xref: /openbmc/linux/drivers/phy/phy-xgene.c (revision d40d48e1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * AppliedMicro X-Gene Multi-purpose PHY driver
4  *
5  * Copyright (c) 2014, Applied Micro Circuits Corporation
6  * Author: Loc Ho <lho@apm.com>
7  *         Tuan Phan <tphan@apm.com>
8  *         Suman Tripathi <stripathi@apm.com>
9  *
10  * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
11  * The first PLL clock macro is used for internal reference clock. The second
12  * PLL clock macro is used to generate the clock for the PHY. This driver
13  * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
14  * operate according to the mode of operation. The first PLL CMU is only
15  * required if internal clock is enabled.
16  *
17  * Logical Layer Out Of HW module units:
18  *
19  * -----------------
20  * | Internal      |    |------|
21  * | Ref PLL CMU   |----|      |     -------------    ---------
22  * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
23  *                      |      |     |           |    ---------
24  * External Clock ------|      |     -------------
25  *                      |------|
26  *
27  * The Ref PLL CMU CSR (Configuration System Registers) is accessed
28  * indirectly from the SDS offset at 0x2000. It is only required for
29  * internal reference clock.
30  * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
31  * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
32  *
33  * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
34  * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
35  * it is located outside the PHY IP. This is the case for the PHY located
36  * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
37  * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
38  *
39  * Currently, this driver only supports Gen3 SATA mode with external clock.
40  */
41 #include <linux/module.h>
42 #include <linux/platform_device.h>
43 #include <linux/io.h>
44 #include <linux/delay.h>
45 #include <linux/phy/phy.h>
46 #include <linux/clk.h>
47 
48 /* Max 2 lanes per a PHY unit */
49 #define MAX_LANE			2
50 
51 /* Register offset inside the PHY */
52 #define SERDES_PLL_INDIRECT_OFFSET	0x0000
53 #define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
54 #define SERDES_INDIRECT_OFFSET		0x0400
55 #define SERDES_LANE_STRIDE		0x0200
56 
57 /* Some default Serdes parameters */
58 #define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
59 #define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
60 #define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
61 #define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
62 #define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
63 #define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
64 #define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
65 #define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
66 
67 #define SATA_SPD_SEL_GEN3		0x7
68 #define SATA_SPD_SEL_GEN2		0x3
69 #define SATA_SPD_SEL_GEN1		0x1
70 
71 #define SSC_DISABLE			0
72 #define SSC_ENABLE			1
73 
74 #define FBDIV_VAL_50M			0x77
75 #define REFDIV_VAL_50M			0x1
76 #define FBDIV_VAL_100M			0x3B
77 #define REFDIV_VAL_100M			0x0
78 
79 /* SATA Clock/Reset CSR */
80 #define SATACLKENREG			0x00000000
81 #define  SATA0_CORE_CLKEN		0x00000002
82 #define  SATA1_CORE_CLKEN		0x00000004
83 #define SATASRESETREG			0x00000004
84 #define  SATA_MEM_RESET_MASK		0x00000020
85 #define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
86 #define  SATA_SDS_RESET_MASK		0x00000004
87 #define  SATA_CSR_RESET_MASK		0x00000001
88 #define  SATA_CORE_RESET_MASK		0x00000002
89 #define  SATA_PMCLK_RESET_MASK		0x00000010
90 #define  SATA_PCLK_RESET_MASK		0x00000008
91 
92 /* SDS CSR used for PHY Indirect access */
93 #define SATA_ENET_SDS_PCS_CTL0		0x00000000
94 #define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
95 		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
96 #define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
97 		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
98 #define SATA_ENET_SDS_CTL0		0x0000000c
99 #define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
100 		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
101 #define SATA_ENET_SDS_CTL1		0x00000010
102 #define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
103 		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
104 #define SATA_ENET_SDS_RST_CTL		0x00000024
105 #define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
106 #define  CFG_IND_WR_CMD_MASK		0x00000001
107 #define  CFG_IND_RD_CMD_MASK		0x00000002
108 #define  CFG_IND_CMD_DONE_MASK		0x00000004
109 #define  CFG_IND_ADDR_SET(dst, src) \
110 		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
111 #define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
112 #define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
113 #define SATA_ENET_CLK_MACRO_REG		0x0000004c
114 #define  I_RESET_B_SET(dst, src) \
115 		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
116 #define  I_PLL_FBDIV_SET(dst, src) \
117 		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
118 #define  I_CUSTOMEROV_SET(dst, src) \
119 		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
120 #define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
121 #define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
122 
123 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
124 #define CMU_REG0			0x00000
125 #define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
126 #define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
127 		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
128 #define  CMU_REG0_PDOWN_MASK		0x00004000
129 #define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
130 		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
131 #define CMU_REG1			0x00002
132 #define  CMU_REG1_PLL_CP_SET(dst, src) \
133 		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
134 #define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
135 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
136 #define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
137 		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
138 #define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
139 #define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
140 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
141 #define CMU_REG2			0x00004
142 #define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
143 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
144 #define  CMU_REG2_PLL_LFRES_SET(dst, src) \
145 		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
146 #define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
147 		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
148 #define CMU_REG3			0x00006
149 #define  CMU_REG3_VCOVARSEL_SET(dst, src) \
150 		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
151 #define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
152 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
153 #define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
154 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
155 #define CMU_REG4			0x00008
156 #define CMU_REG5			0x0000a
157 #define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
158 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
159 #define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
160 		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
161 #define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
162 		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
163 #define  CMU_REG5_PLL_RESETB_MASK	0x00000001
164 #define CMU_REG6			0x0000c
165 #define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
166 		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
167 #define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
168 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
169 #define CMU_REG7			0x0000e
170 #define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
171 #define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
172 #define CMU_REG8			0x00010
173 #define CMU_REG9			0x00012
174 #define  CMU_REG9_WORD_LEN_8BIT		0x000
175 #define  CMU_REG9_WORD_LEN_10BIT	0x001
176 #define  CMU_REG9_WORD_LEN_16BIT	0x002
177 #define  CMU_REG9_WORD_LEN_20BIT	0x003
178 #define  CMU_REG9_WORD_LEN_32BIT	0x004
179 #define  CMU_REG9_WORD_LEN_40BIT	0x005
180 #define  CMU_REG9_WORD_LEN_64BIT	0x006
181 #define  CMU_REG9_WORD_LEN_66BIT	0x007
182 #define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
183 		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
184 #define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
185 		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
186 #define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
187 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
188 #define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
189 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
190 #define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
191 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
192 #define CMU_REG10			0x00014
193 #define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
194 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
195 #define CMU_REG11			0x00016
196 #define CMU_REG12			0x00018
197 #define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
198 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
199 #define CMU_REG13			0x0001a
200 #define CMU_REG14			0x0001c
201 #define CMU_REG15			0x0001e
202 #define CMU_REG16			0x00020
203 #define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
204 #define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
205 #define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
206 		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
207 #define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
208 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
209 #define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
210 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
211 #define CMU_REG17			0x00022
212 #define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
213 		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
214 #define  CMU_REG17_RESERVED_7_SET(dst, src) \
215 		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
216 #define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
217 #define CMU_REG18			0x00024
218 #define CMU_REG19			0x00026
219 #define CMU_REG20			0x00028
220 #define CMU_REG21			0x0002a
221 #define CMU_REG22			0x0002c
222 #define CMU_REG23			0x0002e
223 #define CMU_REG24			0x00030
224 #define CMU_REG25			0x00032
225 #define CMU_REG26			0x00034
226 #define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
227 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
228 #define CMU_REG27			0x00036
229 #define CMU_REG28			0x00038
230 #define CMU_REG29			0x0003a
231 #define CMU_REG30			0x0003c
232 #define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
233 		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
234 #define  CMU_REG30_PCIE_MODE_SET(dst, src) \
235 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
236 #define CMU_REG31			0x0003e
237 #define CMU_REG32			0x00040
238 #define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
239 #define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
240 		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
241 #define  CMU_REG32_IREF_ADJ_SET(dst, src) \
242 		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
243 #define CMU_REG33			0x00042
244 #define CMU_REG34			0x00044
245 #define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
246 		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
247 #define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
248 		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
249 #define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
250 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
251 #define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
252 		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
253 #define CMU_REG35			0x00046
254 #define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
255 		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
256 #define CMU_REG36				0x00048
257 #define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
258 		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
259 #define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
260 		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
261 #define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
262 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
263 #define CMU_REG37			0x0004a
264 #define CMU_REG38			0x0004c
265 #define CMU_REG39			0x0004e
266 
267 /* PHY lane CSR accessing from SDS indirectly */
268 #define RXTX_REG0			0x000
269 #define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
270 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
271 #define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
272 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
273 #define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
274 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
275 #define RXTX_REG1			0x002
276 #define  RXTX_REG1_RXACVCM_SET(dst, src) \
277 		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
278 #define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
279 		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
280 #define  RXTX_REG1_RXVREG1_SET(dst, src) \
281 		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
282 #define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
283 		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
284 #define RXTX_REG2			0x004
285 #define  RXTX_REG2_VTT_ENA_SET(dst, src) \
286 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
287 #define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
288 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
289 #define  RXTX_REG2_VTT_SEL_SET(dst, src) \
290 		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
291 #define RXTX_REG4			0x008
292 #define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
293 #define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
294 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
295 #define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
296 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
297 #define RXTX_REG5			0x00a
298 #define  RXTX_REG5_TX_CN1_SET(dst, src) \
299 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
300 #define  RXTX_REG5_TX_CP1_SET(dst, src) \
301 		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
302 #define  RXTX_REG5_TX_CN2_SET(dst, src) \
303 		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
304 #define RXTX_REG6			0x00c
305 #define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
306 		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
307 #define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
308 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
309 #define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
310 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
311 #define  RXTX_REG6_TX_IDLE_SET(dst, src) \
312 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
313 #define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
314 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
315 #define RXTX_REG7			0x00e
316 #define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
317 #define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
318 #define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
319 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
320 #define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
321 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
322 #define RXTX_REG8			0x010
323 #define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
324 		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
325 #define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
326 		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
327 #define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
328 		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
329 #define  RXTX_REG8_SD_VREF_SET(dst, src) \
330 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
331 #define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
332 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
333 #define RXTX_REG7			0x00e
334 #define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
335 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
336 #define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
337 		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
338 #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
339 #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
340 		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
341 #define RXTX_REG11			0x016
342 #define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
343 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
344 #define RXTX_REG12			0x018
345 #define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
346 		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
347 #define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
348 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
349 #define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
350 #define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
351 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
352 #define RXTX_REG13			0x01a
353 #define RXTX_REG14			0x01c
354 #define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
355 		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
356 #define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
357 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
358 #define RXTX_REG26			0x034
359 #define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
360 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
361 #define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
362 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
363 #define RXTX_REG21			0x02a
364 #define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
365 #define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
366 #define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
367 #define RXTX_REG22			0x02c
368 #define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
369 #define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
370 #define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
371 #define RXTX_REG23			0x02e
372 #define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
373 #define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
374 #define RXTX_REG24			0x030
375 #define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
376 #define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
377 #define RXTX_REG27			0x036
378 #define RXTX_REG28			0x038
379 #define RXTX_REG31			0x03e
380 #define RXTX_REG38			0x04c
381 #define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
382 		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
383 #define RXTX_REG39			0x04e
384 #define RXTX_REG40			0x050
385 #define RXTX_REG41			0x052
386 #define RXTX_REG42			0x054
387 #define RXTX_REG43			0x056
388 #define RXTX_REG44			0x058
389 #define RXTX_REG45			0x05a
390 #define RXTX_REG46			0x05c
391 #define RXTX_REG47			0x05e
392 #define RXTX_REG48			0x060
393 #define RXTX_REG49			0x062
394 #define RXTX_REG50			0x064
395 #define RXTX_REG51			0x066
396 #define RXTX_REG52			0x068
397 #define RXTX_REG53			0x06a
398 #define RXTX_REG54			0x06c
399 #define RXTX_REG55			0x06e
400 #define RXTX_REG61			0x07a
401 #define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
402 		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
403 #define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
404 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
405 #define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
406 		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
407 #define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
408 		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
409 #define RXTX_REG62			0x07c
410 #define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
411 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
412 #define RXTX_REG81			0x0a2
413 #define  RXTX_REG89_MU_TH7_SET(dst, src) \
414 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
415 #define  RXTX_REG89_MU_TH8_SET(dst, src) \
416 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
417 #define  RXTX_REG89_MU_TH9_SET(dst, src) \
418 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
419 #define RXTX_REG96			0x0c0
420 #define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
421 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
422 #define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
423 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
424 #define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
425 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
426 #define RXTX_REG99			0x0c6
427 #define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
428 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
429 #define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
430 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
431 #define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
432 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
433 #define RXTX_REG102			0x0cc
434 #define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
435 		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
436 #define RXTX_REG114			0x0e4
437 #define RXTX_REG121			0x0f2
438 #define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
439 #define RXTX_REG125			0x0fa
440 #define  RXTX_REG125_PQ_REG_SET(dst, src) \
441 		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
442 #define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
443 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
444 #define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
445 		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
446 #define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
447 		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
448 #define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
449 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
450 #define RXTX_REG127			0x0fe
451 #define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
452 #define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
453 #define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
454 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
455 #define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
456 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
457 #define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
458 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
459 #define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
460 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
461 #define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
462 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
463 #define RXTX_REG128			0x100
464 #define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
465 		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
466 #define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
467 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
468 #define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
469 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
470 #define RXTX_REG129			0x102
471 #define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
472 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
474 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG130			0x104
476 #define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
477 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
478 #define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
479 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
480 #define RXTX_REG145			0x122
481 #define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
482 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
483 #define  RXTX_REG145_RXES_ENA_SET(dst, src) \
484 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
485 #define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
486 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
487 #define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
488 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
489 #define RXTX_REG147			0x126
490 #define RXTX_REG148			0x128
491 
492 /* Clock macro type */
493 enum cmu_type_t {
494 	REF_CMU = 0,	/* Clock macro is the internal reference clock */
495 	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
496 };
497 
498 enum mux_type_t {
499 	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
500 	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
501 };
502 
503 enum clk_type_t {
504 	CLK_EXT_DIFF = 0,	/* External differential */
505 	CLK_INT_DIFF = 1,	/* Internal differential */
506 	CLK_INT_SING = 2,	/* Internal single ended */
507 };
508 
509 enum xgene_phy_mode {
510 	MODE_SATA	= 0,	/* List them for simple reference */
511 	MODE_SGMII	= 1,
512 	MODE_PCIE	= 2,
513 	MODE_USB	= 3,
514 	MODE_XFI	= 4,
515 	MODE_MAX
516 };
517 
518 struct xgene_sata_override_param {
519 	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
520 	u32 txspeed[3];			/* Tx speed */
521 	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
522 	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
523 	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
524 	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
525 	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
526 	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
527 	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
528 };
529 
530 struct xgene_phy_ctx {
531 	struct device *dev;
532 	struct phy *phy;
533 	enum xgene_phy_mode mode;		/* Mode of operation */
534 	enum clk_type_t clk_type;	/* Input clock selection */
535 	void __iomem *sds_base;		/* PHY CSR base addr */
536 	struct clk *clk;		/* Optional clock */
537 
538 	/* Override Serdes parameters */
539 	struct xgene_sata_override_param sata_param;
540 };
541 
542 /*
543  * For chip earlier than A3 version, enable this flag.
544  * To enable, pass boot argument phy_xgene.preA3Chip=1
545  */
546 static int preA3Chip;
547 MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
548 module_param_named(preA3Chip, preA3Chip, int, 0444);
549 
550 static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
551 		   u32 indirect_data_reg, u32 addr, u32 data)
552 {
553 	unsigned long deadline = jiffies + HZ;
554 	u32 val;
555 	u32 cmd;
556 
557 	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
558 	cmd = CFG_IND_ADDR_SET(cmd, addr);
559 	writel(data, csr_base + indirect_data_reg);
560 	readl(csr_base + indirect_data_reg); /* Force a barrier */
561 	writel(cmd, csr_base + indirect_cmd_reg);
562 	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
563 	do {
564 		val = readl(csr_base + indirect_cmd_reg);
565 	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
566 		 time_before(jiffies, deadline));
567 	if (!(val & CFG_IND_CMD_DONE_MASK))
568 		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
569 		       csr_base + indirect_cmd_reg, addr, data);
570 }
571 
572 static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
573 		   u32 indirect_data_reg, u32 addr, u32 *data)
574 {
575 	unsigned long deadline = jiffies + HZ;
576 	u32 val;
577 	u32 cmd;
578 
579 	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
580 	cmd = CFG_IND_ADDR_SET(cmd, addr);
581 	writel(cmd, csr_base + indirect_cmd_reg);
582 	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
583 	do {
584 		val = readl(csr_base + indirect_cmd_reg);
585 	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
586 		 time_before(jiffies, deadline));
587 	*data = readl(csr_base + indirect_data_reg);
588 	if (!(val & CFG_IND_CMD_DONE_MASK))
589 		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
590 		       csr_base + indirect_cmd_reg, addr, *data);
591 }
592 
593 static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
594 		   u32 reg, u32 data)
595 {
596 	void __iomem *sds_base = ctx->sds_base;
597 	u32 val;
598 
599 	if (cmu_type == REF_CMU)
600 		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
601 	else
602 		reg += SERDES_PLL_INDIRECT_OFFSET;
603 	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
604 		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
605 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
606 		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
607 	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
608 }
609 
610 static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
611 		   u32 reg, u32 *data)
612 {
613 	void __iomem *sds_base = ctx->sds_base;
614 
615 	if (cmu_type == REF_CMU)
616 		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
617 	else
618 		reg += SERDES_PLL_INDIRECT_OFFSET;
619 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
620 		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
621 	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
622 }
623 
624 static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
625 			   u32 reg, u32 bits)
626 {
627 	u32 val;
628 
629 	cmu_rd(ctx, cmu_type, reg, &val);
630 	val |= bits;
631 	cmu_wr(ctx, cmu_type, reg, val);
632 	cmu_rd(ctx, cmu_type, reg, &val);
633 	val &= ~bits;
634 	cmu_wr(ctx, cmu_type, reg, val);
635 }
636 
637 static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
638 			u32 reg, u32 bits)
639 {
640 	u32 val;
641 
642 	cmu_rd(ctx, cmu_type, reg, &val);
643 	val &= ~bits;
644 	cmu_wr(ctx, cmu_type, reg, val);
645 }
646 
647 static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
648 			u32 reg, u32 bits)
649 {
650 	u32 val;
651 
652 	cmu_rd(ctx, cmu_type, reg, &val);
653 	val |= bits;
654 	cmu_wr(ctx, cmu_type, reg, val);
655 }
656 
657 static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
658 {
659 	void __iomem *sds_base = ctx->sds_base;
660 	u32 val;
661 
662 	reg += SERDES_INDIRECT_OFFSET;
663 	reg += lane * SERDES_LANE_STRIDE;
664 	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
665 	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
666 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
667 	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
668 	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
669 		 val);
670 }
671 
672 static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
673 {
674 	void __iomem *sds_base = ctx->sds_base;
675 
676 	reg += SERDES_INDIRECT_OFFSET;
677 	reg += lane * SERDES_LANE_STRIDE;
678 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679 	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
680 	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
681 }
682 
683 static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
684 			   u32 bits)
685 {
686 	u32 val;
687 
688 	serdes_rd(ctx, lane, reg, &val);
689 	val &= ~bits;
690 	serdes_wr(ctx, lane, reg, val);
691 }
692 
693 static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
694 			   u32 bits)
695 {
696 	u32 val;
697 
698 	serdes_rd(ctx, lane, reg, &val);
699 	val |= bits;
700 	serdes_wr(ctx, lane, reg, val);
701 }
702 
703 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
704 				       enum cmu_type_t cmu_type,
705 				       enum clk_type_t clk_type)
706 {
707 	u32 val;
708 
709 	/* Set the reset sequence delay for TX ready assertion */
710 	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
711 	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
712 	cmu_wr(ctx, cmu_type, CMU_REG12, val);
713 	/* Set the programmable stage delays between various enable stages */
714 	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
715 	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
716 
717 	/* Configure clock type */
718 	if (clk_type == CLK_EXT_DIFF) {
719 		/* Select external clock mux */
720 		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
721 		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
722 		cmu_wr(ctx, cmu_type, CMU_REG0, val);
723 		/* Select CMOS as reference clock  */
724 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
725 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
726 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
727 		dev_dbg(ctx->dev, "Set external reference clock\n");
728 	} else if (clk_type == CLK_INT_DIFF) {
729 		/* Select internal clock mux */
730 		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
731 		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
732 		cmu_wr(ctx, cmu_type, CMU_REG0, val);
733 		/* Select CMOS as reference clock  */
734 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
735 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
736 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
737 		dev_dbg(ctx->dev, "Set internal reference clock\n");
738 	} else if (clk_type == CLK_INT_SING) {
739 		/*
740 		 * NOTE: This clock type is NOT support for controller
741 		 *	 whose internal clock shared in the PCIe controller
742 		 *
743 		 * Select internal clock mux
744 		 */
745 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
746 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
747 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
748 		/* Select CML as reference clock */
749 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
750 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
751 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
752 		dev_dbg(ctx->dev,
753 			"Set internal single ended reference clock\n");
754 	}
755 }
756 
757 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
758 					enum cmu_type_t cmu_type,
759 					enum clk_type_t clk_type)
760 {
761 	u32 val;
762 	int ref_100MHz;
763 
764 	if (cmu_type == REF_CMU) {
765 		/* Set VCO calibration voltage threshold */
766 		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
767 		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
768 		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
769 		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
770 		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
771 		cmu_wr(ctx, cmu_type, CMU_REG34, val);
772 	}
773 
774 	/* Set the VCO calibration counter */
775 	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
776 	if (cmu_type == REF_CMU || preA3Chip)
777 		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
778 	else
779 		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
780 	cmu_wr(ctx, cmu_type, CMU_REG0, val);
781 
782 	/* Configure PLL for calibration */
783 	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
784 	val = CMU_REG1_PLL_CP_SET(val, 0x1);
785 	if (cmu_type == REF_CMU || preA3Chip)
786 		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
787 	else
788 		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
789 	if (cmu_type == REF_CMU)
790 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
791 	else
792 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
793 	cmu_wr(ctx, cmu_type, CMU_REG1, val);
794 
795 	if (cmu_type != REF_CMU)
796 		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
797 
798 	/* Configure the PLL for either 100MHz or 50MHz */
799 	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
800 	if (cmu_type == REF_CMU) {
801 		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
802 		ref_100MHz = 1;
803 	} else {
804 		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
805 		if (clk_type == CLK_EXT_DIFF)
806 			ref_100MHz = 0;
807 		else
808 			ref_100MHz = 1;
809 	}
810 	if (ref_100MHz) {
811 		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
812 		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
813 	} else {
814 		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
815 		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
816 	}
817 	cmu_wr(ctx, cmu_type, CMU_REG2, val);
818 
819 	/* Configure the VCO */
820 	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
821 	if (cmu_type == REF_CMU) {
822 		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
823 		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
824 	} else {
825 		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
826 		if (preA3Chip)
827 			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
828 		else
829 			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
830 		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
831 	}
832 	cmu_wr(ctx, cmu_type, CMU_REG3, val);
833 
834 	/* Disable force PLL lock */
835 	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
836 	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
837 	cmu_wr(ctx, cmu_type, CMU_REG26, val);
838 
839 	/* Setup PLL loop filter */
840 	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
841 	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
842 	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
843 	if (cmu_type == REF_CMU || !preA3Chip)
844 		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
845 	else
846 		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
847 	cmu_wr(ctx, cmu_type, CMU_REG5, val);
848 
849 	/* Enable or disable manual calibration */
850 	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
851 	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
852 	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
853 	cmu_wr(ctx, cmu_type, CMU_REG6, val);
854 
855 	/* Configure lane for 20-bits */
856 	if (cmu_type == PHY_CMU) {
857 		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
858 		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
859 						    CMU_REG9_WORD_LEN_20BIT);
860 		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
861 						    CMU_REG9_WORD_LEN_20BIT);
862 		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
863 		if (!preA3Chip) {
864 			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
865 			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
866 		}
867 		cmu_wr(ctx, cmu_type, CMU_REG9, val);
868 
869 		if (!preA3Chip) {
870 			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
871 			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
872 			cmu_wr(ctx, cmu_type, CMU_REG10, val);
873 		}
874 	}
875 
876 	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
877 	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
878 	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
879 	if (cmu_type == REF_CMU || preA3Chip)
880 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
881 	else
882 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
883 	cmu_wr(ctx, cmu_type, CMU_REG16, val);
884 
885 	/* Configure for SATA */
886 	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
887 	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
888 	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
889 	cmu_wr(ctx, cmu_type, CMU_REG30, val);
890 
891 	/* Disable state machine bypass */
892 	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
893 
894 	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
895 	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
896 	if (cmu_type == REF_CMU || preA3Chip)
897 		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
898 	else
899 		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
900 	cmu_wr(ctx, cmu_type, CMU_REG32, val);
901 
902 	/* Set VCO calibration threshold */
903 	if (cmu_type != REF_CMU && preA3Chip)
904 		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
905 	else
906 		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
907 
908 	/* Set CTLE Override and override waiting from state machine */
909 	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
910 }
911 
912 static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
913 				 enum cmu_type_t cmu_type)
914 {
915 	u32 val;
916 
917 	/* Set SSC modulation value */
918 	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
919 	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
920 	cmu_wr(ctx, cmu_type, CMU_REG35, val);
921 
922 	/* Enable SSC, set vertical step and DSM value */
923 	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
924 	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
925 	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
926 	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
927 	cmu_wr(ctx, cmu_type, CMU_REG36, val);
928 
929 	/* Reset the PLL */
930 	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
931 	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
932 
933 	/* Force VCO calibration to restart */
934 	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
935 		       CMU_REG32_FORCE_VCOCAL_START_MASK);
936 }
937 
938 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
939 {
940 	u32 val;
941 	u32 reg;
942 	int i;
943 	int lane;
944 
945 	for (lane = 0; lane < MAX_LANE; lane++) {
946 		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
947 
948 		/* Set boost control for quarter, half, and full rate */
949 		serdes_rd(ctx, lane, RXTX_REG0, &val);
950 		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
951 		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
952 		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
953 		serdes_wr(ctx, lane, RXTX_REG0, val);
954 
955 		/* Set boost control value */
956 		serdes_rd(ctx, lane, RXTX_REG1, &val);
957 		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
958 		val = RXTX_REG1_CTLE_EQ_SET(val,
959 			ctx->sata_param.txboostgain[lane * 3 +
960 			ctx->sata_param.speed[lane]]);
961 		serdes_wr(ctx, lane, RXTX_REG1, val);
962 
963 		/* Latch VTT value based on the termination to ground and
964 		 * enable TX FIFO
965 		 */
966 		serdes_rd(ctx, lane, RXTX_REG2, &val);
967 		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
968 		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
969 		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
970 		serdes_wr(ctx, lane, RXTX_REG2, val);
971 
972 		/* Configure Tx for 20-bits */
973 		serdes_rd(ctx, lane, RXTX_REG4, &val);
974 		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
975 		serdes_wr(ctx, lane, RXTX_REG4, val);
976 
977 		if (!preA3Chip) {
978 			serdes_rd(ctx, lane, RXTX_REG1, &val);
979 			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
980 			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
981 			serdes_wr(ctx, lane, RXTX_REG1, val);
982 		}
983 
984 		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
985 		serdes_rd(ctx, lane, RXTX_REG5, &val);
986 		val = RXTX_REG5_TX_CN1_SET(val,
987 			ctx->sata_param.txprecursor_cn1[lane * 3 +
988 			ctx->sata_param.speed[lane]]);
989 		val = RXTX_REG5_TX_CP1_SET(val,
990 			ctx->sata_param.txpostcursor_cp1[lane * 3 +
991 			ctx->sata_param.speed[lane]]);
992 		val = RXTX_REG5_TX_CN2_SET(val,
993 			ctx->sata_param.txprecursor_cn2[lane * 3 +
994 			ctx->sata_param.speed[lane]]);
995 		serdes_wr(ctx, lane, RXTX_REG5, val);
996 
997 		/* Set TX amplitude value */
998 		serdes_rd(ctx, lane, RXTX_REG6, &val);
999 		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1000 			ctx->sata_param.txamplitude[lane * 3 +
1001 			ctx->sata_param.speed[lane]]);
1002 		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1003 		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1004 		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1005 		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1006 		serdes_wr(ctx, lane, RXTX_REG6, val);
1007 
1008 		/* Configure Rx for 20-bits */
1009 		serdes_rd(ctx, lane, RXTX_REG7, &val);
1010 		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1011 		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1012 		serdes_wr(ctx, lane, RXTX_REG7, val);
1013 
1014 		/* Set CDR and LOS values and enable Rx SSC */
1015 		serdes_rd(ctx, lane, RXTX_REG8, &val);
1016 		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1017 		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1018 		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1019 		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1020 		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1021 		serdes_wr(ctx, lane, RXTX_REG8, val);
1022 
1023 		/* Set phase adjust upper/lower limits */
1024 		serdes_rd(ctx, lane, RXTX_REG11, &val);
1025 		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1026 		serdes_wr(ctx, lane, RXTX_REG11, val);
1027 
1028 		/* Enable Latch Off; disable SUMOS and Tx termination */
1029 		serdes_rd(ctx, lane, RXTX_REG12, &val);
1030 		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1031 		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1032 		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1033 		serdes_wr(ctx, lane, RXTX_REG12, val);
1034 
1035 		/* Set period error latch to 512T and enable BWL */
1036 		serdes_rd(ctx, lane, RXTX_REG26, &val);
1037 		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1038 		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1039 		serdes_wr(ctx, lane, RXTX_REG26, val);
1040 
1041 		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1042 
1043 		/* Set DFE loop preset value */
1044 		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1045 
1046 		/* Set Eye Monitor counter width to 12-bit */
1047 		serdes_rd(ctx, lane, RXTX_REG61, &val);
1048 		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1049 		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1050 		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1051 		serdes_wr(ctx, lane, RXTX_REG61, val);
1052 
1053 		serdes_rd(ctx, lane, RXTX_REG62, &val);
1054 		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1055 		serdes_wr(ctx, lane, RXTX_REG62, val);
1056 
1057 		/* Set BW select tap X for DFE loop */
1058 		for (i = 0; i < 9; i++) {
1059 			reg = RXTX_REG81 + i * 2;
1060 			serdes_rd(ctx, lane, reg, &val);
1061 			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1062 			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1063 			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1064 			serdes_wr(ctx, lane, reg, val);
1065 		}
1066 
1067 		/* Set BW select tap X for frequency adjust loop */
1068 		for (i = 0; i < 3; i++) {
1069 			reg = RXTX_REG96 + i * 2;
1070 			serdes_rd(ctx, lane, reg, &val);
1071 			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1072 			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1073 			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1074 			serdes_wr(ctx, lane, reg, val);
1075 		}
1076 
1077 		/* Set BW select tap X for phase adjust loop */
1078 		for (i = 0; i < 3; i++) {
1079 			reg = RXTX_REG99 + i * 2;
1080 			serdes_rd(ctx, lane, reg, &val);
1081 			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1082 			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1083 			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1084 			serdes_wr(ctx, lane, reg, val);
1085 		}
1086 
1087 		serdes_rd(ctx, lane, RXTX_REG102, &val);
1088 		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1089 		serdes_wr(ctx, lane, RXTX_REG102, val);
1090 
1091 		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1092 
1093 		serdes_rd(ctx, lane, RXTX_REG125, &val);
1094 		val = RXTX_REG125_SIGN_PQ_SET(val,
1095 			ctx->sata_param.txeyedirection[lane * 3 +
1096 			ctx->sata_param.speed[lane]]);
1097 		val = RXTX_REG125_PQ_REG_SET(val,
1098 			ctx->sata_param.txeyetuning[lane * 3 +
1099 			ctx->sata_param.speed[lane]]);
1100 		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1101 		serdes_wr(ctx, lane, RXTX_REG125, val);
1102 
1103 		serdes_rd(ctx, lane, RXTX_REG127, &val);
1104 		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1105 		serdes_wr(ctx, lane, RXTX_REG127, val);
1106 
1107 		serdes_rd(ctx, lane, RXTX_REG128, &val);
1108 		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1109 		serdes_wr(ctx, lane, RXTX_REG128, val);
1110 
1111 		serdes_rd(ctx, lane, RXTX_REG145, &val);
1112 		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1113 		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1114 		if (preA3Chip) {
1115 			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1116 			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1117 		} else {
1118 			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1119 			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1120 		}
1121 		serdes_wr(ctx, lane, RXTX_REG145, val);
1122 
1123 		/*
1124 		 * Set Rx LOS filter clock rate, sample rate, and threshold
1125 		 * windows
1126 		 */
1127 		for (i = 0; i < 4; i++) {
1128 			reg = RXTX_REG148 + i * 2;
1129 			serdes_wr(ctx, lane, reg, 0xFFFF);
1130 		}
1131 	}
1132 }
1133 
1134 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1135 				 enum cmu_type_t cmu_type,
1136 				 enum clk_type_t clk_type)
1137 {
1138 	void __iomem *csr_serdes = ctx->sds_base;
1139 	int loop;
1140 	u32 val;
1141 
1142 	/* Release PHY main reset */
1143 	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1144 	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1145 
1146 	if (cmu_type != REF_CMU) {
1147 		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1148 		/*
1149 		 * As per PHY design spec, the PLL reset requires a minimum
1150 		 * of 800us.
1151 		 */
1152 		usleep_range(800, 1000);
1153 
1154 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1155 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1156 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1157 		/*
1158 		 * As per PHY design spec, the PLL auto calibration requires
1159 		 * a minimum of 800us.
1160 		 */
1161 		usleep_range(800, 1000);
1162 
1163 		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1164 			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1165 		/*
1166 		 * As per PHY design spec, the PLL requires a minimum of
1167 		 * 800us to settle.
1168 		 */
1169 		usleep_range(800, 1000);
1170 	}
1171 
1172 	if (!preA3Chip)
1173 		goto skip_manual_cal;
1174 
1175 	/*
1176 	 * Configure the termination resister calibration
1177 	 * The serial receive pins, RXP/RXN, have TERMination resistor
1178 	 * that is required to be calibrated.
1179 	 */
1180 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1181 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1182 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1183 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1184 	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1185 		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1186 	/*
1187 	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1188 	 * resistors that are required to the calibrated.
1189 	 * Configure the pull DOWN calibration
1190 	 */
1191 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1193 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195 	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1196 		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1197 	/* Configure the pull UP calibration */
1198 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1199 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1200 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1201 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1202 	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1203 		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1204 
1205 skip_manual_cal:
1206 	/* Poll the PLL calibration completion status for at least 1 ms */
1207 	loop = 100;
1208 	do {
1209 		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1210 		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1211 			break;
1212 		/*
1213 		 * As per PHY design spec, PLL calibration status requires
1214 		 * a minimum of 10us to be updated.
1215 		 */
1216 		usleep_range(10, 100);
1217 	} while (--loop > 0);
1218 
1219 	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1220 	dev_dbg(ctx->dev, "PLL calibration %s\n",
1221 		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1222 	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1223 		dev_err(ctx->dev,
1224 			"PLL calibration failed due to VCO failure\n");
1225 		return -1;
1226 	}
1227 	dev_dbg(ctx->dev, "PLL calibration successful\n");
1228 
1229 	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1230 	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1231 	return 0;
1232 }
1233 
1234 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1235 				     enum cmu_type_t cmu_type,
1236 				     enum clk_type_t clk_type)
1237 {
1238 	u32 val;
1239 
1240 	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1241 	if (cmu_type == PHY_CMU) {
1242 		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1243 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1244 		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1245 	}
1246 
1247 	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1248 	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1249 		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1250 }
1251 
1252 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1253 				  enum clk_type_t clk_type, int ssc_enable)
1254 {
1255 	void __iomem *sds_base = ctx->sds_base;
1256 	u32 val;
1257 	int i;
1258 
1259 	/* Configure the PHY for operation */
1260 	dev_dbg(ctx->dev, "Reset PHY\n");
1261 	/* Place PHY into reset */
1262 	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1263 	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1264 	/* Release PHY lane from reset (active high) */
1265 	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1266 	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1267 	/* Release all PHY module out of reset except PHY main reset */
1268 	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1269 	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1270 
1271 	/* Set the operation speed */
1272 	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1273 	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1274 		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1275 	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1276 
1277 	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1278 	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1279 	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1280 	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1281 
1282 	/* Configure the clock macro unit (CMU) clock type */
1283 	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1284 
1285 	/* Configure the clock macro */
1286 	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1287 
1288 	/* Enable SSC if enabled */
1289 	if (ssc_enable)
1290 		xgene_phy_ssc_enable(ctx, PHY_CMU);
1291 
1292 	/* Configure PHY lanes */
1293 	xgene_phy_sata_cfg_lanes(ctx);
1294 
1295 	/* Set Rx/Tx 20-bit */
1296 	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1297 	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1298 	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1299 	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1300 
1301 	/* Start PLL calibration and try for three times */
1302 	i = 10;
1303 	do {
1304 		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1305 			break;
1306 		/* If failed, toggle the VCO power signal and start again */
1307 		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1308 	} while (--i > 0);
1309 	/* Even on failure, allow to continue any way */
1310 	if (i <= 0)
1311 		dev_err(ctx->dev, "PLL calibration failed\n");
1312 
1313 	return 0;
1314 }
1315 
1316 static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1317 				   enum clk_type_t clk_type,
1318 				   int ssc_enable)
1319 {
1320 	int rc;
1321 
1322 	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1323 
1324 	if (ctx->mode == MODE_SATA) {
1325 		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1326 		if (rc)
1327 			return rc;
1328 	} else {
1329 		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1330 			ctx->mode);
1331 		return -ENODEV;
1332 	}
1333 
1334 	return 0;
1335 }
1336 
1337 /*
1338  * Receiver Offset Calibration:
1339  *
1340  * Calibrate the receiver signal path offset in two steps - summar and
1341  * latch calibrations
1342  */
1343 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1344 {
1345 	int i;
1346 	static const struct {
1347 		u32 reg;
1348 		u32 val;
1349 	} serdes_reg[] = {
1350 		{RXTX_REG38, 0x0},
1351 		{RXTX_REG39, 0xff00},
1352 		{RXTX_REG40, 0xffff},
1353 		{RXTX_REG41, 0xffff},
1354 		{RXTX_REG42, 0xffff},
1355 		{RXTX_REG43, 0xffff},
1356 		{RXTX_REG44, 0xffff},
1357 		{RXTX_REG45, 0xffff},
1358 		{RXTX_REG46, 0xffff},
1359 		{RXTX_REG47, 0xfffc},
1360 		{RXTX_REG48, 0x0},
1361 		{RXTX_REG49, 0x0},
1362 		{RXTX_REG50, 0x0},
1363 		{RXTX_REG51, 0x0},
1364 		{RXTX_REG52, 0x0},
1365 		{RXTX_REG53, 0x0},
1366 		{RXTX_REG54, 0x0},
1367 		{RXTX_REG55, 0x0},
1368 	};
1369 
1370 	/* Start SUMMER calibration */
1371 	serdes_setbits(ctx, lane, RXTX_REG127,
1372 		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1373 	/*
1374 	 * As per PHY design spec, the Summer calibration requires a minimum
1375 	 * of 100us to complete.
1376 	 */
1377 	usleep_range(100, 500);
1378 	serdes_clrbits(ctx, lane, RXTX_REG127,
1379 			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1380 	/*
1381 	 * As per PHY design spec, the auto calibration requires a minimum
1382 	 * of 100us to complete.
1383 	 */
1384 	usleep_range(100, 500);
1385 
1386 	/* Start latch calibration */
1387 	serdes_setbits(ctx, lane, RXTX_REG127,
1388 		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1389 	/*
1390 	 * As per PHY design spec, the latch calibration requires a minimum
1391 	 * of 100us to complete.
1392 	 */
1393 	usleep_range(100, 500);
1394 	serdes_clrbits(ctx, lane, RXTX_REG127,
1395 		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1396 
1397 	/* Configure the PHY lane for calibration */
1398 	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1399 	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1400 	serdes_clrbits(ctx, lane, RXTX_REG4,
1401 		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1402 	serdes_clrbits(ctx, lane, RXTX_REG7,
1403 		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1404 	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1405 		serdes_wr(ctx, lane, serdes_reg[i].reg,
1406 			  serdes_reg[i].val);
1407 }
1408 
1409 static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1410 {
1411 	/* Reset digital Rx */
1412 	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1413 	/* As per PHY design spec, the reset requires a minimum of 100us. */
1414 	usleep_range(100, 150);
1415 	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1416 }
1417 
1418 static int xgene_phy_get_avg(int accum, int samples)
1419 {
1420 	return (accum + (samples / 2)) / samples;
1421 }
1422 
1423 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1424 {
1425 	int max_loop = 10;
1426 	int avg_loop = 0;
1427 	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1428 	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1429 	int sum_cal = 0;
1430 	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1431 	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1432 	int sum_cal_itr;
1433 	int fail_even;
1434 	int fail_odd;
1435 	u32 val;
1436 
1437 	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1438 		lane);
1439 
1440 	/* Enable RX Hi-Z termination */
1441 	serdes_setbits(ctx, lane, RXTX_REG12,
1442 			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1443 	/* Turn off DFE */
1444 	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1445 	/* DFE Presets to zero */
1446 	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1447 
1448 	/*
1449 	 * Receiver Offset Calibration:
1450 	 * Calibrate the receiver signal path offset in two steps - summar
1451 	 * and latch calibration.
1452 	 * Runs the "Receiver Offset Calibration multiple times to determine
1453 	 * the average value to use.
1454 	 */
1455 	while (avg_loop < max_loop) {
1456 		/* Start the calibration */
1457 		xgene_phy_force_lat_summer_cal(ctx, lane);
1458 
1459 		serdes_rd(ctx, lane, RXTX_REG21, &val);
1460 		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1461 		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1462 		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1463 
1464 		serdes_rd(ctx, lane, RXTX_REG22, &val);
1465 		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1466 		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1467 		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1468 
1469 		serdes_rd(ctx, lane, RXTX_REG23, &val);
1470 		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1471 		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1472 
1473 		serdes_rd(ctx, lane, RXTX_REG24, &val);
1474 		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1475 		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1476 
1477 		serdes_rd(ctx, lane, RXTX_REG121, &val);
1478 		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1479 
1480 		/* Check for failure. If passed, sum them for averaging */
1481 		if ((fail_even == 0 || fail_even == 1) &&
1482 		    (fail_odd == 0 || fail_odd == 1)) {
1483 			lat_do += lat_do_itr;
1484 			lat_xo += lat_xo_itr;
1485 			lat_eo += lat_eo_itr;
1486 			lat_so += lat_so_itr;
1487 			lat_de += lat_de_itr;
1488 			lat_xe += lat_xe_itr;
1489 			lat_ee += lat_ee_itr;
1490 			lat_se += lat_se_itr;
1491 			sum_cal += sum_cal_itr;
1492 
1493 			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1494 			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1495 				lat_do_itr, lat_xo_itr, lat_eo_itr,
1496 				lat_so_itr);
1497 			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1498 				lat_de_itr, lat_xe_itr, lat_ee_itr,
1499 				lat_se_itr);
1500 			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1501 			++avg_loop;
1502 		} else {
1503 			dev_err(ctx->dev,
1504 				"Receiver calibration failed at %d loop\n",
1505 				avg_loop);
1506 		}
1507 		xgene_phy_reset_rxd(ctx, lane);
1508 	}
1509 
1510 	/* Update latch manual calibration with average value */
1511 	serdes_rd(ctx, lane, RXTX_REG127, &val);
1512 	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1513 		xgene_phy_get_avg(lat_do, max_loop));
1514 	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1515 		xgene_phy_get_avg(lat_xo, max_loop));
1516 	serdes_wr(ctx, lane, RXTX_REG127, val);
1517 
1518 	serdes_rd(ctx, lane, RXTX_REG128, &val);
1519 	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1520 		xgene_phy_get_avg(lat_eo, max_loop));
1521 	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1522 		xgene_phy_get_avg(lat_so, max_loop));
1523 	serdes_wr(ctx, lane, RXTX_REG128, val);
1524 
1525 	serdes_rd(ctx, lane, RXTX_REG129, &val);
1526 	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1527 		xgene_phy_get_avg(lat_de, max_loop));
1528 	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1529 		xgene_phy_get_avg(lat_xe, max_loop));
1530 	serdes_wr(ctx, lane, RXTX_REG129, val);
1531 
1532 	serdes_rd(ctx, lane, RXTX_REG130, &val);
1533 	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1534 		xgene_phy_get_avg(lat_ee, max_loop));
1535 	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1536 		xgene_phy_get_avg(lat_se, max_loop));
1537 	serdes_wr(ctx, lane, RXTX_REG130, val);
1538 
1539 	/* Update SUMMER calibration with average value */
1540 	serdes_rd(ctx, lane, RXTX_REG14, &val);
1541 	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1542 		xgene_phy_get_avg(sum_cal, max_loop));
1543 	serdes_wr(ctx, lane, RXTX_REG14, val);
1544 
1545 	dev_dbg(ctx->dev, "Average Value:\n");
1546 	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1547 		 xgene_phy_get_avg(lat_do, max_loop),
1548 		 xgene_phy_get_avg(lat_xo, max_loop),
1549 		 xgene_phy_get_avg(lat_eo, max_loop),
1550 		 xgene_phy_get_avg(lat_so, max_loop));
1551 	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1552 		 xgene_phy_get_avg(lat_de, max_loop),
1553 		 xgene_phy_get_avg(lat_xe, max_loop),
1554 		 xgene_phy_get_avg(lat_ee, max_loop),
1555 		 xgene_phy_get_avg(lat_se, max_loop));
1556 	dev_dbg(ctx->dev, "SUM 0x%x\n",
1557 		xgene_phy_get_avg(sum_cal, max_loop));
1558 
1559 	serdes_rd(ctx, lane, RXTX_REG14, &val);
1560 	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1561 	serdes_wr(ctx, lane, RXTX_REG14, val);
1562 	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1563 
1564 	serdes_rd(ctx, lane, RXTX_REG127, &val);
1565 	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1566 	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1567 	serdes_wr(ctx, lane, RXTX_REG127, val);
1568 
1569 	/* Disable RX Hi-Z termination */
1570 	serdes_rd(ctx, lane, RXTX_REG12, &val);
1571 	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1572 	serdes_wr(ctx, lane, RXTX_REG12, val);
1573 	/* Turn on DFE */
1574 	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1575 	/* Set DFE preset */
1576 	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1577 }
1578 
1579 static int xgene_phy_hw_init(struct phy *phy)
1580 {
1581 	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1582 	int rc;
1583 	int i;
1584 
1585 	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1586 	if (rc) {
1587 		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1588 		return rc;
1589 	}
1590 
1591 	/* Setup clock properly after PHY configuration */
1592 	if (!IS_ERR(ctx->clk)) {
1593 		/* HW requires an toggle of the clock */
1594 		clk_prepare_enable(ctx->clk);
1595 		clk_disable_unprepare(ctx->clk);
1596 		clk_prepare_enable(ctx->clk);
1597 	}
1598 
1599 	/* Compute average value */
1600 	for (i = 0; i < MAX_LANE; i++)
1601 		xgene_phy_gen_avg_val(ctx, i);
1602 
1603 	dev_dbg(ctx->dev, "PHY initialized\n");
1604 	return 0;
1605 }
1606 
1607 static const struct phy_ops xgene_phy_ops = {
1608 	.init		= xgene_phy_hw_init,
1609 	.owner		= THIS_MODULE,
1610 };
1611 
1612 static struct phy *xgene_phy_xlate(struct device *dev,
1613 				   struct of_phandle_args *args)
1614 {
1615 	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1616 
1617 	if (args->args_count <= 0)
1618 		return ERR_PTR(-EINVAL);
1619 	if (args->args[0] >= MODE_MAX)
1620 		return ERR_PTR(-EINVAL);
1621 
1622 	ctx->mode = args->args[0];
1623 	return ctx->phy;
1624 }
1625 
1626 static void xgene_phy_get_param(struct platform_device *pdev,
1627 				const char *name, u32 *buffer,
1628 				int count, u32 *default_val,
1629 				u32 conv_factor)
1630 {
1631 	int i;
1632 
1633 	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1634 					count)) {
1635 		for (i = 0; i < count; i++)
1636 			buffer[i] /= conv_factor;
1637 		return;
1638 	}
1639 	/* Does not exist, load default */
1640 	for (i = 0; i < count; i++)
1641 		buffer[i] = default_val[i % 3];
1642 }
1643 
1644 static int xgene_phy_probe(struct platform_device *pdev)
1645 {
1646 	struct phy_provider *phy_provider;
1647 	struct xgene_phy_ctx *ctx;
1648 	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1649 	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1650 	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1651 	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1652 	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1653 	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1654 	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1655 	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1656 	int i;
1657 
1658 	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1659 	if (!ctx)
1660 		return -ENOMEM;
1661 
1662 	ctx->dev = &pdev->dev;
1663 
1664 	ctx->sds_base = devm_platform_ioremap_resource(pdev, 0);
1665 	if (IS_ERR(ctx->sds_base))
1666 		return PTR_ERR(ctx->sds_base);
1667 
1668 	/* Retrieve optional clock */
1669 	ctx->clk = clk_get(&pdev->dev, NULL);
1670 
1671 	/* Load override paramaters */
1672 	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1673 		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1674 	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1675 		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1676 	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1677 		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1678 	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1679 		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1680 	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1681 		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1682 	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1683 		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1684 	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1685 		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1686 	xgene_phy_get_param(pdev, "apm,tx-speed",
1687 		ctx->sata_param.txspeed, 3, default_spd, 1);
1688 	for (i = 0; i < MAX_LANE; i++)
1689 		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1690 
1691 	platform_set_drvdata(pdev, ctx);
1692 
1693 	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1694 	if (IS_ERR(ctx->phy)) {
1695 		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1696 		return PTR_ERR(ctx->phy);
1697 	}
1698 	phy_set_drvdata(ctx->phy, ctx);
1699 
1700 	phy_provider = devm_of_phy_provider_register(ctx->dev, xgene_phy_xlate);
1701 	return PTR_ERR_OR_ZERO(phy_provider);
1702 }
1703 
1704 static const struct of_device_id xgene_phy_of_match[] = {
1705 	{.compatible = "apm,xgene-phy",},
1706 	{},
1707 };
1708 MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1709 
1710 static struct platform_driver xgene_phy_driver = {
1711 	.probe = xgene_phy_probe,
1712 	.driver = {
1713 		   .name = "xgene-phy",
1714 		   .of_match_table = xgene_phy_of_match,
1715 	},
1716 };
1717 module_platform_driver(xgene_phy_driver);
1718 
1719 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1720 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1721 MODULE_LICENSE("GPL v2");
1722 MODULE_VERSION("0.1");
1723