1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) 2018 Rockchip Electronics Co. Ltd. 4 * 5 * Author: Wyon Bi <bivvy.bi@rock-chips.com> 6 */ 7 8 #include <linux/kernel.h> 9 #include <linux/clk.h> 10 #include <linux/iopoll.h> 11 #include <linux/clk-provider.h> 12 #include <linux/delay.h> 13 #include <linux/init.h> 14 #include <linux/module.h> 15 #include <linux/of_device.h> 16 #include <linux/platform_device.h> 17 #include <linux/reset.h> 18 #include <linux/phy/phy.h> 19 #include <linux/phy/phy-mipi-dphy.h> 20 #include <linux/pm_runtime.h> 21 #include <linux/mfd/syscon.h> 22 23 #define PSEC_PER_SEC 1000000000000LL 24 25 #define UPDATE(x, h, l) (((x) << (l)) & GENMASK((h), (l))) 26 27 /* 28 * The offset address[7:0] is distributed two parts, one from the bit7 to bit5 29 * is the first address, the other from the bit4 to bit0 is the second address. 30 * when you configure the registers, you must set both of them. The Clock Lane 31 * and Data Lane use the same registers with the same second address, but the 32 * first address is different. 33 */ 34 #define FIRST_ADDRESS(x) (((x) & 0x7) << 5) 35 #define SECOND_ADDRESS(x) (((x) & 0x1f) << 0) 36 #define PHY_REG(first, second) (FIRST_ADDRESS(first) | \ 37 SECOND_ADDRESS(second)) 38 39 /* Analog Register Part: reg00 */ 40 #define BANDGAP_POWER_MASK BIT(7) 41 #define BANDGAP_POWER_DOWN BIT(7) 42 #define BANDGAP_POWER_ON 0 43 #define LANE_EN_MASK GENMASK(6, 2) 44 #define LANE_EN_CK BIT(6) 45 #define LANE_EN_3 BIT(5) 46 #define LANE_EN_2 BIT(4) 47 #define LANE_EN_1 BIT(3) 48 #define LANE_EN_0 BIT(2) 49 #define POWER_WORK_MASK GENMASK(1, 0) 50 #define POWER_WORK_ENABLE UPDATE(1, 1, 0) 51 #define POWER_WORK_DISABLE UPDATE(2, 1, 0) 52 /* Analog Register Part: reg01 */ 53 #define REG_SYNCRST_MASK BIT(2) 54 #define REG_SYNCRST_RESET BIT(2) 55 #define REG_SYNCRST_NORMAL 0 56 #define REG_LDOPD_MASK BIT(1) 57 #define REG_LDOPD_POWER_DOWN BIT(1) 58 #define REG_LDOPD_POWER_ON 0 59 #define REG_PLLPD_MASK BIT(0) 60 #define REG_PLLPD_POWER_DOWN BIT(0) 61 #define REG_PLLPD_POWER_ON 0 62 /* Analog Register Part: reg03 */ 63 #define REG_FBDIV_HI_MASK BIT(5) 64 #define REG_FBDIV_HI(x) UPDATE((x >> 8), 5, 5) 65 #define REG_PREDIV_MASK GENMASK(4, 0) 66 #define REG_PREDIV(x) UPDATE(x, 4, 0) 67 /* Analog Register Part: reg04 */ 68 #define REG_FBDIV_LO_MASK GENMASK(7, 0) 69 #define REG_FBDIV_LO(x) UPDATE(x, 7, 0) 70 /* Analog Register Part: reg05 */ 71 #define SAMPLE_CLOCK_PHASE_MASK GENMASK(6, 4) 72 #define SAMPLE_CLOCK_PHASE(x) UPDATE(x, 6, 4) 73 #define CLOCK_LANE_SKEW_PHASE_MASK GENMASK(2, 0) 74 #define CLOCK_LANE_SKEW_PHASE(x) UPDATE(x, 2, 0) 75 /* Analog Register Part: reg06 */ 76 #define DATA_LANE_3_SKEW_PHASE_MASK GENMASK(6, 4) 77 #define DATA_LANE_3_SKEW_PHASE(x) UPDATE(x, 6, 4) 78 #define DATA_LANE_2_SKEW_PHASE_MASK GENMASK(2, 0) 79 #define DATA_LANE_2_SKEW_PHASE(x) UPDATE(x, 2, 0) 80 /* Analog Register Part: reg07 */ 81 #define DATA_LANE_1_SKEW_PHASE_MASK GENMASK(6, 4) 82 #define DATA_LANE_1_SKEW_PHASE(x) UPDATE(x, 6, 4) 83 #define DATA_LANE_0_SKEW_PHASE_MASK GENMASK(2, 0) 84 #define DATA_LANE_0_SKEW_PHASE(x) UPDATE(x, 2, 0) 85 /* Analog Register Part: reg08 */ 86 #define SAMPLE_CLOCK_DIRECTION_MASK BIT(4) 87 #define SAMPLE_CLOCK_DIRECTION_REVERSE BIT(4) 88 #define SAMPLE_CLOCK_DIRECTION_FORWARD 0 89 /* Digital Register Part: reg00 */ 90 #define REG_DIG_RSTN_MASK BIT(0) 91 #define REG_DIG_RSTN_NORMAL BIT(0) 92 #define REG_DIG_RSTN_RESET 0 93 /* Digital Register Part: reg01 */ 94 #define INVERT_TXCLKESC_MASK BIT(1) 95 #define INVERT_TXCLKESC_ENABLE BIT(1) 96 #define INVERT_TXCLKESC_DISABLE 0 97 #define INVERT_TXBYTECLKHS_MASK BIT(0) 98 #define INVERT_TXBYTECLKHS_ENABLE BIT(0) 99 #define INVERT_TXBYTECLKHS_DISABLE 0 100 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */ 101 #define T_LPX_CNT_MASK GENMASK(5, 0) 102 #define T_LPX_CNT(x) UPDATE(x, 5, 0) 103 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */ 104 #define T_HS_PREPARE_CNT_MASK GENMASK(6, 0) 105 #define T_HS_PREPARE_CNT(x) UPDATE(x, 6, 0) 106 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */ 107 #define T_HS_ZERO_CNT_MASK GENMASK(5, 0) 108 #define T_HS_ZERO_CNT(x) UPDATE(x, 5, 0) 109 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */ 110 #define T_HS_TRAIL_CNT_MASK GENMASK(6, 0) 111 #define T_HS_TRAIL_CNT(x) UPDATE(x, 6, 0) 112 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */ 113 #define T_HS_EXIT_CNT_MASK GENMASK(4, 0) 114 #define T_HS_EXIT_CNT(x) UPDATE(x, 4, 0) 115 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */ 116 #define T_CLK_POST_CNT_MASK GENMASK(3, 0) 117 #define T_CLK_POST_CNT(x) UPDATE(x, 3, 0) 118 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */ 119 #define LPDT_TX_PPI_SYNC_MASK BIT(2) 120 #define LPDT_TX_PPI_SYNC_ENABLE BIT(2) 121 #define LPDT_TX_PPI_SYNC_DISABLE 0 122 #define T_WAKEUP_CNT_HI_MASK GENMASK(1, 0) 123 #define T_WAKEUP_CNT_HI(x) UPDATE(x, 1, 0) 124 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */ 125 #define T_WAKEUP_CNT_LO_MASK GENMASK(7, 0) 126 #define T_WAKEUP_CNT_LO(x) UPDATE(x, 7, 0) 127 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */ 128 #define T_CLK_PRE_CNT_MASK GENMASK(3, 0) 129 #define T_CLK_PRE_CNT(x) UPDATE(x, 3, 0) 130 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */ 131 #define T_TA_GO_CNT_MASK GENMASK(5, 0) 132 #define T_TA_GO_CNT(x) UPDATE(x, 5, 0) 133 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */ 134 #define T_TA_SURE_CNT_MASK GENMASK(5, 0) 135 #define T_TA_SURE_CNT(x) UPDATE(x, 5, 0) 136 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */ 137 #define T_TA_WAIT_CNT_MASK GENMASK(5, 0) 138 #define T_TA_WAIT_CNT(x) UPDATE(x, 5, 0) 139 /* LVDS Register Part: reg00 */ 140 #define LVDS_DIGITAL_INTERNAL_RESET_MASK BIT(2) 141 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE BIT(2) 142 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE 0 143 /* LVDS Register Part: reg01 */ 144 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK BIT(7) 145 #define LVDS_DIGITAL_INTERNAL_ENABLE BIT(7) 146 #define LVDS_DIGITAL_INTERNAL_DISABLE 0 147 /* LVDS Register Part: reg03 */ 148 #define MODE_ENABLE_MASK GENMASK(2, 0) 149 #define TTL_MODE_ENABLE BIT(2) 150 #define LVDS_MODE_ENABLE BIT(1) 151 #define MIPI_MODE_ENABLE BIT(0) 152 /* LVDS Register Part: reg0b */ 153 #define LVDS_LANE_EN_MASK GENMASK(7, 3) 154 #define LVDS_DATA_LANE0_EN BIT(7) 155 #define LVDS_DATA_LANE1_EN BIT(6) 156 #define LVDS_DATA_LANE2_EN BIT(5) 157 #define LVDS_DATA_LANE3_EN BIT(4) 158 #define LVDS_CLK_LANE_EN BIT(3) 159 #define LVDS_PLL_POWER_MASK BIT(2) 160 #define LVDS_PLL_POWER_OFF BIT(2) 161 #define LVDS_PLL_POWER_ON 0 162 #define LVDS_BANDGAP_POWER_MASK BIT(0) 163 #define LVDS_BANDGAP_POWER_DOWN BIT(0) 164 #define LVDS_BANDGAP_POWER_ON 0 165 166 #define DSI_PHY_RSTZ 0xa0 167 #define PHY_ENABLECLK BIT(2) 168 #define DSI_PHY_STATUS 0xb0 169 #define PHY_LOCK BIT(0) 170 171 struct inno_dsidphy { 172 struct device *dev; 173 struct clk *ref_clk; 174 struct clk *pclk_phy; 175 struct clk *pclk_host; 176 void __iomem *phy_base; 177 void __iomem *host_base; 178 struct reset_control *rst; 179 enum phy_mode mode; 180 struct phy_configure_opts_mipi_dphy dphy_cfg; 181 182 struct clk *pll_clk; 183 struct { 184 struct clk_hw hw; 185 u8 prediv; 186 u16 fbdiv; 187 unsigned long rate; 188 } pll; 189 }; 190 191 enum { 192 REGISTER_PART_ANALOG, 193 REGISTER_PART_DIGITAL, 194 REGISTER_PART_CLOCK_LANE, 195 REGISTER_PART_DATA0_LANE, 196 REGISTER_PART_DATA1_LANE, 197 REGISTER_PART_DATA2_LANE, 198 REGISTER_PART_DATA3_LANE, 199 REGISTER_PART_LVDS, 200 }; 201 202 static inline struct inno_dsidphy *hw_to_inno(struct clk_hw *hw) 203 { 204 return container_of(hw, struct inno_dsidphy, pll.hw); 205 } 206 207 static void phy_update_bits(struct inno_dsidphy *inno, 208 u8 first, u8 second, u8 mask, u8 val) 209 { 210 u32 reg = PHY_REG(first, second) << 2; 211 unsigned int tmp, orig; 212 213 orig = readl(inno->phy_base + reg); 214 tmp = orig & ~mask; 215 tmp |= val & mask; 216 writel(tmp, inno->phy_base + reg); 217 } 218 219 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno, 220 unsigned long rate) 221 { 222 unsigned long prate = clk_get_rate(inno->ref_clk); 223 unsigned long best_freq = 0; 224 unsigned long fref, fout; 225 u8 min_prediv, max_prediv; 226 u8 _prediv, best_prediv = 1; 227 u16 _fbdiv, best_fbdiv = 1; 228 u32 min_delta = UINT_MAX; 229 230 /* 231 * The PLL output frequency can be calculated using a simple formula: 232 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2 233 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2 234 */ 235 fref = prate / 2; 236 if (rate > 1000000000UL) 237 fout = 1000000000UL; 238 else 239 fout = rate; 240 241 /* 5Mhz < Fref / prediv < 40MHz */ 242 min_prediv = DIV_ROUND_UP(fref, 40000000); 243 max_prediv = fref / 5000000; 244 245 for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) { 246 u64 tmp; 247 u32 delta; 248 249 tmp = (u64)fout * _prediv; 250 do_div(tmp, fref); 251 _fbdiv = tmp; 252 253 /* 254 * The possible settings of feedback divider are 255 * 12, 13, 14, 16, ~ 511 256 */ 257 if (_fbdiv == 15) 258 continue; 259 260 if (_fbdiv < 12 || _fbdiv > 511) 261 continue; 262 263 tmp = (u64)_fbdiv * fref; 264 do_div(tmp, _prediv); 265 266 delta = abs(fout - tmp); 267 if (!delta) { 268 best_prediv = _prediv; 269 best_fbdiv = _fbdiv; 270 best_freq = tmp; 271 break; 272 } else if (delta < min_delta) { 273 best_prediv = _prediv; 274 best_fbdiv = _fbdiv; 275 best_freq = tmp; 276 min_delta = delta; 277 } 278 } 279 280 if (best_freq) { 281 inno->pll.prediv = best_prediv; 282 inno->pll.fbdiv = best_fbdiv; 283 inno->pll.rate = best_freq; 284 } 285 286 return best_freq; 287 } 288 289 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno) 290 { 291 struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg; 292 const struct { 293 unsigned long rate; 294 u8 hs_prepare; 295 u8 clk_lane_hs_zero; 296 u8 data_lane_hs_zero; 297 u8 hs_trail; 298 } timings[] = { 299 { 110000000, 0x20, 0x16, 0x02, 0x22}, 300 { 150000000, 0x06, 0x16, 0x03, 0x45}, 301 { 200000000, 0x18, 0x17, 0x04, 0x0b}, 302 { 250000000, 0x05, 0x17, 0x05, 0x16}, 303 { 300000000, 0x51, 0x18, 0x06, 0x2c}, 304 { 400000000, 0x64, 0x19, 0x07, 0x33}, 305 { 500000000, 0x20, 0x1b, 0x07, 0x4e}, 306 { 600000000, 0x6a, 0x1d, 0x08, 0x3a}, 307 { 700000000, 0x3e, 0x1e, 0x08, 0x6a}, 308 { 800000000, 0x21, 0x1f, 0x09, 0x29}, 309 {1000000000, 0x09, 0x20, 0x09, 0x27}, 310 }; 311 u32 t_txbyteclkhs, t_txclkesc; 312 u32 txbyteclkhs, txclkesc, esc_clk_div; 313 u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait; 314 u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero; 315 unsigned int i; 316 317 inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate); 318 319 /* Select MIPI mode */ 320 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, 321 MODE_ENABLE_MASK, MIPI_MODE_ENABLE); 322 /* Configure PLL */ 323 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, 324 REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv)); 325 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, 326 REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv)); 327 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, 328 REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv)); 329 /* Enable PLL and LDO */ 330 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, 331 REG_LDOPD_MASK | REG_PLLPD_MASK, 332 REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON); 333 /* Reset analog */ 334 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, 335 REG_SYNCRST_MASK, REG_SYNCRST_RESET); 336 udelay(1); 337 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, 338 REG_SYNCRST_MASK, REG_SYNCRST_NORMAL); 339 /* Reset digital */ 340 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, 341 REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET); 342 udelay(1); 343 phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00, 344 REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL); 345 346 txbyteclkhs = inno->pll.rate / 8; 347 t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs); 348 349 esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000); 350 txclkesc = txbyteclkhs / esc_clk_div; 351 t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc); 352 353 /* 354 * The value of counter for HS Ths-exit 355 * Ths-exit = Tpin_txbyteclkhs * value 356 */ 357 hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs); 358 /* 359 * The value of counter for HS Tclk-post 360 * Tclk-post = Tpin_txbyteclkhs * value 361 */ 362 clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs); 363 /* 364 * The value of counter for HS Tclk-pre 365 * Tclk-pre = Tpin_txbyteclkhs * value 366 */ 367 clk_pre = DIV_ROUND_UP(cfg->clk_pre, t_txbyteclkhs); 368 369 /* 370 * The value of counter for HS Tlpx Time 371 * Tlpx = Tpin_txbyteclkhs * (2 + value) 372 */ 373 lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs); 374 if (lpx >= 2) 375 lpx -= 2; 376 377 /* 378 * The value of counter for HS Tta-go 379 * Tta-go for turnaround 380 * Tta-go = Ttxclkesc * value 381 */ 382 ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc); 383 /* 384 * The value of counter for HS Tta-sure 385 * Tta-sure for turnaround 386 * Tta-sure = Ttxclkesc * value 387 */ 388 ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc); 389 /* 390 * The value of counter for HS Tta-wait 391 * Tta-wait for turnaround 392 * Tta-wait = Ttxclkesc * value 393 */ 394 ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc); 395 396 for (i = 0; i < ARRAY_SIZE(timings); i++) 397 if (inno->pll.rate <= timings[i].rate) 398 break; 399 400 if (i == ARRAY_SIZE(timings)) 401 --i; 402 403 hs_prepare = timings[i].hs_prepare; 404 hs_trail = timings[i].hs_trail; 405 clk_lane_hs_zero = timings[i].clk_lane_hs_zero; 406 data_lane_hs_zero = timings[i].data_lane_hs_zero; 407 wakeup = 0x3ff; 408 409 for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) { 410 if (i == REGISTER_PART_CLOCK_LANE) 411 hs_zero = clk_lane_hs_zero; 412 else 413 hs_zero = data_lane_hs_zero; 414 415 phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK, 416 T_LPX_CNT(lpx)); 417 phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK, 418 T_HS_PREPARE_CNT(hs_prepare)); 419 phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_MASK, 420 T_HS_ZERO_CNT(hs_zero)); 421 phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK, 422 T_HS_TRAIL_CNT(hs_trail)); 423 phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_MASK, 424 T_HS_EXIT_CNT(hs_exit)); 425 phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_MASK, 426 T_CLK_POST_CNT(clk_post)); 427 phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK, 428 T_CLK_PRE_CNT(clk_pre)); 429 phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK, 430 T_WAKEUP_CNT_HI(wakeup >> 8)); 431 phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK, 432 T_WAKEUP_CNT_LO(wakeup)); 433 phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK, 434 T_TA_GO_CNT(ta_go)); 435 phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK, 436 T_TA_SURE_CNT(ta_sure)); 437 phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK, 438 T_TA_WAIT_CNT(ta_wait)); 439 } 440 441 /* Enable all lanes on analog part */ 442 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, 443 LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 | 444 LANE_EN_1 | LANE_EN_0); 445 } 446 447 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno) 448 { 449 u8 prediv = 2; 450 u16 fbdiv = 28; 451 452 /* Sample clock reverse direction */ 453 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08, 454 SAMPLE_CLOCK_DIRECTION_MASK, 455 SAMPLE_CLOCK_DIRECTION_REVERSE); 456 457 /* Select LVDS mode */ 458 phy_update_bits(inno, REGISTER_PART_LVDS, 0x03, 459 MODE_ENABLE_MASK, LVDS_MODE_ENABLE); 460 /* Configure PLL */ 461 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, 462 REG_PREDIV_MASK, REG_PREDIV(prediv)); 463 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03, 464 REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv)); 465 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04, 466 REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv)); 467 phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc); 468 /* Enable PLL and Bandgap */ 469 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, 470 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, 471 LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON); 472 473 msleep(20); 474 475 /* Reset LVDS digital logic */ 476 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, 477 LVDS_DIGITAL_INTERNAL_RESET_MASK, 478 LVDS_DIGITAL_INTERNAL_RESET_ENABLE); 479 udelay(1); 480 phy_update_bits(inno, REGISTER_PART_LVDS, 0x00, 481 LVDS_DIGITAL_INTERNAL_RESET_MASK, 482 LVDS_DIGITAL_INTERNAL_RESET_DISABLE); 483 /* Enable LVDS digital logic */ 484 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, 485 LVDS_DIGITAL_INTERNAL_ENABLE_MASK, 486 LVDS_DIGITAL_INTERNAL_ENABLE); 487 /* Enable LVDS analog driver */ 488 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, 489 LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN | 490 LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN | 491 LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN); 492 } 493 494 static int inno_dsidphy_power_on(struct phy *phy) 495 { 496 struct inno_dsidphy *inno = phy_get_drvdata(phy); 497 498 clk_prepare_enable(inno->pclk_phy); 499 clk_prepare_enable(inno->ref_clk); 500 pm_runtime_get_sync(inno->dev); 501 502 /* Bandgap power on */ 503 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, 504 BANDGAP_POWER_MASK, BANDGAP_POWER_ON); 505 /* Enable power work */ 506 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, 507 POWER_WORK_MASK, POWER_WORK_ENABLE); 508 509 switch (inno->mode) { 510 case PHY_MODE_MIPI_DPHY: 511 inno_dsidphy_mipi_mode_enable(inno); 512 break; 513 case PHY_MODE_LVDS: 514 inno_dsidphy_lvds_mode_enable(inno); 515 break; 516 default: 517 return -EINVAL; 518 } 519 520 return 0; 521 } 522 523 static int inno_dsidphy_power_off(struct phy *phy) 524 { 525 struct inno_dsidphy *inno = phy_get_drvdata(phy); 526 527 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0); 528 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01, 529 REG_LDOPD_MASK | REG_PLLPD_MASK, 530 REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN); 531 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, 532 POWER_WORK_MASK, POWER_WORK_DISABLE); 533 phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, 534 BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN); 535 536 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0); 537 phy_update_bits(inno, REGISTER_PART_LVDS, 0x01, 538 LVDS_DIGITAL_INTERNAL_ENABLE_MASK, 539 LVDS_DIGITAL_INTERNAL_DISABLE); 540 phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, 541 LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK, 542 LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN); 543 544 pm_runtime_put(inno->dev); 545 clk_disable_unprepare(inno->ref_clk); 546 clk_disable_unprepare(inno->pclk_phy); 547 548 return 0; 549 } 550 551 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode, 552 int submode) 553 { 554 struct inno_dsidphy *inno = phy_get_drvdata(phy); 555 556 switch (mode) { 557 case PHY_MODE_MIPI_DPHY: 558 case PHY_MODE_LVDS: 559 inno->mode = mode; 560 break; 561 default: 562 return -EINVAL; 563 } 564 565 return 0; 566 } 567 568 static int inno_dsidphy_configure(struct phy *phy, 569 union phy_configure_opts *opts) 570 { 571 struct inno_dsidphy *inno = phy_get_drvdata(phy); 572 int ret; 573 574 if (inno->mode != PHY_MODE_MIPI_DPHY) 575 return -EINVAL; 576 577 ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy); 578 if (ret) 579 return ret; 580 581 memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg)); 582 583 return 0; 584 } 585 586 static const struct phy_ops inno_dsidphy_ops = { 587 .configure = inno_dsidphy_configure, 588 .set_mode = inno_dsidphy_set_mode, 589 .power_on = inno_dsidphy_power_on, 590 .power_off = inno_dsidphy_power_off, 591 .owner = THIS_MODULE, 592 }; 593 594 static int inno_dsidphy_probe(struct platform_device *pdev) 595 { 596 struct device *dev = &pdev->dev; 597 struct inno_dsidphy *inno; 598 struct phy_provider *phy_provider; 599 struct phy *phy; 600 int ret; 601 602 inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL); 603 if (!inno) 604 return -ENOMEM; 605 606 inno->dev = dev; 607 platform_set_drvdata(pdev, inno); 608 609 inno->phy_base = devm_platform_ioremap_resource(pdev, 0); 610 if (!inno->phy_base) 611 return -ENOMEM; 612 613 inno->ref_clk = devm_clk_get(dev, "ref"); 614 if (IS_ERR(inno->ref_clk)) { 615 ret = PTR_ERR(inno->ref_clk); 616 dev_err(dev, "failed to get ref clock: %d\n", ret); 617 return ret; 618 } 619 620 inno->pclk_phy = devm_clk_get(dev, "pclk"); 621 if (IS_ERR(inno->pclk_phy)) { 622 ret = PTR_ERR(inno->pclk_phy); 623 dev_err(dev, "failed to get phy pclk: %d\n", ret); 624 return ret; 625 } 626 627 inno->rst = devm_reset_control_get(dev, "apb"); 628 if (IS_ERR(inno->rst)) { 629 ret = PTR_ERR(inno->rst); 630 dev_err(dev, "failed to get system reset control: %d\n", ret); 631 return ret; 632 } 633 634 phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops); 635 if (IS_ERR(phy)) { 636 ret = PTR_ERR(phy); 637 dev_err(dev, "failed to create phy: %d\n", ret); 638 return ret; 639 } 640 641 phy_set_drvdata(phy, inno); 642 643 phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate); 644 if (IS_ERR(phy_provider)) { 645 ret = PTR_ERR(phy_provider); 646 dev_err(dev, "failed to register phy provider: %d\n", ret); 647 return ret; 648 } 649 650 pm_runtime_enable(dev); 651 652 return 0; 653 } 654 655 static int inno_dsidphy_remove(struct platform_device *pdev) 656 { 657 struct inno_dsidphy *inno = platform_get_drvdata(pdev); 658 659 pm_runtime_disable(inno->dev); 660 661 return 0; 662 } 663 664 static const struct of_device_id inno_dsidphy_of_match[] = { 665 { .compatible = "rockchip,px30-dsi-dphy", }, 666 { .compatible = "rockchip,rk3128-dsi-dphy", }, 667 { .compatible = "rockchip,rk3368-dsi-dphy", }, 668 {} 669 }; 670 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match); 671 672 static struct platform_driver inno_dsidphy_driver = { 673 .driver = { 674 .name = "inno-dsidphy", 675 .of_match_table = of_match_ptr(inno_dsidphy_of_match), 676 }, 677 .probe = inno_dsidphy_probe, 678 .remove = inno_dsidphy_remove, 679 }; 680 module_platform_driver(inno_dsidphy_driver); 681 682 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>"); 683 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver"); 684 MODULE_LICENSE("GPL v2"); 685