 + 6 * period;
258 	timing->hssettle = 85000 + 6 * period;
259 	timing->hsskip = 40000;
260 	timing->hstrail = max(8 * period, 60000 + 4 * period);
261 	timing->init = 100000000;
262 	timing->lpx = 60000;
263 	timing->taget = 5 * timing->lpx;
264 	timing->tago = 4 * timing->lpx;
265 	timing->tasure = 2 * timing->lpx;
266 	timing->wakeup = 1000000000;
267 }
268 
269 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
270 {
271 	struct mipi_dphy_timing gotp;
272 	const struct {
273 		unsigned long rate;
274 		u8 hs_prepare;
275 		u8 clk_lane_hs_zero;
276 		u8 data_lane_hs_zero;
277 		u8 hs_trail;
278 	} timings[] = {
279 		{ 110000000, 0x20, 0x16, 0x02, 0x22},
280 		{ 150000000, 0x06, 0x16, 0x03, 0x45},
281 		{ 200000000, 0x18, 0x17, 0x04, 0x0b},
282 		{ 250000000, 0x05, 0x17, 0x05, 0x16},
283 		{ 300000000, 0x51, 0x18, 0x06, 0x2c},
284 		{ 400000000, 0x64, 0x19, 0x07, 0x33},
285 		{ 500000000, 0x20, 0x1b, 0x07, 0x4e},
286 		{ 600000000, 0x6a, 0x1d, 0x08, 0x3a},
287 		{ 700000000, 0x3e, 0x1e, 0x08, 0x6a},
288 		{ 800000000, 0x21, 0x1f, 0x09, 0x29},
289 		{1000000000, 0x09, 0x20, 0x09, 0x27},
290 	};
291 	u32 t_txbyteclkhs, t_txclkesc, ui;
292 	u32 txbyteclkhs, txclkesc, esc_clk_div;
293 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
294 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
295 	unsigned int i;
296 
297 	/* Select MIPI mode */
298 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
299 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
300 	/* Configure PLL */
301 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
302 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
303 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
304 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
305 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
306 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
307 	/* Enable PLL and LDO */
308 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
309 			REG_LDOPD_MASK | REG_PLLPD_MASK,
310 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
311 	/* Reset analog */
312 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
313 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
314 	udelay(1);
315 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
316 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
317 	/* Reset digital */
318 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
319 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
320 	udelay(1);
321 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
322 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
323 
324 	txbyteclkhs = inno->pll.rate / 8;
325 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
326 
327 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
328 	txclkesc = txbyteclkhs / esc_clk_div;
329 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
330 
331 	ui = div_u64(PSEC_PER_SEC, inno->pll.rate);
332 
333 	memset(&gotp, 0, sizeof(gotp));
334 	mipi_dphy_timing_get_default(&gotp, ui);
335 
336 	/*
337 	 * The value of counter for HS Ths-exit
338 	 * Ths-exit = Tpin_txbyteclkhs * value
339 	 */
340 	hs_exit = DIV_ROUND_UP(gotp.hsexit, t_txbyteclkhs);
341 	/*
342 	 * The value of counter for HS Tclk-post
343 	 * Tclk-post = Tpin_txbyteclkhs * value
344 	 */
345 	clk_post = DIV_ROUND_UP(gotp.clkpost, t_txbyteclkhs);
346 	/*
347 	 * The value of counter for HS Tclk-pre
348 	 * Tclk-pre = Tpin_txbyteclkhs * value
349 	 */
350 	clk_pre = DIV_ROUND_UP(gotp.clkpre, t_txbyteclkhs);
351 
352 	/*
353 	 * The value of counter for HS Tlpx Time
354 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
355 	 */
356 	lpx = DIV_ROUND_UP(gotp.lpx, t_txbyteclkhs);
357 	if (lpx >= 2)
358 		lpx -= 2;
359 
360 	/*
361 	 * The value of counter for HS Tta-go
362 	 * Tta-go for turnaround
363 	 * Tta-go = Ttxclkesc * value
364 	 */
365 	ta_go = DIV_ROUND_UP(gotp.tago, t_txclkesc);
366 	/*
367 	 * The value of counter for HS Tta-sure
368 	 * Tta-sure for turnaround
369 	 * Tta-sure = Ttxclkesc * value
370 	 */
371 	ta_sure = DIV_ROUND_UP(gotp.tasure, t_txclkesc);
372 	/*
373 	 * The value of counter for HS Tta-wait
374 	 * Tta-wait for turnaround
375 	 * Tta-wait = Ttxclkesc * value
376 	 */
377 	ta_wait = DIV_ROUND_UP(gotp.taget, t_txclkesc);
378 
379 	for (i = 0; i < ARRAY_SIZE(timings); i++)
380 		if (inno->pll.rate <= timings[i].rate)
381 			break;
382 
383 	if (i == ARRAY_SIZE(timings))
384 		--i;
385 
386 	hs_prepare = timings[i].hs_prepare;
387 	hs_trail = timings[i].hs_trail;
388 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
389 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
390 	wakeup = 0x3ff;
391 
392 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
393 		if (i == REGISTER_PART_CLOCK_LANE)
394 			hs_zero = clk_lane_hs_zero;
395 		else
396 			hs_zero = data_lane_hs_zero;
397 
398 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
399 				T_LPX_CNT(lpx));
400 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
401 				T_HS_PREPARE_CNT(hs_prepare));
402 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK,
403 				T_HS_ZERO_CNT(hs_zero));
404 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
405 				T_HS_TRAIL_CNT(hs_trail));
406 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK,
407 				T_HS_EXIT_CNT(hs_exit));
408 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK,
409 				T_CLK_POST_CNT(clk_post));
410 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
411 				T_CLK_PRE_CNT(clk_pre));
412 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
413 				T_WAKEUP_CNT_HI(wakeup >> 8));
414 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
415 				T_WAKEUP_CNT_LO(wakeup));
416 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
417 				T_TA_GO_CNT(ta_go));
418 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
419 				T_TA_SURE_CNT(ta_sure));
420 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
421 				T_TA_WAIT_CNT(ta_wait));
422 	}
423 
424 	/* Enable all lanes on analog part */
425 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
426 			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
427 			LANE_EN_1 | LANE_EN_0);
428 }
429 
430 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
431 {
432 	u8 prediv = 2;
433 	u16 fbdiv = 28;
434 
435 	/* Sample clock reverse direction */
436 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
437 			SAMPLE_CLOCK_DIRECTION_MASK,
438 			SAMPLE_CLOCK_DIRECTION_REVERSE);
439 
440 	/* Select LVDS mode */
441 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
442 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
443 	/* Configure PLL */
444 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
445 			REG_PREDIV_MASK, REG_PREDIV(prediv));
446 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
447 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
448 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
449 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
450 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
451 	/* Enable PLL and Bandgap */
452 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
453 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
454 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
455 
456 	msleep(20);
457 
458 	/* Reset LVDS digital logic */
459 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
460 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
461 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
462 	udelay(1);
463 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
464 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
465 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
466 	/* Enable LVDS digital logic */
467 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
468 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
469 			LVDS_DIGITAL_INTERNAL_ENABLE);
470 	/* Enable LVDS analog driver */
471 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
472 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
473 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
474 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
475 }
476 
477 static int inno_dsidphy_power_on(struct phy *phy)
478 {
479 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
480 
481 	clk_prepare_enable(inno->pclk_phy);
482 	pm_runtime_get_sync(inno->dev);
483 
484 	/* Bandgap power on */
485 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
486 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
487 	/* Enable power work */
488 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
489 			POWER_WORK_MASK, POWER_WORK_ENABLE);
490 
491 	switch (inno->mode) {
492 	case PHY_MODE_MIPI_DPHY:
493 		inno_dsidphy_mipi_mode_enable(inno);
494 		break;
495 	case PHY_MODE_LVDS:
496 		inno_dsidphy_lvds_mode_enable(inno);
497 		break;
498 	default:
499 		return -EINVAL;
500 	}
501 
502 	return 0;
503 }
504 
505 static int inno_dsidphy_power_off(struct phy *phy)
506 {
507 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
508 
509 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
510 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
511 			REG_LDOPD_MASK | REG_PLLPD_MASK,
512 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
513 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
514 			POWER_WORK_MASK, POWER_WORK_DISABLE);
515 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
516 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
517 
518 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
519 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
520 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
521 			LVDS_DIGITAL_INTERNAL_DISABLE);
522 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
523 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
524 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
525 
526 	pm_runtime_put(inno->dev);
527 	clk_disable_unprepare(inno->pclk_phy);
528 
529 	return 0;
530 }
531 
532 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
533 				   int submode)
534 {
535 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
536 
537 	switch (mode) {
538 	case PHY_MODE_MIPI_DPHY:
539 	case PHY_MODE_LVDS:
540 		inno->mode = mode;
541 		break;
542 	default:
543 		return -EINVAL;
544 	}
545 
546 	return 0;
547 }
548 
549 static const struct phy_ops inno_dsidphy_ops = {
550 	.set_mode = inno_dsidphy_set_mode,
551 	.power_on = inno_dsidphy_power_on,
552 	.power_off = inno_dsidphy_power_off,
553 	.owner = THIS_MODULE,
554 };
555 
556 static unsigned long inno_dsidphy_pll_round_rate(struct inno_dsidphy *inno,
557 						   unsigned long prate,
558 						   unsigned long rate,
559 						   u8 *prediv, u16 *fbdiv)
560 {
561 	unsigned long best_freq = 0;
562 	unsigned long fref, fout;
563 	u8 min_prediv, max_prediv;
564 	u8 _prediv, best_prediv = 1;
565 	u16 _fbdiv, best_fbdiv = 1;
566 	u32 min_delta = UINT_MAX;
567 
568 	/*
569 	 * The PLL output frequency can be calculated using a simple formula:
570 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
571 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
572 	 */
573 	fref = prate / 2;
574 	if (rate > 1000000000UL)
575 		fout = 1000000000UL;
576 	else
577 		fout = rate;
578 
579 	/* 5Mhz < Fref / prediv < 40MHz */
580 	min_prediv = DIV_ROUND_UP(fref, 40000000);
581 	max_prediv = fref / 5000000;
582 
583 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
584 		u64 tmp;
585 		u32 delta;
586 
587 		tmp = (u64)fout * _prediv;
588 		do_div(tmp, fref);
589 		_fbdiv = tmp;
590 
591 		/*
592 		 * The possible settings of feedback divider are
593 		 * 12, 13, 14, 16, ~ 511
594 		 */
595 		if (_fbdiv == 15)
596 			continue;
597 
598 		if (_fbdiv < 12 || _fbdiv > 511)
599 			continue;
600 
601 		tmp = (u64)_fbdiv * fref;
602 		do_div(tmp, _prediv);
603 
604 		delta = abs(fout - tmp);
605 		if (!delta) {
606 			best_prediv = _prediv;
607 			best_fbdiv = _fbdiv;
608 			best_freq = tmp;
609 			break;
610 		} else if (delta < min_delta) {
611 			best_prediv = _prediv;
612 			best_fbdiv = _fbdiv;
613 			best_freq = tmp;
614 			min_delta = delta;
615 		}
616 	}
617 
618 	if (best_freq) {
619 		*prediv = best_prediv;
620 		*fbdiv = best_fbdiv;
621 	}
622 
623 	return best_freq;
624 }
625 
626 static long inno_dsidphy_pll_clk_round_rate(struct clk_hw *hw,
627 					      unsigned long rate,
628 					      unsigned long *prate)
629 {
630 	struct inno_dsidphy *inno = hw_to_inno(hw);
631 	unsigned long fout;
632 	u16 fbdiv = 1;
633 	u8 prediv = 1;
634 
635 	fout = inno_dsidphy_pll_round_rate(inno, *prate, rate,
636 					     &prediv, &fbdiv);
637 
638 	return fout;
639 }
640 
641 static int inno_dsidphy_pll_clk_set_rate(struct clk_hw *hw,
642 					   unsigned long rate,
643 					   unsigned long parent_rate)
644 {
645 	struct inno_dsidphy *inno = hw_to_inno(hw);
646 	unsigned long fout;
647 	u16 fbdiv = 1;
648 	u8 prediv = 1;
649 
650 	fout = inno_dsidphy_pll_round_rate(inno, parent_rate, rate,
651 					     &prediv, &fbdiv);
652 
653 	dev_dbg(inno->dev, "fin=%lu, fout=%lu, prediv=%u, fbdiv=%u\n",
654 		parent_rate, fout, prediv, fbdiv);
655 
656 	inno->pll.prediv = prediv;
657 	inno->pll.fbdiv = fbdiv;
658 	inno->pll.rate = fout;
659 
660 	return 0;
661 }
662 
663 static unsigned long
664 inno_dsidphy_pll_clk_recalc_rate(struct clk_hw *hw, unsigned long prate)
665 {
666 	struct inno_dsidphy *inno = hw_to_inno(hw);
667 
668 	/* PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 */
669 	return (prate / inno->pll.prediv * inno->pll.fbdiv) / 2;
670 }
671 
672 static const struct clk_ops inno_dsidphy_pll_clk_ops = {
673 	.round_rate = inno_dsidphy_pll_clk_round_rate,
674 	.set_rate = inno_dsidphy_pll_clk_set_rate,
675 	.recalc_rate = inno_dsidphy_pll_clk_recalc_rate,
676 };
677 
678 static int inno_dsidphy_pll_register(struct inno_dsidphy *inno)
679 {
680 	struct device *dev = inno->dev;
681 	struct clk *clk;
682 	const char *parent_name;
683 	struct clk_init_data init;
684 	int ret;
685 
686 	parent_name = __clk_get_name(inno->ref_clk);
687 
688 	init.name = "mipi_dphy_pll";
689 	ret = of_property_read_string(dev->of_node, "clock-output-names",
690 				      &init.name);
691 	if (ret < 0)
692 		dev_dbg(dev, "phy should set clock-output-names property\n");
693 
694 	init.ops = &inno_dsidphy_pll_clk_ops;
695 	init.parent_names = &parent_name;
696 	init.num_parents = 1;
697 	init.flags = 0;
698 
699 	inno->pll.hw.init = &init;
700 	clk = devm_clk_register(dev, &inno->pll.hw);
701 	if (IS_ERR(clk)) {
702 		ret = PTR_ERR(clk);
703 		dev_err(dev, "failed to register PLL: %d\n", ret);
704 		return ret;
705 	}
706 
707 	return devm_of_clk_add_hw_provider(dev, of_clk_hw_simple_get,
708 					   &inno->pll.hw);
709 }
710 
711 static int inno_dsidphy_probe(struct platform_device *pdev)
712 {
713 	struct device *dev = &pdev->dev;
714 	struct inno_dsidphy *inno;
715 	struct phy_provider *phy_provider;
716 	struct phy *phy;
717 	int ret;
718 
719 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
720 	if (!inno)
721 		return -ENOMEM;
722 
723 	inno->dev = dev;
724 	platform_set_drvdata(pdev, inno);
725 
726 	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
727 	if (!inno->phy_base)
728 		return -ENOMEM;
729 
730 	inno->ref_clk = devm_clk_get(dev, "ref");
731 	if (IS_ERR(inno->ref_clk)) {
732 		ret = PTR_ERR(inno->ref_clk);
733 		dev_err(dev, "failed to get ref clock: %d\n", ret);
734 		return ret;
735 	}
736 
737 	inno->pclk_phy = devm_clk_get(dev, "pclk");
738 	if (IS_ERR(inno->pclk_phy)) {
739 		ret = PTR_ERR(inno->pclk_phy);
740 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
741 		return ret;
742 	}
743 
744 	inno->rst = devm_reset_control_get(dev, "apb");
745 	if (IS_ERR(inno->rst)) {
746 		ret = PTR_ERR(inno->rst);
747 		dev_err(dev, "failed to get system reset control: %d\n", ret);
748 		return ret;
749 	}
750 
751 	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
752 	if (IS_ERR(phy)) {
753 		ret = PTR_ERR(phy);
754 		dev_err(dev, "failed to create phy: %d\n", ret);
755 		return ret;
756 	}
757 
758 	phy_set_drvdata(phy, inno);
759 
760 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
761 	if (IS_ERR(phy_provider)) {
762 		ret = PTR_ERR(phy_provider);
763 		dev_err(dev, "failed to register phy provider: %d\n", ret);
764 		return ret;
765 	}
766 
767 	ret = inno_dsidphy_pll_register(inno);
768 	if (ret)
769 		return ret;
770 
771 	pm_runtime_enable(dev);
772 
773 	return 0;
774 }
775 
776 static int inno_dsidphy_remove(struct platform_device *pdev)
777 {
778 	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
779 
780 	pm_runtime_disable(inno->dev);
781 
782 	return 0;
783 }
784 
785 static const struct of_device_id inno_dsidphy_of_match[] = {
786 	{ .compatible = "rockchip,px30-dsi-dphy", },
787 	{ .compatible = "rockchip,rk3128-dsi-dphy", },
788 	{ .compatible = "rockchip,rk3368-dsi-dphy", },
789 	{}
790 };
791 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
792 
793 static struct platform_driver inno_dsidphy_driver = {
794 	.driver = {
795 		.name = "inno-dsidphy",
796 		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
797 	},
798 	.probe = inno_dsidphy_probe,
799 	.remove = inno_dsidphy_remove,
800 };
801 module_platform_driver(inno_dsidphy_driver);
802 
803 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
804 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
805 MODULE_LICENSE("GPL v2");
806