1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2018 Rockchip Electronics Co. Ltd.
4  *
5  * Author: Wyon Bi <bivvy.bi@rock-chips.com>
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/kernel.h>
10 #include <linux/clk.h>
11 #include <linux/iopoll.h>
12 #include <linux/clk-provider.h>
13 #include <linux/delay.h>
14 #include <linux/init.h>
15 #include <linux/mfd/syscon.h>
16 #include <linux/module.h>
17 #include <linux/of.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/reset.h>
21 #include <linux/time64.h>
22 
23 #include <linux/phy/phy.h>
24 #include <linux/phy/phy-mipi-dphy.h>
25 
26 #define UPDATE(x, h, l)	(((x) << (l)) & GENMASK((h), (l)))
27 
28 /*
29  * The offset address[7:0] is distributed two parts, one from the bit7 to bit5
30  * is the first address, the other from the bit4 to bit0 is the second address.
31  * when you configure the registers, you must set both of them. The Clock Lane
32  * and Data Lane use the same registers with the same second address, but the
33  * first address is different.
34  */
35 #define FIRST_ADDRESS(x)		(((x) & 0x7) << 5)
36 #define SECOND_ADDRESS(x)		(((x) & 0x1f) << 0)
37 #define PHY_REG(first, second)		(FIRST_ADDRESS(first) | \
38 					 SECOND_ADDRESS(second))
39 
40 /* Analog Register Part: reg00 */
41 #define BANDGAP_POWER_MASK			BIT(7)
42 #define BANDGAP_POWER_DOWN			BIT(7)
43 #define BANDGAP_POWER_ON			0
44 #define LANE_EN_MASK				GENMASK(6, 2)
45 #define LANE_EN_CK				BIT(6)
46 #define LANE_EN_3				BIT(5)
47 #define LANE_EN_2				BIT(4)
48 #define LANE_EN_1				BIT(3)
49 #define LANE_EN_0				BIT(2)
50 #define POWER_WORK_MASK				GENMASK(1, 0)
51 #define POWER_WORK_ENABLE			UPDATE(1, 1, 0)
52 #define POWER_WORK_DISABLE			UPDATE(2, 1, 0)
53 /* Analog Register Part: reg01 */
54 #define REG_SYNCRST_MASK			BIT(2)
55 #define REG_SYNCRST_RESET			BIT(2)
56 #define REG_SYNCRST_NORMAL			0
57 #define REG_LDOPD_MASK				BIT(1)
58 #define REG_LDOPD_POWER_DOWN			BIT(1)
59 #define REG_LDOPD_POWER_ON			0
60 #define REG_PLLPD_MASK				BIT(0)
61 #define REG_PLLPD_POWER_DOWN			BIT(0)
62 #define REG_PLLPD_POWER_ON			0
63 /* Analog Register Part: reg03 */
64 #define REG_FBDIV_HI_MASK			BIT(5)
65 #define REG_FBDIV_HI(x)				UPDATE((x >> 8), 5, 5)
66 #define REG_PREDIV_MASK				GENMASK(4, 0)
67 #define REG_PREDIV(x)				UPDATE(x, 4, 0)
68 /* Analog Register Part: reg04 */
69 #define REG_FBDIV_LO_MASK			GENMASK(7, 0)
70 #define REG_FBDIV_LO(x)				UPDATE(x, 7, 0)
71 /* Analog Register Part: reg05 */
72 #define SAMPLE_CLOCK_PHASE_MASK			GENMASK(6, 4)
73 #define SAMPLE_CLOCK_PHASE(x)			UPDATE(x, 6, 4)
74 #define CLOCK_LANE_SKEW_PHASE_MASK		GENMASK(2, 0)
75 #define CLOCK_LANE_SKEW_PHASE(x)		UPDATE(x, 2, 0)
76 /* Analog Register Part: reg06 */
77 #define DATA_LANE_3_SKEW_PHASE_MASK		GENMASK(6, 4)
78 #define DATA_LANE_3_SKEW_PHASE(x)		UPDATE(x, 6, 4)
79 #define DATA_LANE_2_SKEW_PHASE_MASK		GENMASK(2, 0)
80 #define DATA_LANE_2_SKEW_PHASE(x)		UPDATE(x, 2, 0)
81 /* Analog Register Part: reg07 */
82 #define DATA_LANE_1_SKEW_PHASE_MASK		GENMASK(6, 4)
83 #define DATA_LANE_1_SKEW_PHASE(x)		UPDATE(x, 6, 4)
84 #define DATA_LANE_0_SKEW_PHASE_MASK		GENMASK(2, 0)
85 #define DATA_LANE_0_SKEW_PHASE(x)		UPDATE(x, 2, 0)
86 /* Analog Register Part: reg08 */
87 #define PLL_POST_DIV_ENABLE_MASK		BIT(5)
88 #define PLL_POST_DIV_ENABLE			BIT(5)
89 #define SAMPLE_CLOCK_DIRECTION_MASK		BIT(4)
90 #define SAMPLE_CLOCK_DIRECTION_REVERSE		BIT(4)
91 #define SAMPLE_CLOCK_DIRECTION_FORWARD		0
92 #define LOWFRE_EN_MASK				BIT(5)
93 #define PLL_OUTPUT_FREQUENCY_DIV_BY_1		0
94 #define PLL_OUTPUT_FREQUENCY_DIV_BY_2		1
95 /* Analog Register Part: reg0b */
96 #define CLOCK_LANE_VOD_RANGE_SET_MASK		GENMASK(3, 0)
97 #define CLOCK_LANE_VOD_RANGE_SET(x)		UPDATE(x, 3, 0)
98 #define VOD_MIN_RANGE				0x1
99 #define VOD_MID_RANGE				0x3
100 #define VOD_BIG_RANGE				0x7
101 #define VOD_MAX_RANGE				0xf
102 /* Analog Register Part: reg1E */
103 #define PLL_MODE_SEL_MASK			GENMASK(6, 5)
104 #define PLL_MODE_SEL_LVDS_MODE			0
105 #define PLL_MODE_SEL_MIPI_MODE			BIT(5)
106 /* Digital Register Part: reg00 */
107 #define REG_DIG_RSTN_MASK			BIT(0)
108 #define REG_DIG_RSTN_NORMAL			BIT(0)
109 #define REG_DIG_RSTN_RESET			0
110 /* Digital Register Part: reg01 */
111 #define INVERT_TXCLKESC_MASK			BIT(1)
112 #define INVERT_TXCLKESC_ENABLE			BIT(1)
113 #define INVERT_TXCLKESC_DISABLE			0
114 #define INVERT_TXBYTECLKHS_MASK			BIT(0)
115 #define INVERT_TXBYTECLKHS_ENABLE		BIT(0)
116 #define INVERT_TXBYTECLKHS_DISABLE		0
117 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg05 */
118 #define T_LPX_CNT_MASK				GENMASK(5, 0)
119 #define T_LPX_CNT(x)				UPDATE(x, 5, 0)
120 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg06 */
121 #define T_HS_ZERO_CNT_HI_MASK			BIT(7)
122 #define T_HS_ZERO_CNT_HI(x)			UPDATE(x, 7, 7)
123 #define T_HS_PREPARE_CNT_MASK			GENMASK(6, 0)
124 #define T_HS_PREPARE_CNT(x)			UPDATE(x, 6, 0)
125 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg07 */
126 #define T_HS_ZERO_CNT_LO_MASK			GENMASK(5, 0)
127 #define T_HS_ZERO_CNT_LO(x)			UPDATE(x, 5, 0)
128 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg08 */
129 #define T_HS_TRAIL_CNT_MASK			GENMASK(6, 0)
130 #define T_HS_TRAIL_CNT(x)			UPDATE(x, 6, 0)
131 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg09 */
132 #define T_HS_EXIT_CNT_LO_MASK			GENMASK(4, 0)
133 #define T_HS_EXIT_CNT_LO(x)			UPDATE(x, 4, 0)
134 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0a */
135 #define T_CLK_POST_CNT_LO_MASK			GENMASK(3, 0)
136 #define T_CLK_POST_CNT_LO(x)			UPDATE(x, 3, 0)
137 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0c */
138 #define LPDT_TX_PPI_SYNC_MASK			BIT(2)
139 #define LPDT_TX_PPI_SYNC_ENABLE			BIT(2)
140 #define LPDT_TX_PPI_SYNC_DISABLE		0
141 #define T_WAKEUP_CNT_HI_MASK			GENMASK(1, 0)
142 #define T_WAKEUP_CNT_HI(x)			UPDATE(x, 1, 0)
143 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0d */
144 #define T_WAKEUP_CNT_LO_MASK			GENMASK(7, 0)
145 #define T_WAKEUP_CNT_LO(x)			UPDATE(x, 7, 0)
146 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg0e */
147 #define T_CLK_PRE_CNT_MASK			GENMASK(3, 0)
148 #define T_CLK_PRE_CNT(x)			UPDATE(x, 3, 0)
149 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg10 */
150 #define T_CLK_POST_CNT_HI_MASK			GENMASK(7, 6)
151 #define T_CLK_POST_CNT_HI(x)			UPDATE(x, 7, 6)
152 #define T_TA_GO_CNT_MASK			GENMASK(5, 0)
153 #define T_TA_GO_CNT(x)				UPDATE(x, 5, 0)
154 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg11 */
155 #define T_HS_EXIT_CNT_HI_MASK			BIT(6)
156 #define T_HS_EXIT_CNT_HI(x)			UPDATE(x, 6, 6)
157 #define T_TA_SURE_CNT_MASK			GENMASK(5, 0)
158 #define T_TA_SURE_CNT(x)			UPDATE(x, 5, 0)
159 /* Clock/Data0/Data1/Data2/Data3 Lane Register Part: reg12 */
160 #define T_TA_WAIT_CNT_MASK			GENMASK(5, 0)
161 #define T_TA_WAIT_CNT(x)			UPDATE(x, 5, 0)
162 /* LVDS Register Part: reg00 */
163 #define LVDS_DIGITAL_INTERNAL_RESET_MASK	BIT(2)
164 #define LVDS_DIGITAL_INTERNAL_RESET_DISABLE	BIT(2)
165 #define LVDS_DIGITAL_INTERNAL_RESET_ENABLE	0
166 /* LVDS Register Part: reg01 */
167 #define LVDS_DIGITAL_INTERNAL_ENABLE_MASK	BIT(7)
168 #define LVDS_DIGITAL_INTERNAL_ENABLE		BIT(7)
169 #define LVDS_DIGITAL_INTERNAL_DISABLE		0
170 /* LVDS Register Part: reg03 */
171 #define MODE_ENABLE_MASK			GENMASK(2, 0)
172 #define TTL_MODE_ENABLE				BIT(2)
173 #define LVDS_MODE_ENABLE			BIT(1)
174 #define MIPI_MODE_ENABLE			BIT(0)
175 /* LVDS Register Part: reg0b */
176 #define LVDS_LANE_EN_MASK			GENMASK(7, 3)
177 #define LVDS_DATA_LANE0_EN			BIT(7)
178 #define LVDS_DATA_LANE1_EN			BIT(6)
179 #define LVDS_DATA_LANE2_EN			BIT(5)
180 #define LVDS_DATA_LANE3_EN			BIT(4)
181 #define LVDS_CLK_LANE_EN			BIT(3)
182 #define LVDS_PLL_POWER_MASK			BIT(2)
183 #define LVDS_PLL_POWER_OFF			BIT(2)
184 #define LVDS_PLL_POWER_ON			0
185 #define LVDS_BANDGAP_POWER_MASK			BIT(0)
186 #define LVDS_BANDGAP_POWER_DOWN			BIT(0)
187 #define LVDS_BANDGAP_POWER_ON			0
188 
189 #define DSI_PHY_RSTZ		0xa0
190 #define PHY_ENABLECLK		BIT(2)
191 #define DSI_PHY_STATUS		0xb0
192 #define PHY_LOCK		BIT(0)
193 
194 enum phy_max_rate {
195 	MAX_1GHZ,
196 	MAX_2_5GHZ,
197 };
198 
199 struct inno_video_phy_plat_data {
200 	const struct inno_mipi_dphy_timing *inno_mipi_dphy_timing_table;
201 	const unsigned int num_timings;
202 	enum phy_max_rate max_rate;
203 };
204 
205 struct inno_dsidphy {
206 	struct device *dev;
207 	struct clk *ref_clk;
208 	struct clk *pclk_phy;
209 	struct clk *pclk_host;
210 	const struct inno_video_phy_plat_data *pdata;
211 	void __iomem *phy_base;
212 	void __iomem *host_base;
213 	struct reset_control *rst;
214 	enum phy_mode mode;
215 	struct phy_configure_opts_mipi_dphy dphy_cfg;
216 
217 	struct clk *pll_clk;
218 	struct {
219 		struct clk_hw hw;
220 		u8 prediv;
221 		u16 fbdiv;
222 		unsigned long rate;
223 	} pll;
224 };
225 
226 enum {
227 	REGISTER_PART_ANALOG,
228 	REGISTER_PART_DIGITAL,
229 	REGISTER_PART_CLOCK_LANE,
230 	REGISTER_PART_DATA0_LANE,
231 	REGISTER_PART_DATA1_LANE,
232 	REGISTER_PART_DATA2_LANE,
233 	REGISTER_PART_DATA3_LANE,
234 	REGISTER_PART_LVDS,
235 };
236 
237 struct inno_mipi_dphy_timing {
238 	unsigned long rate;
239 	u8 lpx;
240 	u8 hs_prepare;
241 	u8 clk_lane_hs_zero;
242 	u8 data_lane_hs_zero;
243 	u8 hs_trail;
244 };
245 
246 static const
247 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_1ghz[] = {
248 	{ 110000000, 0x0, 0x20, 0x16, 0x02, 0x22},
249 	{ 150000000, 0x0, 0x06, 0x16, 0x03, 0x45},
250 	{ 200000000, 0x0, 0x18, 0x17, 0x04, 0x0b},
251 	{ 250000000, 0x0, 0x05, 0x17, 0x05, 0x16},
252 	{ 300000000, 0x0, 0x51, 0x18, 0x06, 0x2c},
253 	{ 400000000, 0x0, 0x64, 0x19, 0x07, 0x33},
254 	{ 500000000, 0x0, 0x20, 0x1b, 0x07, 0x4e},
255 	{ 600000000, 0x0, 0x6a, 0x1d, 0x08, 0x3a},
256 	{ 700000000, 0x0, 0x3e, 0x1e, 0x08, 0x6a},
257 	{ 800000000, 0x0, 0x21, 0x1f, 0x09, 0x29},
258 	{1000000000, 0x0, 0x09, 0x20, 0x09, 0x27},
259 };
260 
261 static const
262 struct inno_mipi_dphy_timing inno_mipi_dphy_timing_table_max_2_5ghz[] = {
263 	{ 110000000, 0x02, 0x7f, 0x16, 0x02, 0x02},
264 	{ 150000000, 0x02, 0x7f, 0x16, 0x03, 0x02},
265 	{ 200000000, 0x02, 0x7f, 0x17, 0x04, 0x02},
266 	{ 250000000, 0x02, 0x7f, 0x17, 0x05, 0x04},
267 	{ 300000000, 0x02, 0x7f, 0x18, 0x06, 0x04},
268 	{ 400000000, 0x03, 0x7e, 0x19, 0x07, 0x04},
269 	{ 500000000, 0x03, 0x7c, 0x1b, 0x07, 0x08},
270 	{ 600000000, 0x03, 0x70, 0x1d, 0x08, 0x10},
271 	{ 700000000, 0x05, 0x40, 0x1e, 0x08, 0x30},
272 	{ 800000000, 0x05, 0x02, 0x1f, 0x09, 0x30},
273 	{1000000000, 0x05, 0x08, 0x20, 0x09, 0x30},
274 	{1200000000, 0x06, 0x03, 0x32, 0x14, 0x0f},
275 	{1400000000, 0x09, 0x03, 0x32, 0x14, 0x0f},
276 	{1600000000, 0x0d, 0x42, 0x36, 0x0e, 0x0f},
277 	{1800000000, 0x0e, 0x47, 0x7a, 0x0e, 0x0f},
278 	{2000000000, 0x11, 0x64, 0x7a, 0x0e, 0x0b},
279 	{2200000000, 0x13, 0x64, 0x7e, 0x15, 0x0b},
280 	{2400000000, 0x13, 0x33, 0x7f, 0x15, 0x6a},
281 	{2500000000, 0x15, 0x54, 0x7f, 0x15, 0x6a},
282 };
283 
phy_update_bits(struct inno_dsidphy * inno,u8 first,u8 second,u8 mask,u8 val)284 static void phy_update_bits(struct inno_dsidphy *inno,
285 			    u8 first, u8 second, u8 mask, u8 val)
286 {
287 	u32 reg = PHY_REG(first, second) << 2;
288 	unsigned int tmp, orig;
289 
290 	orig = readl(inno->phy_base + reg);
291 	tmp = orig & ~mask;
292 	tmp |= val & mask;
293 	writel(tmp, inno->phy_base + reg);
294 }
295 
inno_dsidphy_pll_calc_rate(struct inno_dsidphy * inno,unsigned long rate)296 static unsigned long inno_dsidphy_pll_calc_rate(struct inno_dsidphy *inno,
297 						unsigned long rate)
298 {
299 	unsigned long prate = clk_get_rate(inno->ref_clk);
300 	unsigned long best_freq = 0;
301 	unsigned long fref, fout;
302 	u8 min_prediv, max_prediv;
303 	u8 _prediv, best_prediv = 1;
304 	u16 _fbdiv, best_fbdiv = 1;
305 	u32 min_delta = UINT_MAX;
306 
307 	/*
308 	 * The PLL output frequency can be calculated using a simple formula:
309 	 * PLL_Output_Frequency = (FREF / PREDIV * FBDIV) / 2
310 	 * PLL_Output_Frequency: it is equal to DDR-Clock-Frequency * 2
311 	 */
312 	fref = prate / 2;
313 	if (rate > 1000000000UL)
314 		fout = 1000000000UL;
315 	else
316 		fout = rate;
317 
318 	/* 5Mhz < Fref / prediv < 40MHz */
319 	min_prediv = DIV_ROUND_UP(fref, 40000000);
320 	max_prediv = fref / 5000000;
321 
322 	for (_prediv = min_prediv; _prediv <= max_prediv; _prediv++) {
323 		u64 tmp;
324 		u32 delta;
325 
326 		tmp = (u64)fout * _prediv;
327 		do_div(tmp, fref);
328 		_fbdiv = tmp;
329 
330 		/*
331 		 * The possible settings of feedback divider are
332 		 * 12, 13, 14, 16, ~ 511
333 		 */
334 		if (_fbdiv == 15)
335 			continue;
336 
337 		if (_fbdiv < 12 || _fbdiv > 511)
338 			continue;
339 
340 		tmp = (u64)_fbdiv * fref;
341 		do_div(tmp, _prediv);
342 
343 		delta = abs(fout - tmp);
344 		if (!delta) {
345 			best_prediv = _prediv;
346 			best_fbdiv = _fbdiv;
347 			best_freq = tmp;
348 			break;
349 		} else if (delta < min_delta) {
350 			best_prediv = _prediv;
351 			best_fbdiv = _fbdiv;
352 			best_freq = tmp;
353 			min_delta = delta;
354 		}
355 	}
356 
357 	if (best_freq) {
358 		inno->pll.prediv = best_prediv;
359 		inno->pll.fbdiv = best_fbdiv;
360 		inno->pll.rate = best_freq;
361 	}
362 
363 	return best_freq;
364 }
365 
inno_dsidphy_mipi_mode_enable(struct inno_dsidphy * inno)366 static void inno_dsidphy_mipi_mode_enable(struct inno_dsidphy *inno)
367 {
368 	struct phy_configure_opts_mipi_dphy *cfg = &inno->dphy_cfg;
369 	const struct inno_mipi_dphy_timing *timings;
370 	u32 t_txbyteclkhs, t_txclkesc;
371 	u32 txbyteclkhs, txclkesc, esc_clk_div;
372 	u32 hs_exit, clk_post, clk_pre, wakeup, lpx, ta_go, ta_sure, ta_wait;
373 	u32 hs_prepare, hs_trail, hs_zero, clk_lane_hs_zero, data_lane_hs_zero;
374 	unsigned int i;
375 
376 	timings = inno->pdata->inno_mipi_dphy_timing_table;
377 
378 	inno_dsidphy_pll_calc_rate(inno, cfg->hs_clk_rate);
379 
380 	/* Select MIPI mode */
381 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
382 			MODE_ENABLE_MASK, MIPI_MODE_ENABLE);
383 	/* Configure PLL */
384 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
385 			REG_PREDIV_MASK, REG_PREDIV(inno->pll.prediv));
386 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
387 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(inno->pll.fbdiv));
388 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
389 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(inno->pll.fbdiv));
390 	if (inno->pdata->max_rate == MAX_2_5GHZ) {
391 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
392 				PLL_POST_DIV_ENABLE_MASK, PLL_POST_DIV_ENABLE);
393 		phy_update_bits(inno, REGISTER_PART_ANALOG, 0x0b,
394 				CLOCK_LANE_VOD_RANGE_SET_MASK,
395 				CLOCK_LANE_VOD_RANGE_SET(VOD_MAX_RANGE));
396 	}
397 	/* Enable PLL and LDO */
398 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
399 			REG_LDOPD_MASK | REG_PLLPD_MASK,
400 			REG_LDOPD_POWER_ON | REG_PLLPD_POWER_ON);
401 	/* Reset analog */
402 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
403 			REG_SYNCRST_MASK, REG_SYNCRST_RESET);
404 	udelay(1);
405 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
406 			REG_SYNCRST_MASK, REG_SYNCRST_NORMAL);
407 	/* Reset digital */
408 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
409 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_RESET);
410 	udelay(1);
411 	phy_update_bits(inno, REGISTER_PART_DIGITAL, 0x00,
412 			REG_DIG_RSTN_MASK, REG_DIG_RSTN_NORMAL);
413 
414 	txbyteclkhs = inno->pll.rate / 8;
415 	t_txbyteclkhs = div_u64(PSEC_PER_SEC, txbyteclkhs);
416 
417 	esc_clk_div = DIV_ROUND_UP(txbyteclkhs, 20000000);
418 	txclkesc = txbyteclkhs / esc_clk_div;
419 	t_txclkesc = div_u64(PSEC_PER_SEC, txclkesc);
420 
421 	/*
422 	 * The value of counter for HS Ths-exit
423 	 * Ths-exit = Tpin_txbyteclkhs * value
424 	 */
425 	hs_exit = DIV_ROUND_UP(cfg->hs_exit, t_txbyteclkhs);
426 	/*
427 	 * The value of counter for HS Tclk-post
428 	 * Tclk-post = Tpin_txbyteclkhs * value
429 	 */
430 	clk_post = DIV_ROUND_UP(cfg->clk_post, t_txbyteclkhs);
431 	/*
432 	 * The value of counter for HS Tclk-pre
433 	 * Tclk-pre = Tpin_txbyteclkhs * value
434 	 */
435 	clk_pre = DIV_ROUND_UP(cfg->clk_pre, BITS_PER_BYTE);
436 
437 	/*
438 	 * The value of counter for HS Tta-go
439 	 * Tta-go for turnaround
440 	 * Tta-go = Ttxclkesc * value
441 	 */
442 	ta_go = DIV_ROUND_UP(cfg->ta_go, t_txclkesc);
443 	/*
444 	 * The value of counter for HS Tta-sure
445 	 * Tta-sure for turnaround
446 	 * Tta-sure = Ttxclkesc * value
447 	 */
448 	ta_sure = DIV_ROUND_UP(cfg->ta_sure, t_txclkesc);
449 	/*
450 	 * The value of counter for HS Tta-wait
451 	 * Tta-wait for turnaround
452 	 * Tta-wait = Ttxclkesc * value
453 	 */
454 	ta_wait = DIV_ROUND_UP(cfg->ta_get, t_txclkesc);
455 
456 	for (i = 0; i < inno->pdata->num_timings; i++)
457 		if (inno->pll.rate <= timings[i].rate)
458 			break;
459 
460 	if (i == inno->pdata->num_timings)
461 		--i;
462 
463 	/*
464 	 * The value of counter for HS Tlpx Time
465 	 * Tlpx = Tpin_txbyteclkhs * (2 + value)
466 	 */
467 	if (inno->pdata->max_rate == MAX_1GHZ) {
468 		lpx = DIV_ROUND_UP(cfg->lpx, t_txbyteclkhs);
469 		if (lpx >= 2)
470 			lpx -= 2;
471 	} else
472 		lpx = timings[i].lpx;
473 
474 	hs_prepare = timings[i].hs_prepare;
475 	hs_trail = timings[i].hs_trail;
476 	clk_lane_hs_zero = timings[i].clk_lane_hs_zero;
477 	data_lane_hs_zero = timings[i].data_lane_hs_zero;
478 	wakeup = 0x3ff;
479 
480 	for (i = REGISTER_PART_CLOCK_LANE; i <= REGISTER_PART_DATA3_LANE; i++) {
481 		if (i == REGISTER_PART_CLOCK_LANE)
482 			hs_zero = clk_lane_hs_zero;
483 		else
484 			hs_zero = data_lane_hs_zero;
485 
486 		phy_update_bits(inno, i, 0x05, T_LPX_CNT_MASK,
487 				T_LPX_CNT(lpx));
488 		phy_update_bits(inno, i, 0x06, T_HS_PREPARE_CNT_MASK,
489 				T_HS_PREPARE_CNT(hs_prepare));
490 		if (inno->pdata->max_rate == MAX_2_5GHZ)
491 			phy_update_bits(inno, i, 0x06, T_HS_ZERO_CNT_HI_MASK,
492 					T_HS_ZERO_CNT_HI(hs_zero >> 6));
493 		phy_update_bits(inno, i, 0x07, T_HS_ZERO_CNT_LO_MASK,
494 				T_HS_ZERO_CNT_LO(hs_zero));
495 		phy_update_bits(inno, i, 0x08, T_HS_TRAIL_CNT_MASK,
496 				T_HS_TRAIL_CNT(hs_trail));
497 		if (inno->pdata->max_rate == MAX_2_5GHZ)
498 			phy_update_bits(inno, i, 0x11, T_HS_EXIT_CNT_HI_MASK,
499 					T_HS_EXIT_CNT_HI(hs_exit >> 5));
500 		phy_update_bits(inno, i, 0x09, T_HS_EXIT_CNT_LO_MASK,
501 				T_HS_EXIT_CNT_LO(hs_exit));
502 		if (inno->pdata->max_rate == MAX_2_5GHZ)
503 			phy_update_bits(inno, i, 0x10, T_CLK_POST_CNT_HI_MASK,
504 					T_CLK_POST_CNT_HI(clk_post >> 4));
505 		phy_update_bits(inno, i, 0x0a, T_CLK_POST_CNT_LO_MASK,
506 				T_CLK_POST_CNT_LO(clk_post));
507 		phy_update_bits(inno, i, 0x0e, T_CLK_PRE_CNT_MASK,
508 				T_CLK_PRE_CNT(clk_pre));
509 		phy_update_bits(inno, i, 0x0c, T_WAKEUP_CNT_HI_MASK,
510 				T_WAKEUP_CNT_HI(wakeup >> 8));
511 		phy_update_bits(inno, i, 0x0d, T_WAKEUP_CNT_LO_MASK,
512 				T_WAKEUP_CNT_LO(wakeup));
513 		phy_update_bits(inno, i, 0x10, T_TA_GO_CNT_MASK,
514 				T_TA_GO_CNT(ta_go));
515 		phy_update_bits(inno, i, 0x11, T_TA_SURE_CNT_MASK,
516 				T_TA_SURE_CNT(ta_sure));
517 		phy_update_bits(inno, i, 0x12, T_TA_WAIT_CNT_MASK,
518 				T_TA_WAIT_CNT(ta_wait));
519 	}
520 
521 	/* Enable all lanes on analog part */
522 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
523 			LANE_EN_MASK, LANE_EN_CK | LANE_EN_3 | LANE_EN_2 |
524 			LANE_EN_1 | LANE_EN_0);
525 }
526 
inno_dsidphy_lvds_mode_enable(struct inno_dsidphy * inno)527 static void inno_dsidphy_lvds_mode_enable(struct inno_dsidphy *inno)
528 {
529 	u8 prediv = 2;
530 	u16 fbdiv = 28;
531 
532 	/* Sample clock reverse direction */
533 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x08,
534 			SAMPLE_CLOCK_DIRECTION_MASK | LOWFRE_EN_MASK,
535 			SAMPLE_CLOCK_DIRECTION_REVERSE |
536 			PLL_OUTPUT_FREQUENCY_DIV_BY_1);
537 
538 	/* Select LVDS mode */
539 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x03,
540 			MODE_ENABLE_MASK, LVDS_MODE_ENABLE);
541 	/* Configure PLL */
542 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
543 			REG_PREDIV_MASK, REG_PREDIV(prediv));
544 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x03,
545 			REG_FBDIV_HI_MASK, REG_FBDIV_HI(fbdiv));
546 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x04,
547 			REG_FBDIV_LO_MASK, REG_FBDIV_LO(fbdiv));
548 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x08, 0xff, 0xfc);
549 	/* Enable PLL and Bandgap */
550 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
551 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
552 			LVDS_PLL_POWER_ON | LVDS_BANDGAP_POWER_ON);
553 
554 	msleep(20);
555 
556 	/* Select PLL mode */
557 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x1e,
558 			PLL_MODE_SEL_MASK, PLL_MODE_SEL_LVDS_MODE);
559 
560 	/* Reset LVDS digital logic */
561 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
562 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
563 			LVDS_DIGITAL_INTERNAL_RESET_ENABLE);
564 	udelay(1);
565 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x00,
566 			LVDS_DIGITAL_INTERNAL_RESET_MASK,
567 			LVDS_DIGITAL_INTERNAL_RESET_DISABLE);
568 	/* Enable LVDS digital logic */
569 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
570 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
571 			LVDS_DIGITAL_INTERNAL_ENABLE);
572 	/* Enable LVDS analog driver */
573 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
574 			LVDS_LANE_EN_MASK, LVDS_CLK_LANE_EN |
575 			LVDS_DATA_LANE0_EN | LVDS_DATA_LANE1_EN |
576 			LVDS_DATA_LANE2_EN | LVDS_DATA_LANE3_EN);
577 }
578 
inno_dsidphy_power_on(struct phy * phy)579 static int inno_dsidphy_power_on(struct phy *phy)
580 {
581 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
582 
583 	clk_prepare_enable(inno->pclk_phy);
584 	clk_prepare_enable(inno->ref_clk);
585 	pm_runtime_get_sync(inno->dev);
586 
587 	/* Bandgap power on */
588 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
589 			BANDGAP_POWER_MASK, BANDGAP_POWER_ON);
590 	/* Enable power work */
591 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
592 			POWER_WORK_MASK, POWER_WORK_ENABLE);
593 
594 	switch (inno->mode) {
595 	case PHY_MODE_MIPI_DPHY:
596 		inno_dsidphy_mipi_mode_enable(inno);
597 		break;
598 	case PHY_MODE_LVDS:
599 		inno_dsidphy_lvds_mode_enable(inno);
600 		break;
601 	default:
602 		return -EINVAL;
603 	}
604 
605 	return 0;
606 }
607 
inno_dsidphy_power_off(struct phy * phy)608 static int inno_dsidphy_power_off(struct phy *phy)
609 {
610 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
611 
612 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00, LANE_EN_MASK, 0);
613 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x01,
614 			REG_LDOPD_MASK | REG_PLLPD_MASK,
615 			REG_LDOPD_POWER_DOWN | REG_PLLPD_POWER_DOWN);
616 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
617 			POWER_WORK_MASK, POWER_WORK_DISABLE);
618 	phy_update_bits(inno, REGISTER_PART_ANALOG, 0x00,
619 			BANDGAP_POWER_MASK, BANDGAP_POWER_DOWN);
620 
621 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b, LVDS_LANE_EN_MASK, 0);
622 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x01,
623 			LVDS_DIGITAL_INTERNAL_ENABLE_MASK,
624 			LVDS_DIGITAL_INTERNAL_DISABLE);
625 	phy_update_bits(inno, REGISTER_PART_LVDS, 0x0b,
626 			LVDS_PLL_POWER_MASK | LVDS_BANDGAP_POWER_MASK,
627 			LVDS_PLL_POWER_OFF | LVDS_BANDGAP_POWER_DOWN);
628 
629 	pm_runtime_put(inno->dev);
630 	clk_disable_unprepare(inno->ref_clk);
631 	clk_disable_unprepare(inno->pclk_phy);
632 
633 	return 0;
634 }
635 
inno_dsidphy_set_mode(struct phy * phy,enum phy_mode mode,int submode)636 static int inno_dsidphy_set_mode(struct phy *phy, enum phy_mode mode,
637 				   int submode)
638 {
639 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
640 
641 	switch (mode) {
642 	case PHY_MODE_MIPI_DPHY:
643 	case PHY_MODE_LVDS:
644 		inno->mode = mode;
645 		break;
646 	default:
647 		return -EINVAL;
648 	}
649 
650 	return 0;
651 }
652 
inno_dsidphy_configure(struct phy * phy,union phy_configure_opts * opts)653 static int inno_dsidphy_configure(struct phy *phy,
654 				  union phy_configure_opts *opts)
655 {
656 	struct inno_dsidphy *inno = phy_get_drvdata(phy);
657 	int ret;
658 
659 	if (inno->mode != PHY_MODE_MIPI_DPHY)
660 		return -EINVAL;
661 
662 	ret = phy_mipi_dphy_config_validate(&opts->mipi_dphy);
663 	if (ret)
664 		return ret;
665 
666 	memcpy(&inno->dphy_cfg, &opts->mipi_dphy, sizeof(inno->dphy_cfg));
667 
668 	return 0;
669 }
670 
671 static const struct phy_ops inno_dsidphy_ops = {
672 	.configure = inno_dsidphy_configure,
673 	.set_mode = inno_dsidphy_set_mode,
674 	.power_on = inno_dsidphy_power_on,
675 	.power_off = inno_dsidphy_power_off,
676 	.owner = THIS_MODULE,
677 };
678 
679 static const struct inno_video_phy_plat_data max_1ghz_video_phy_plat_data = {
680 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_1ghz,
681 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_1ghz),
682 	.max_rate = MAX_1GHZ,
683 };
684 
685 static const struct inno_video_phy_plat_data max_2_5ghz_video_phy_plat_data = {
686 	.inno_mipi_dphy_timing_table = inno_mipi_dphy_timing_table_max_2_5ghz,
687 	.num_timings = ARRAY_SIZE(inno_mipi_dphy_timing_table_max_2_5ghz),
688 	.max_rate = MAX_2_5GHZ,
689 };
690 
inno_dsidphy_probe(struct platform_device * pdev)691 static int inno_dsidphy_probe(struct platform_device *pdev)
692 {
693 	struct device *dev = &pdev->dev;
694 	struct inno_dsidphy *inno;
695 	struct phy_provider *phy_provider;
696 	struct phy *phy;
697 	int ret;
698 
699 	inno = devm_kzalloc(dev, sizeof(*inno), GFP_KERNEL);
700 	if (!inno)
701 		return -ENOMEM;
702 
703 	inno->dev = dev;
704 	inno->pdata = of_device_get_match_data(inno->dev);
705 	platform_set_drvdata(pdev, inno);
706 
707 	inno->phy_base = devm_platform_ioremap_resource(pdev, 0);
708 	if (IS_ERR(inno->phy_base))
709 		return PTR_ERR(inno->phy_base);
710 
711 	inno->ref_clk = devm_clk_get(dev, "ref");
712 	if (IS_ERR(inno->ref_clk)) {
713 		ret = PTR_ERR(inno->ref_clk);
714 		dev_err(dev, "failed to get ref clock: %d\n", ret);
715 		return ret;
716 	}
717 
718 	inno->pclk_phy = devm_clk_get(dev, "pclk");
719 	if (IS_ERR(inno->pclk_phy)) {
720 		ret = PTR_ERR(inno->pclk_phy);
721 		dev_err(dev, "failed to get phy pclk: %d\n", ret);
722 		return ret;
723 	}
724 
725 	inno->rst = devm_reset_control_get(dev, "apb");
726 	if (IS_ERR(inno->rst)) {
727 		ret = PTR_ERR(inno->rst);
728 		dev_err(dev, "failed to get system reset control: %d\n", ret);
729 		return ret;
730 	}
731 
732 	phy = devm_phy_create(dev, NULL, &inno_dsidphy_ops);
733 	if (IS_ERR(phy)) {
734 		ret = PTR_ERR(phy);
735 		dev_err(dev, "failed to create phy: %d\n", ret);
736 		return ret;
737 	}
738 
739 	phy_set_drvdata(phy, inno);
740 
741 	phy_provider = devm_of_phy_provider_register(dev, of_phy_simple_xlate);
742 	if (IS_ERR(phy_provider)) {
743 		ret = PTR_ERR(phy_provider);
744 		dev_err(dev, "failed to register phy provider: %d\n", ret);
745 		return ret;
746 	}
747 
748 	pm_runtime_enable(dev);
749 
750 	return 0;
751 }
752 
inno_dsidphy_remove(struct platform_device * pdev)753 static void inno_dsidphy_remove(struct platform_device *pdev)
754 {
755 	struct inno_dsidphy *inno = platform_get_drvdata(pdev);
756 
757 	pm_runtime_disable(inno->dev);
758 }
759 
760 static const struct of_device_id inno_dsidphy_of_match[] = {
761 	{
762 		.compatible = "rockchip,px30-dsi-dphy",
763 		.data = &max_1ghz_video_phy_plat_data,
764 	}, {
765 		.compatible = "rockchip,rk3128-dsi-dphy",
766 		.data = &max_1ghz_video_phy_plat_data,
767 	}, {
768 		.compatible = "rockchip,rk3368-dsi-dphy",
769 		.data = &max_1ghz_video_phy_plat_data,
770 	}, {
771 		.compatible = "rockchip,rk3568-dsi-dphy",
772 		.data = &max_2_5ghz_video_phy_plat_data,
773 	}, {
774 		.compatible = "rockchip,rv1126-dsi-dphy",
775 		.data = &max_2_5ghz_video_phy_plat_data,
776 	},
777 	{}
778 };
779 MODULE_DEVICE_TABLE(of, inno_dsidphy_of_match);
780 
781 static struct platform_driver inno_dsidphy_driver = {
782 	.driver = {
783 		.name = "inno-dsidphy",
784 		.of_match_table	= of_match_ptr(inno_dsidphy_of_match),
785 	},
786 	.probe = inno_dsidphy_probe,
787 	.remove_new = inno_dsidphy_remove,
788 };
789 module_platform_driver(inno_dsidphy_driver);
790 
791 MODULE_AUTHOR("Wyon Bi <bivvy.bi@rock-chips.com>");
792 MODULE_DESCRIPTION("Innosilicon MIPI/LVDS/TTL Video Combo PHY driver");
793 MODULE_LICENSE("GPL v2");
794