xref: /openbmc/linux/drivers/phy/phy-xgene.c (revision c819e2cf)
1 /*
2  * AppliedMicro X-Gene Multi-purpose PHY driver
3  *
4  * Copyright (c) 2014, Applied Micro Circuits Corporation
5  * Author: Loc Ho <lho@apm.com>
6  *         Tuan Phan <tphan@apm.com>
7  *         Suman Tripathi <stripathi@apm.com>
8  *
9  * This program is free software; you can redistribute  it and/or modify it
10  * under  the terms of  the GNU General  Public License as published by the
11  * Free Software Foundation;  either version 2 of the  License, or (at your
12  * option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  *
22  * The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
23  * The first PLL clock macro is used for internal reference clock. The second
24  * PLL clock macro is used to generate the clock for the PHY. This driver
25  * configures the first PLL CMU, the second PLL CMU, and programs the PHY to
26  * operate according to the mode of operation. The first PLL CMU is only
27  * required if internal clock is enabled.
28  *
29  * Logical Layer Out Of HW module units:
30  *
31  * -----------------
32  * | Internal      |    |------|
33  * | Ref PLL CMU   |----|      |     -------------    ---------
34  * ------------ ----    | MUX  |-----|PHY PLL CMU|----| Serdes|
35  *                      |      |     |           |    ---------
36  * External Clock ------|      |     -------------
37  *                      |------|
38  *
39  * The Ref PLL CMU CSR (Configuration System Registers) is accessed
40  * indirectly from the SDS offset at 0x2000. It is only required for
41  * internal reference clock.
42  * The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
43  * The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
44  *
45  * The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
46  * due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
47  * it is located outside the PHY IP. This is the case for the PHY located
48  * at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
49  * to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
50  *
51  * Currently, this driver only supports Gen3 SATA mode with external clock.
52  */
53 #include <linux/module.h>
54 #include <linux/platform_device.h>
55 #include <linux/io.h>
56 #include <linux/delay.h>
57 #include <linux/phy/phy.h>
58 #include <linux/clk.h>
59 
60 /* Max 2 lanes per a PHY unit */
61 #define MAX_LANE			2
62 
63 /* Register offset inside the PHY */
64 #define SERDES_PLL_INDIRECT_OFFSET	0x0000
65 #define SERDES_PLL_REF_INDIRECT_OFFSET	0x2000
66 #define SERDES_INDIRECT_OFFSET		0x0400
67 #define SERDES_LANE_STRIDE		0x0200
68 
69 /* Some default Serdes parameters */
70 #define DEFAULT_SATA_TXBOOST_GAIN	{ 0x1e, 0x1e, 0x1e }
71 #define DEFAULT_SATA_TXEYEDIRECTION	{ 0x0, 0x0, 0x0 }
72 #define DEFAULT_SATA_TXEYETUNING	{ 0xa, 0xa, 0xa }
73 #define DEFAULT_SATA_SPD_SEL		{ 0x1, 0x3, 0x7 }
74 #define DEFAULT_SATA_TXAMP		{ 0x8, 0x8, 0x8 }
75 #define DEFAULT_SATA_TXCN1		{ 0x2, 0x2, 0x2 }
76 #define DEFAULT_SATA_TXCN2		{ 0x0, 0x0, 0x0 }
77 #define DEFAULT_SATA_TXCP1		{ 0xa, 0xa, 0xa }
78 
79 #define SATA_SPD_SEL_GEN3		0x7
80 #define SATA_SPD_SEL_GEN2		0x3
81 #define SATA_SPD_SEL_GEN1		0x1
82 
83 #define SSC_DISABLE			0
84 #define SSC_ENABLE			1
85 
86 #define FBDIV_VAL_50M			0x77
87 #define REFDIV_VAL_50M			0x1
88 #define FBDIV_VAL_100M			0x3B
89 #define REFDIV_VAL_100M			0x0
90 
91 /* SATA Clock/Reset CSR */
92 #define SATACLKENREG			0x00000000
93 #define  SATA0_CORE_CLKEN		0x00000002
94 #define  SATA1_CORE_CLKEN		0x00000004
95 #define SATASRESETREG			0x00000004
96 #define  SATA_MEM_RESET_MASK		0x00000020
97 #define  SATA_MEM_RESET_RD(src)		(((src) & 0x00000020) >> 5)
98 #define  SATA_SDS_RESET_MASK		0x00000004
99 #define  SATA_CSR_RESET_MASK		0x00000001
100 #define  SATA_CORE_RESET_MASK		0x00000002
101 #define  SATA_PMCLK_RESET_MASK		0x00000010
102 #define  SATA_PCLK_RESET_MASK		0x00000008
103 
104 /* SDS CSR used for PHY Indirect access */
105 #define SATA_ENET_SDS_PCS_CTL0		0x00000000
106 #define  REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
107 		(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
108 #define  REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
109 		(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
110 #define SATA_ENET_SDS_CTL0		0x0000000c
111 #define  REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
112 		(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
113 #define SATA_ENET_SDS_CTL1		0x00000010
114 #define  CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
115 		(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
116 #define SATA_ENET_SDS_RST_CTL		0x00000024
117 #define SATA_ENET_SDS_IND_CMD_REG	0x0000003c
118 #define  CFG_IND_WR_CMD_MASK		0x00000001
119 #define  CFG_IND_RD_CMD_MASK		0x00000002
120 #define  CFG_IND_CMD_DONE_MASK		0x00000004
121 #define  CFG_IND_ADDR_SET(dst, src) \
122 		(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
123 #define SATA_ENET_SDS_IND_RDATA_REG	0x00000040
124 #define SATA_ENET_SDS_IND_WDATA_REG	0x00000044
125 #define SATA_ENET_CLK_MACRO_REG		0x0000004c
126 #define  I_RESET_B_SET(dst, src) \
127 		(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
128 #define  I_PLL_FBDIV_SET(dst, src) \
129 		(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
130 #define  I_CUSTOMEROV_SET(dst, src) \
131 		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
132 #define  O_PLL_LOCK_RD(src)		(((src) & 0x40000000) >> 30)
133 #define  O_PLL_READY_RD(src)		(((src) & 0x80000000) >> 31)
134 
135 /* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
136 #define CMU_REG0			0x00000
137 #define  CMU_REG0_PLL_REF_SEL_MASK	0x00002000
138 #define  CMU_REG0_PLL_REF_SEL_SET(dst, src)	\
139 		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
140 #define  CMU_REG0_PDOWN_MASK		0x00004000
141 #define  CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
142 		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
143 #define CMU_REG1			0x00002
144 #define  CMU_REG1_PLL_CP_SET(dst, src) \
145 		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
146 #define  CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
147 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
148 #define  CMU_REG1_PLL_CP_SEL_SET(dst, src) \
149 		(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
150 #define  CMU_REG1_REFCLK_CMOS_SEL_MASK	0x00000001
151 #define  CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src)	\
152 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
153 #define CMU_REG2			0x00004
154 #define  CMU_REG2_PLL_REFDIV_SET(dst, src) \
155 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
156 #define  CMU_REG2_PLL_LFRES_SET(dst, src) \
157 		(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
158 #define  CMU_REG2_PLL_FBDIV_SET(dst, src) \
159 		(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
160 #define CMU_REG3			0x00006
161 #define  CMU_REG3_VCOVARSEL_SET(dst, src) \
162 		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
163 #define  CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
164 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
165 #define  CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
166 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
167 #define CMU_REG4			0x00008
168 #define CMU_REG5			0x0000a
169 #define  CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
170 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
171 #define  CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
172 		(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
173 #define  CMU_REG5_PLL_LFCAP_SET(dst, src) \
174 		(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
175 #define  CMU_REG5_PLL_RESETB_MASK	0x00000001
176 #define CMU_REG6			0x0000c
177 #define  CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
178 		(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
179 #define  CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
180 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
181 #define CMU_REG7			0x0000e
182 #define  CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
183 #define  CMU_REG7_VCO_CAL_FAIL_RD(src)	((0x00000c00 & (u32) (src)) >> 10)
184 #define CMU_REG8			0x00010
185 #define CMU_REG9			0x00012
186 #define  CMU_REG9_WORD_LEN_8BIT		0x000
187 #define  CMU_REG9_WORD_LEN_10BIT	0x001
188 #define  CMU_REG9_WORD_LEN_16BIT	0x002
189 #define  CMU_REG9_WORD_LEN_20BIT	0x003
190 #define  CMU_REG9_WORD_LEN_32BIT	0x004
191 #define  CMU_REG9_WORD_LEN_40BIT	0x005
192 #define  CMU_REG9_WORD_LEN_64BIT	0x006
193 #define  CMU_REG9_WORD_LEN_66BIT	0x007
194 #define  CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
195 		(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
196 #define  CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
197 		(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
198 #define  CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
199 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
200 #define  CMU_REG9_VBG_BYPASSB_SET(dst, src) \
201 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
202 #define  CMU_REG9_IGEN_BYPASS_SET(dst, src) \
203 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
204 #define CMU_REG10			0x00014
205 #define  CMU_REG10_VREG_REFSEL_SET(dst, src) \
206 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
207 #define CMU_REG11			0x00016
208 #define CMU_REG12			0x00018
209 #define  CMU_REG12_STATE_DELAY9_SET(dst, src) \
210 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
211 #define CMU_REG13			0x0001a
212 #define CMU_REG14			0x0001c
213 #define CMU_REG15			0x0001e
214 #define CMU_REG16			0x00020
215 #define  CMU_REG16_PVT_DN_MAN_ENA_MASK	0x00000001
216 #define  CMU_REG16_PVT_UP_MAN_ENA_MASK	0x00000002
217 #define  CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
218 		(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
219 #define  CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
220 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
221 #define  CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
222 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
223 #define CMU_REG17			0x00022
224 #define  CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
225 		(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
226 #define  CMU_REG17_RESERVED_7_SET(dst, src) \
227 		(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
228 #define  CMU_REG17_PVT_TERM_MAN_ENA_MASK	0x00008000
229 #define CMU_REG18			0x00024
230 #define CMU_REG19			0x00026
231 #define CMU_REG20			0x00028
232 #define CMU_REG21			0x0002a
233 #define CMU_REG22			0x0002c
234 #define CMU_REG23			0x0002e
235 #define CMU_REG24			0x00030
236 #define CMU_REG25			0x00032
237 #define CMU_REG26			0x00034
238 #define  CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
239 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
240 #define CMU_REG27			0x00036
241 #define CMU_REG28			0x00038
242 #define CMU_REG29			0x0003a
243 #define CMU_REG30			0x0003c
244 #define  CMU_REG30_LOCK_COUNT_SET(dst, src) \
245 		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
246 #define  CMU_REG30_PCIE_MODE_SET(dst, src) \
247 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
248 #define CMU_REG31			0x0003e
249 #define CMU_REG32			0x00040
250 #define  CMU_REG32_FORCE_VCOCAL_START_MASK	0x00004000
251 #define  CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
252 		(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
253 #define  CMU_REG32_IREF_ADJ_SET(dst, src) \
254 		(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
255 #define CMU_REG33			0x00042
256 #define CMU_REG34			0x00044
257 #define  CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
258 		(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
259 #define  CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
260 		(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
261 #define  CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
262 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
263 #define  CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
264 		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
265 #define CMU_REG35			0x00046
266 #define  CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
267 		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
268 #define CMU_REG36				0x00048
269 #define  CMU_REG36_PLL_SSC_EN_SET(dst, src) \
270 		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
271 #define  CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
272 		(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
273 #define  CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
274 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
275 #define CMU_REG37			0x0004a
276 #define CMU_REG38			0x0004c
277 #define CMU_REG39			0x0004e
278 
279 /* PHY lane CSR accessing from SDS indirectly */
280 #define RXTX_REG0			0x000
281 #define  RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
282 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
283 #define  RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
284 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
285 #define  RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
286 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
287 #define RXTX_REG1			0x002
288 #define  RXTX_REG1_RXACVCM_SET(dst, src) \
289 		(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
290 #define  RXTX_REG1_CTLE_EQ_SET(dst, src) \
291 		(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
292 #define  RXTX_REG1_RXVREG1_SET(dst, src) \
293 		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
294 #define  RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
295 		(((dst) & ~0x00000006) | (((u32) (src) << 1) &  0x00000006))
296 #define RXTX_REG2			0x004
297 #define  RXTX_REG2_VTT_ENA_SET(dst, src) \
298 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
299 #define  RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
300 		(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
301 #define  RXTX_REG2_VTT_SEL_SET(dst, src) \
302 		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
303 #define RXTX_REG4			0x008
304 #define  RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK	0x00000040
305 #define  RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
306 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
307 #define  RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
308 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
309 #define RXTX_REG5			0x00a
310 #define  RXTX_REG5_TX_CN1_SET(dst, src) \
311 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
312 #define  RXTX_REG5_TX_CP1_SET(dst, src) \
313 		(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
314 #define  RXTX_REG5_TX_CN2_SET(dst, src) \
315 		(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
316 #define RXTX_REG6			0x00c
317 #define  RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
318 		(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
319 #define  RXTX_REG6_TXAMP_ENA_SET(dst, src) \
320 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
321 #define  RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
322 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
323 #define  RXTX_REG6_TX_IDLE_SET(dst, src) \
324 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
325 #define  RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
326 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
327 #define RXTX_REG7			0x00e
328 #define  RXTX_REG7_RESETB_RXD_MASK	0x00000100
329 #define  RXTX_REG7_RESETB_RXA_MASK	0x00000080
330 #define  RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
331 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
332 #define  RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
333 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
334 #define RXTX_REG8			0x010
335 #define  RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
336 		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
337 #define  RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
338 		(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
339 #define  RXTX_REG8_SSC_ENABLE_SET(dst, src) \
340 		(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
341 #define  RXTX_REG8_SD_VREF_SET(dst, src) \
342 		(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
343 #define  RXTX_REG8_SD_DISABLE_SET(dst, src) \
344 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
345 #define RXTX_REG7			0x00e
346 #define  RXTX_REG7_RESETB_RXD_SET(dst, src) \
347 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
348 #define  RXTX_REG7_RESETB_RXA_SET(dst, src) \
349 		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
350 #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK	0x00004000
351 #define  RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
352 		(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
353 #define RXTX_REG11			0x016
354 #define  RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
355 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
356 #define RXTX_REG12			0x018
357 #define  RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
358 		(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
359 #define  RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
360 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
361 #define  RXTX_REG12_RX_DET_TERM_ENABLE_MASK	0x00000002
362 #define  RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
363 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
364 #define RXTX_REG13			0x01a
365 #define RXTX_REG14			0x01c
366 #define  RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
367 		(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
368 #define  RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
369 		(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
370 #define RXTX_REG26			0x034
371 #define  RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
372 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
373 #define  RXTX_REG26_BLWC_ENA_SET(dst, src) \
374 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
375 #define RXTX_REG21			0x02a
376 #define  RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
377 #define  RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
378 #define  RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src)	((0x0000000f & (u32)(src)))
379 #define RXTX_REG22			0x02c
380 #define  RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
381 #define  RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
382 #define  RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src)	((0x0000000f & (u32)(src)))
383 #define RXTX_REG23			0x02e
384 #define  RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
385 #define  RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
386 #define RXTX_REG24			0x030
387 #define  RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
388 #define  RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
389 #define RXTX_REG27			0x036
390 #define RXTX_REG28			0x038
391 #define RXTX_REG31			0x03e
392 #define RXTX_REG38			0x04c
393 #define  RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
394 		(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
395 #define RXTX_REG39			0x04e
396 #define RXTX_REG40			0x050
397 #define RXTX_REG41			0x052
398 #define RXTX_REG42			0x054
399 #define RXTX_REG43			0x056
400 #define RXTX_REG44			0x058
401 #define RXTX_REG45			0x05a
402 #define RXTX_REG46			0x05c
403 #define RXTX_REG47			0x05e
404 #define RXTX_REG48			0x060
405 #define RXTX_REG49			0x062
406 #define RXTX_REG50			0x064
407 #define RXTX_REG51			0x066
408 #define RXTX_REG52			0x068
409 #define RXTX_REG53			0x06a
410 #define RXTX_REG54			0x06c
411 #define RXTX_REG55			0x06e
412 #define RXTX_REG61			0x07a
413 #define  RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
414 		(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
415 #define  RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
416 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
417 #define  RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
418 		(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
419 #define  RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
420 		(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
421 #define RXTX_REG62			0x07c
422 #define  RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
423 		(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
424 #define RXTX_REG81			0x0a2
425 #define  RXTX_REG89_MU_TH7_SET(dst, src) \
426 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
427 #define  RXTX_REG89_MU_TH8_SET(dst, src) \
428 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
429 #define  RXTX_REG89_MU_TH9_SET(dst, src) \
430 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
431 #define RXTX_REG96			0x0c0
432 #define  RXTX_REG96_MU_FREQ1_SET(dst, src) \
433 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
434 #define  RXTX_REG96_MU_FREQ2_SET(dst, src) \
435 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
436 #define  RXTX_REG96_MU_FREQ3_SET(dst, src) \
437 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
438 #define RXTX_REG99			0x0c6
439 #define  RXTX_REG99_MU_PHASE1_SET(dst, src) \
440 		(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
441 #define  RXTX_REG99_MU_PHASE2_SET(dst, src) \
442 		(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
443 #define  RXTX_REG99_MU_PHASE3_SET(dst, src) \
444 		(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
445 #define RXTX_REG102			0x0cc
446 #define  RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
447 		(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
448 #define RXTX_REG114			0x0e4
449 #define RXTX_REG121			0x0f2
450 #define  RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
451 #define RXTX_REG125			0x0fa
452 #define  RXTX_REG125_PQ_REG_SET(dst, src) \
453 		(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
454 #define  RXTX_REG125_SIGN_PQ_SET(dst, src) \
455 		(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
456 #define  RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
457 		(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
458 #define  RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
459 		(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
460 #define  RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
461 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
462 #define RXTX_REG127			0x0fe
463 #define  RXTX_REG127_FORCE_SUM_CAL_START_MASK	0x00000002
464 #define  RXTX_REG127_FORCE_LAT_CAL_START_MASK	0x00000004
465 #define  RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
466 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
467 #define  RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
468 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
469 #define  RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
470 		(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
471 #define  RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
472 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
473 #define  RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
474 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
475 #define RXTX_REG128			0x100
476 #define  RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
477 		(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
478 #define  RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
479 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
480 #define  RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
481 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
482 #define RXTX_REG129			0x102
483 #define  RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
484 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
485 #define  RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
486 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
487 #define RXTX_REG130			0x104
488 #define  RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
489 		(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
490 #define  RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
491 		(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
492 #define RXTX_REG145			0x122
493 #define  RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
494 		(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
495 #define  RXTX_REG145_RXES_ENA_SET(dst, src) \
496 		(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
497 #define  RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
498 		(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
499 #define  RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
500 		(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
501 #define RXTX_REG147			0x126
502 #define RXTX_REG148			0x128
503 
504 /* Clock macro type */
505 enum cmu_type_t {
506 	REF_CMU = 0,	/* Clock macro is the internal reference clock */
507 	PHY_CMU = 1,	/* Clock macro is the PLL for the Serdes */
508 };
509 
510 enum mux_type_t {
511 	MUX_SELECT_ATA = 0,	/* Switch the MUX to ATA */
512 	MUX_SELECT_SGMMII = 0,	/* Switch the MUX to SGMII */
513 };
514 
515 enum clk_type_t {
516 	CLK_EXT_DIFF = 0,	/* External differential */
517 	CLK_INT_DIFF = 1,	/* Internal differential */
518 	CLK_INT_SING = 2,	/* Internal single ended */
519 };
520 
521 enum phy_mode {
522 	MODE_SATA	= 0,	/* List them for simple reference */
523 	MODE_SGMII	= 1,
524 	MODE_PCIE	= 2,
525 	MODE_USB	= 3,
526 	MODE_XFI	= 4,
527 	MODE_MAX
528 };
529 
530 struct xgene_sata_override_param {
531 	u32 speed[MAX_LANE]; /* Index for override parameter per lane */
532 	u32 txspeed[3];			/* Tx speed */
533 	u32 txboostgain[MAX_LANE*3];	/* Tx freq boost and gain control */
534 	u32 txeyetuning[MAX_LANE*3];	/* Tx eye tuning */
535 	u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
536 	u32 txamplitude[MAX_LANE*3];	/* Tx amplitude control */
537 	u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
538 	u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
539 	u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
540 };
541 
542 struct xgene_phy_ctx {
543 	struct device *dev;
544 	struct phy *phy;
545 	enum phy_mode mode;		/* Mode of operation */
546 	enum clk_type_t clk_type;	/* Input clock selection */
547 	void __iomem *sds_base;		/* PHY CSR base addr */
548 	struct clk *clk;		/* Optional clock */
549 
550 	/* Override Serdes parameters */
551 	struct xgene_sata_override_param sata_param;
552 };
553 
554 /*
555  * For chip earlier than A3 version, enable this flag.
556  * To enable, pass boot argument phy_xgene.preA3Chip=1
557  */
558 static int preA3Chip;
559 MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
560 module_param_named(preA3Chip, preA3Chip, int, 0444);
561 
562 static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
563 		   u32 indirect_data_reg, u32 addr, u32 data)
564 {
565 	unsigned long deadline = jiffies + HZ;
566 	u32 val;
567 	u32 cmd;
568 
569 	cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
570 	cmd = CFG_IND_ADDR_SET(cmd, addr);
571 	writel(data, csr_base + indirect_data_reg);
572 	readl(csr_base + indirect_data_reg); /* Force a barrier */
573 	writel(cmd, csr_base + indirect_cmd_reg);
574 	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
575 	do {
576 		val = readl(csr_base + indirect_cmd_reg);
577 	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
578 		 time_before(jiffies, deadline));
579 	if (!(val & CFG_IND_CMD_DONE_MASK))
580 		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
581 		       csr_base + indirect_cmd_reg, addr, data);
582 }
583 
584 static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
585 		   u32 indirect_data_reg, u32 addr, u32 *data)
586 {
587 	unsigned long deadline = jiffies + HZ;
588 	u32 val;
589 	u32 cmd;
590 
591 	cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
592 	cmd = CFG_IND_ADDR_SET(cmd, addr);
593 	writel(cmd, csr_base + indirect_cmd_reg);
594 	readl(csr_base + indirect_cmd_reg); /* Force a barrier */
595 	do {
596 		val = readl(csr_base + indirect_cmd_reg);
597 	} while (!(val & CFG_IND_CMD_DONE_MASK) &&
598 		 time_before(jiffies, deadline));
599 	*data = readl(csr_base + indirect_data_reg);
600 	if (!(val & CFG_IND_CMD_DONE_MASK))
601 		pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
602 		       csr_base + indirect_cmd_reg, addr, *data);
603 }
604 
605 static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
606 		   u32 reg, u32 data)
607 {
608 	void __iomem *sds_base = ctx->sds_base;
609 	u32 val;
610 
611 	if (cmu_type == REF_CMU)
612 		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
613 	else
614 		reg += SERDES_PLL_INDIRECT_OFFSET;
615 	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
616 		SATA_ENET_SDS_IND_WDATA_REG, reg, data);
617 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
618 		SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
619 	pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
620 }
621 
622 static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
623 		   u32 reg, u32 *data)
624 {
625 	void __iomem *sds_base = ctx->sds_base;
626 
627 	if (cmu_type == REF_CMU)
628 		reg += SERDES_PLL_REF_INDIRECT_OFFSET;
629 	else
630 		reg += SERDES_PLL_INDIRECT_OFFSET;
631 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
632 		SATA_ENET_SDS_IND_RDATA_REG, reg, data);
633 	pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
634 }
635 
636 static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
637 			   u32 reg, u32 bits)
638 {
639 	u32 val;
640 
641 	cmu_rd(ctx, cmu_type, reg, &val);
642 	val |= bits;
643 	cmu_wr(ctx, cmu_type, reg, val);
644 	cmu_rd(ctx, cmu_type, reg, &val);
645 	val &= ~bits;
646 	cmu_wr(ctx, cmu_type, reg, val);
647 }
648 
649 static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
650 			u32 reg, u32 bits)
651 {
652 	u32 val;
653 
654 	cmu_rd(ctx, cmu_type, reg, &val);
655 	val &= ~bits;
656 	cmu_wr(ctx, cmu_type, reg, val);
657 }
658 
659 static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
660 			u32 reg, u32 bits)
661 {
662 	u32 val;
663 
664 	cmu_rd(ctx, cmu_type, reg, &val);
665 	val |= bits;
666 	cmu_wr(ctx, cmu_type, reg, val);
667 }
668 
669 static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
670 {
671 	void __iomem *sds_base = ctx->sds_base;
672 	u32 val;
673 
674 	reg += SERDES_INDIRECT_OFFSET;
675 	reg += lane * SERDES_LANE_STRIDE;
676 	sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
677 	       SATA_ENET_SDS_IND_WDATA_REG, reg, data);
678 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
679 	       SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
680 	pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
681 		 val);
682 }
683 
684 static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
685 {
686 	void __iomem *sds_base = ctx->sds_base;
687 
688 	reg += SERDES_INDIRECT_OFFSET;
689 	reg += lane * SERDES_LANE_STRIDE;
690 	sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
691 	       SATA_ENET_SDS_IND_RDATA_REG, reg, data);
692 	pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
693 }
694 
695 static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
696 			   u32 bits)
697 {
698 	u32 val;
699 
700 	serdes_rd(ctx, lane, reg, &val);
701 	val &= ~bits;
702 	serdes_wr(ctx, lane, reg, val);
703 }
704 
705 static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
706 			   u32 bits)
707 {
708 	u32 val;
709 
710 	serdes_rd(ctx, lane, reg, &val);
711 	val |= bits;
712 	serdes_wr(ctx, lane, reg, val);
713 }
714 
715 static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
716 				       enum cmu_type_t cmu_type,
717 				       enum clk_type_t clk_type)
718 {
719 	u32 val;
720 
721 	/* Set the reset sequence delay for TX ready assertion */
722 	cmu_rd(ctx, cmu_type, CMU_REG12, &val);
723 	val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
724 	cmu_wr(ctx, cmu_type, CMU_REG12, val);
725 	/* Set the programmable stage delays between various enable stages */
726 	cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
727 	cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
728 
729 	/* Configure clock type */
730 	if (clk_type == CLK_EXT_DIFF) {
731 		/* Select external clock mux */
732 		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
733 		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
734 		cmu_wr(ctx, cmu_type, CMU_REG0, val);
735 		/* Select CMOS as reference clock  */
736 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
737 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
738 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
739 		dev_dbg(ctx->dev, "Set external reference clock\n");
740 	} else if (clk_type == CLK_INT_DIFF) {
741 		/* Select internal clock mux */
742 		cmu_rd(ctx, cmu_type, CMU_REG0, &val);
743 		val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
744 		cmu_wr(ctx, cmu_type, CMU_REG0, val);
745 		/* Select CMOS as reference clock  */
746 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
747 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
748 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
749 		dev_dbg(ctx->dev, "Set internal reference clock\n");
750 	} else if (clk_type == CLK_INT_SING) {
751 		/*
752 		 * NOTE: This clock type is NOT support for controller
753 		 *	 whose internal clock shared in the PCIe controller
754 		 *
755 		 * Select internal clock mux
756 		 */
757 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
758 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
759 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
760 		/* Select CML as reference clock */
761 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
762 		val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
763 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
764 		dev_dbg(ctx->dev,
765 			"Set internal single ended reference clock\n");
766 	}
767 }
768 
769 static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
770 					enum cmu_type_t cmu_type,
771 					enum clk_type_t clk_type)
772 {
773 	u32 val;
774 	int ref_100MHz;
775 
776 	if (cmu_type == REF_CMU) {
777 		/* Set VCO calibration voltage threshold */
778 		cmu_rd(ctx, cmu_type, CMU_REG34, &val);
779 		val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
780 		val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
781 		val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
782 		val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
783 		cmu_wr(ctx, cmu_type, CMU_REG34, val);
784 	}
785 
786 	/* Set the VCO calibration counter */
787 	cmu_rd(ctx, cmu_type, CMU_REG0, &val);
788 	if (cmu_type == REF_CMU || preA3Chip)
789 		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
790 	else
791 		val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
792 	cmu_wr(ctx, cmu_type, CMU_REG0, val);
793 
794 	/* Configure PLL for calibration */
795 	cmu_rd(ctx, cmu_type, CMU_REG1, &val);
796 	val = CMU_REG1_PLL_CP_SET(val, 0x1);
797 	if (cmu_type == REF_CMU || preA3Chip)
798 		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
799 	else
800 		val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
801 	if (cmu_type == REF_CMU)
802 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
803 	else
804 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
805 	cmu_wr(ctx, cmu_type, CMU_REG1, val);
806 
807 	if (cmu_type != REF_CMU)
808 		cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
809 
810 	/* Configure the PLL for either 100MHz or 50MHz */
811 	cmu_rd(ctx, cmu_type, CMU_REG2, &val);
812 	if (cmu_type == REF_CMU) {
813 		val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
814 		ref_100MHz = 1;
815 	} else {
816 		val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
817 		if (clk_type == CLK_EXT_DIFF)
818 			ref_100MHz = 0;
819 		else
820 			ref_100MHz = 1;
821 	}
822 	if (ref_100MHz) {
823 		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
824 		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
825 	} else {
826 		val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
827 		val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
828 	}
829 	cmu_wr(ctx, cmu_type, CMU_REG2, val);
830 
831 	/* Configure the VCO */
832 	cmu_rd(ctx, cmu_type, CMU_REG3, &val);
833 	if (cmu_type == REF_CMU) {
834 		val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
835 		val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
836 	} else {
837 		val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
838 		if (preA3Chip)
839 			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
840 		else
841 			val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
842 		val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
843 	}
844 	cmu_wr(ctx, cmu_type, CMU_REG3, val);
845 
846 	/* Disable force PLL lock */
847 	cmu_rd(ctx, cmu_type, CMU_REG26, &val);
848 	val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
849 	cmu_wr(ctx, cmu_type, CMU_REG26, val);
850 
851 	/* Setup PLL loop filter */
852 	cmu_rd(ctx, cmu_type, CMU_REG5, &val);
853 	val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
854 	val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
855 	if (cmu_type == REF_CMU || !preA3Chip)
856 		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
857 	else
858 		val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
859 	cmu_wr(ctx, cmu_type, CMU_REG5, val);
860 
861 	/* Enable or disable manual calibration */
862 	cmu_rd(ctx, cmu_type, CMU_REG6, &val);
863 	val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
864 	val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
865 	cmu_wr(ctx, cmu_type, CMU_REG6, val);
866 
867 	/* Configure lane for 20-bits */
868 	if (cmu_type == PHY_CMU) {
869 		cmu_rd(ctx, cmu_type, CMU_REG9, &val);
870 		val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
871 						    CMU_REG9_WORD_LEN_20BIT);
872 		val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
873 						    CMU_REG9_WORD_LEN_20BIT);
874 		val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
875 		if (!preA3Chip) {
876 			val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
877 			val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
878 		}
879 		cmu_wr(ctx, cmu_type, CMU_REG9, val);
880 
881 		if (!preA3Chip) {
882 			cmu_rd(ctx, cmu_type, CMU_REG10, &val);
883 			val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
884 			cmu_wr(ctx, cmu_type, CMU_REG10, val);
885 		}
886 	}
887 
888 	cmu_rd(ctx, cmu_type, CMU_REG16, &val);
889 	val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
890 	val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
891 	if (cmu_type == REF_CMU || preA3Chip)
892 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
893 	else
894 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
895 	cmu_wr(ctx, cmu_type, CMU_REG16, val);
896 
897 	/* Configure for SATA */
898 	cmu_rd(ctx, cmu_type, CMU_REG30, &val);
899 	val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
900 	val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
901 	cmu_wr(ctx, cmu_type, CMU_REG30, val);
902 
903 	/* Disable state machine bypass */
904 	cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
905 
906 	cmu_rd(ctx, cmu_type, CMU_REG32, &val);
907 	val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
908 	if (cmu_type == REF_CMU || preA3Chip)
909 		val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
910 	else
911 		val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
912 	cmu_wr(ctx, cmu_type, CMU_REG32, val);
913 
914 	/* Set VCO calibration threshold */
915 	if (cmu_type != REF_CMU && preA3Chip)
916 		cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
917 	else
918 		cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
919 
920 	/* Set CTLE Override and override waiting from state machine */
921 	cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
922 }
923 
924 static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
925 				 enum cmu_type_t cmu_type)
926 {
927 	u32 val;
928 
929 	/* Set SSC modulation value */
930 	cmu_rd(ctx, cmu_type, CMU_REG35, &val);
931 	val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
932 	cmu_wr(ctx, cmu_type, CMU_REG35, val);
933 
934 	/* Enable SSC, set vertical step and DSM value */
935 	cmu_rd(ctx, cmu_type, CMU_REG36, &val);
936 	val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
937 	val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
938 	val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
939 	cmu_wr(ctx, cmu_type, CMU_REG36, val);
940 
941 	/* Reset the PLL */
942 	cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
943 	cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
944 
945 	/* Force VCO calibration to restart */
946 	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
947 		       CMU_REG32_FORCE_VCOCAL_START_MASK);
948 }
949 
950 static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
951 {
952 	u32 val;
953 	u32 reg;
954 	int i;
955 	int lane;
956 
957 	for (lane = 0; lane < MAX_LANE; lane++) {
958 		serdes_wr(ctx, lane, RXTX_REG147, 0x6);
959 
960 		/* Set boost control for quarter, half, and full rate */
961 		serdes_rd(ctx, lane, RXTX_REG0, &val);
962 		val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
963 		val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
964 		val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
965 		serdes_wr(ctx, lane, RXTX_REG0, val);
966 
967 		/* Set boost control value */
968 		serdes_rd(ctx, lane, RXTX_REG1, &val);
969 		val = RXTX_REG1_RXACVCM_SET(val, 0x7);
970 		val = RXTX_REG1_CTLE_EQ_SET(val,
971 			ctx->sata_param.txboostgain[lane * 3 +
972 			ctx->sata_param.speed[lane]]);
973 		serdes_wr(ctx, lane, RXTX_REG1, val);
974 
975 		/* Latch VTT value based on the termination to ground and
976 		   enable TX FIFO */
977 		serdes_rd(ctx, lane, RXTX_REG2, &val);
978 		val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
979 		val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
980 		val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
981 		serdes_wr(ctx, lane, RXTX_REG2, val);
982 
983 		/* Configure Tx for 20-bits */
984 		serdes_rd(ctx, lane, RXTX_REG4, &val);
985 		val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
986 		serdes_wr(ctx, lane, RXTX_REG4, val);
987 
988 		if (!preA3Chip) {
989 			serdes_rd(ctx, lane, RXTX_REG1, &val);
990 			val = RXTX_REG1_RXVREG1_SET(val, 0x2);
991 			val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
992 			serdes_wr(ctx, lane, RXTX_REG1, val);
993 		}
994 
995 		/* Set pre-emphasis first 1 and 2, and post-emphasis values */
996 		serdes_rd(ctx, lane, RXTX_REG5, &val);
997 		val = RXTX_REG5_TX_CN1_SET(val,
998 			ctx->sata_param.txprecursor_cn1[lane * 3 +
999 			ctx->sata_param.speed[lane]]);
1000 		val = RXTX_REG5_TX_CP1_SET(val,
1001 			ctx->sata_param.txpostcursor_cp1[lane * 3 +
1002 			ctx->sata_param.speed[lane]]);
1003 		val = RXTX_REG5_TX_CN2_SET(val,
1004 			ctx->sata_param.txprecursor_cn2[lane * 3 +
1005 			ctx->sata_param.speed[lane]]);
1006 		serdes_wr(ctx, lane, RXTX_REG5, val);
1007 
1008 		/* Set TX amplitude value */
1009 		serdes_rd(ctx, lane, RXTX_REG6, &val);
1010 		val = RXTX_REG6_TXAMP_CNTL_SET(val,
1011 			ctx->sata_param.txamplitude[lane * 3 +
1012 			ctx->sata_param.speed[lane]]);
1013 		val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
1014 		val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
1015 		val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
1016 		val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
1017 		serdes_wr(ctx, lane, RXTX_REG6, val);
1018 
1019 		/* Configure Rx for 20-bits */
1020 		serdes_rd(ctx, lane, RXTX_REG7, &val);
1021 		val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
1022 		val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
1023 		serdes_wr(ctx, lane, RXTX_REG7, val);
1024 
1025 		/* Set CDR and LOS values and enable Rx SSC */
1026 		serdes_rd(ctx, lane, RXTX_REG8, &val);
1027 		val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
1028 		val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
1029 		val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
1030 		val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
1031 		val = RXTX_REG8_SD_VREF_SET(val, 0x4);
1032 		serdes_wr(ctx, lane, RXTX_REG8, val);
1033 
1034 		/* Set phase adjust upper/lower limits */
1035 		serdes_rd(ctx, lane, RXTX_REG11, &val);
1036 		val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
1037 		serdes_wr(ctx, lane, RXTX_REG11, val);
1038 
1039 		/* Enable Latch Off; disable SUMOS and Tx termination */
1040 		serdes_rd(ctx, lane, RXTX_REG12, &val);
1041 		val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
1042 		val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
1043 		val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
1044 		serdes_wr(ctx, lane, RXTX_REG12, val);
1045 
1046 		/* Set period error latch to 512T and enable BWL */
1047 		serdes_rd(ctx, lane, RXTX_REG26, &val);
1048 		val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
1049 		val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
1050 		serdes_wr(ctx, lane, RXTX_REG26, val);
1051 
1052 		serdes_wr(ctx, lane, RXTX_REG28, 0x0);
1053 
1054 		/* Set DFE loop preset value */
1055 		serdes_wr(ctx, lane, RXTX_REG31, 0x0);
1056 
1057 		/* Set Eye Monitor counter width to 12-bit */
1058 		serdes_rd(ctx, lane, RXTX_REG61, &val);
1059 		val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
1060 		val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
1061 		val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
1062 		serdes_wr(ctx, lane, RXTX_REG61, val);
1063 
1064 		serdes_rd(ctx, lane, RXTX_REG62, &val);
1065 		val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
1066 		serdes_wr(ctx, lane, RXTX_REG62, val);
1067 
1068 		/* Set BW select tap X for DFE loop */
1069 		for (i = 0; i < 9; i++) {
1070 			reg = RXTX_REG81 + i * 2;
1071 			serdes_rd(ctx, lane, reg, &val);
1072 			val = RXTX_REG89_MU_TH7_SET(val, 0xe);
1073 			val = RXTX_REG89_MU_TH8_SET(val, 0xe);
1074 			val = RXTX_REG89_MU_TH9_SET(val, 0xe);
1075 			serdes_wr(ctx, lane, reg, val);
1076 		}
1077 
1078 		/* Set BW select tap X for frequency adjust loop */
1079 		for (i = 0; i < 3; i++) {
1080 			reg = RXTX_REG96 + i * 2;
1081 			serdes_rd(ctx, lane, reg, &val);
1082 			val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
1083 			val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
1084 			val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
1085 			serdes_wr(ctx, lane, reg, val);
1086 		}
1087 
1088 		/* Set BW select tap X for phase adjust loop */
1089 		for (i = 0; i < 3; i++) {
1090 			reg = RXTX_REG99 + i * 2;
1091 			serdes_rd(ctx, lane, reg, &val);
1092 			val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
1093 			val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
1094 			val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
1095 			serdes_wr(ctx, lane, reg, val);
1096 		}
1097 
1098 		serdes_rd(ctx, lane, RXTX_REG102, &val);
1099 		val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
1100 		serdes_wr(ctx, lane, RXTX_REG102, val);
1101 
1102 		serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
1103 
1104 		serdes_rd(ctx, lane, RXTX_REG125, &val);
1105 		val = RXTX_REG125_SIGN_PQ_SET(val,
1106 			ctx->sata_param.txeyedirection[lane * 3 +
1107 			ctx->sata_param.speed[lane]]);
1108 		val = RXTX_REG125_PQ_REG_SET(val,
1109 			ctx->sata_param.txeyetuning[lane * 3 +
1110 			ctx->sata_param.speed[lane]]);
1111 		val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
1112 		serdes_wr(ctx, lane, RXTX_REG125, val);
1113 
1114 		serdes_rd(ctx, lane, RXTX_REG127, &val);
1115 		val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
1116 		serdes_wr(ctx, lane, RXTX_REG127, val);
1117 
1118 		serdes_rd(ctx, lane, RXTX_REG128, &val);
1119 		val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
1120 		serdes_wr(ctx, lane, RXTX_REG128, val);
1121 
1122 		serdes_rd(ctx, lane, RXTX_REG145, &val);
1123 		val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
1124 		val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
1125 		if (preA3Chip) {
1126 			val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
1127 			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
1128 		} else {
1129 			val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
1130 			val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
1131 		}
1132 		serdes_wr(ctx, lane, RXTX_REG145, val);
1133 
1134 		/*
1135 		 * Set Rx LOS filter clock rate, sample rate, and threshold
1136 		 * windows
1137 		 */
1138 		for (i = 0; i < 4; i++) {
1139 			reg = RXTX_REG148 + i * 2;
1140 			serdes_wr(ctx, lane, reg, 0xFFFF);
1141 		}
1142 	}
1143 }
1144 
1145 static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
1146 				 enum cmu_type_t cmu_type,
1147 				 enum clk_type_t clk_type)
1148 {
1149 	void __iomem *csr_serdes = ctx->sds_base;
1150 	int loop;
1151 	u32 val;
1152 
1153 	/* Release PHY main reset */
1154 	writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
1155 	readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
1156 
1157 	if (cmu_type != REF_CMU) {
1158 		cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
1159 		/*
1160 		 * As per PHY design spec, the PLL reset requires a minimum
1161 		 * of 800us.
1162 		 */
1163 		usleep_range(800, 1000);
1164 
1165 		cmu_rd(ctx, cmu_type, CMU_REG1, &val);
1166 		val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
1167 		cmu_wr(ctx, cmu_type, CMU_REG1, val);
1168 		/*
1169 		 * As per PHY design spec, the PLL auto calibration requires
1170 		 * a minimum of 800us.
1171 		 */
1172 		usleep_range(800, 1000);
1173 
1174 		cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1175 			       CMU_REG32_FORCE_VCOCAL_START_MASK);
1176 		/*
1177 		 * As per PHY design spec, the PLL requires a minimum of
1178 		 * 800us to settle.
1179 		 */
1180 		usleep_range(800, 1000);
1181 	}
1182 
1183 	if (!preA3Chip)
1184 		goto skip_manual_cal;
1185 
1186 	/*
1187 	 * Configure the termination resister calibration
1188 	 * The serial receive pins, RXP/RXN, have TERMination resistor
1189 	 * that is required to be calibrated.
1190 	 */
1191 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1192 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
1193 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1194 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1195 	cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
1196 		       CMU_REG17_PVT_TERM_MAN_ENA_MASK);
1197 	/*
1198 	 * The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
1199 	 * resistors that are required to the calibrated.
1200 	 * Configure the pull DOWN calibration
1201 	 */
1202 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1203 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
1204 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1205 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1206 	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1207 		       CMU_REG16_PVT_DN_MAN_ENA_MASK);
1208 	/* Configure the pull UP calibration */
1209 	cmu_rd(ctx, cmu_type, CMU_REG17, &val);
1210 	val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
1211 	val = CMU_REG17_RESERVED_7_SET(val, 0x0);
1212 	cmu_wr(ctx, cmu_type, CMU_REG17, val);
1213 	cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
1214 		       CMU_REG16_PVT_UP_MAN_ENA_MASK);
1215 
1216 skip_manual_cal:
1217 	/* Poll the PLL calibration completion status for at least 1 ms */
1218 	loop = 100;
1219 	do {
1220 		cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1221 		if (CMU_REG7_PLL_CALIB_DONE_RD(val))
1222 			break;
1223 		/*
1224 		 * As per PHY design spec, PLL calibration status requires
1225 		 * a minimum of 10us to be updated.
1226 		 */
1227 		usleep_range(10, 100);
1228 	} while (--loop > 0);
1229 
1230 	cmu_rd(ctx, cmu_type, CMU_REG7, &val);
1231 	dev_dbg(ctx->dev, "PLL calibration %s\n",
1232 		CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
1233 	if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
1234 		dev_err(ctx->dev,
1235 			"PLL calibration failed due to VCO failure\n");
1236 		return -1;
1237 	}
1238 	dev_dbg(ctx->dev, "PLL calibration successful\n");
1239 
1240 	cmu_rd(ctx, cmu_type, CMU_REG15, &val);
1241 	dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
1242 	return 0;
1243 }
1244 
1245 static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
1246 				     enum cmu_type_t cmu_type,
1247 				     enum clk_type_t clk_type)
1248 {
1249 	u32 val;
1250 
1251 	dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
1252 	if (cmu_type == PHY_CMU) {
1253 		cmu_rd(ctx, cmu_type, CMU_REG16, &val);
1254 		val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
1255 		cmu_wr(ctx, cmu_type, CMU_REG16, val);
1256 	}
1257 
1258 	cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
1259 	cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
1260 		       CMU_REG32_FORCE_VCOCAL_START_MASK);
1261 }
1262 
1263 static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
1264 				  enum clk_type_t clk_type, int ssc_enable)
1265 {
1266 	void __iomem *sds_base = ctx->sds_base;
1267 	u32 val;
1268 	int i;
1269 
1270 	/* Configure the PHY for operation */
1271 	dev_dbg(ctx->dev, "Reset PHY\n");
1272 	/* Place PHY into reset */
1273 	writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
1274 	val = readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1275 	/* Release PHY lane from reset (active high) */
1276 	writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
1277 	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1278 	/* Release all PHY module out of reset except PHY main reset */
1279 	writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
1280 	readl(sds_base + SATA_ENET_SDS_RST_CTL);	/* Force a barrier */
1281 
1282 	/* Set the operation speed */
1283 	val = readl(sds_base + SATA_ENET_SDS_CTL1);
1284 	val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
1285 		ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
1286 	writel(val, sds_base + SATA_ENET_SDS_CTL1);
1287 
1288 	dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
1289 	val = readl(sds_base + SATA_ENET_SDS_CTL0);
1290 	val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
1291 	writel(val, sds_base + SATA_ENET_SDS_CTL0);
1292 
1293 	/* Configure the clock macro unit (CMU) clock type */
1294 	xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
1295 
1296 	/* Configure the clock macro */
1297 	xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
1298 
1299 	/* Enable SSC if enabled */
1300 	if (ssc_enable)
1301 		xgene_phy_ssc_enable(ctx, PHY_CMU);
1302 
1303 	/* Configure PHY lanes */
1304 	xgene_phy_sata_cfg_lanes(ctx);
1305 
1306 	/* Set Rx/Tx 20-bit */
1307 	val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
1308 	val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
1309 	val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
1310 	writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
1311 
1312 	/* Start PLL calibration and try for three times */
1313 	i = 10;
1314 	do {
1315 		if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
1316 			break;
1317 		/* If failed, toggle the VCO power signal and start again */
1318 		xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
1319 	} while (--i > 0);
1320 	/* Even on failure, allow to continue any way */
1321 	if (i <= 0)
1322 		dev_err(ctx->dev, "PLL calibration failed\n");
1323 
1324 	return 0;
1325 }
1326 
1327 static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
1328 				   enum clk_type_t clk_type,
1329 				   int ssc_enable)
1330 {
1331 	int rc;
1332 
1333 	dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
1334 
1335 	if (ctx->mode == MODE_SATA) {
1336 		rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
1337 		if (rc)
1338 			return rc;
1339 	} else {
1340 		dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
1341 			ctx->mode);
1342 		return -ENODEV;
1343 	}
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * Receiver Offset Calibration:
1350  *
1351  * Calibrate the receiver signal path offset in two steps - summar and
1352  * latch calibrations
1353  */
1354 static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
1355 {
1356 	int i;
1357 	struct {
1358 		u32 reg;
1359 		u32 val;
1360 	} serdes_reg[] = {
1361 		{RXTX_REG38, 0x0},
1362 		{RXTX_REG39, 0xff00},
1363 		{RXTX_REG40, 0xffff},
1364 		{RXTX_REG41, 0xffff},
1365 		{RXTX_REG42, 0xffff},
1366 		{RXTX_REG43, 0xffff},
1367 		{RXTX_REG44, 0xffff},
1368 		{RXTX_REG45, 0xffff},
1369 		{RXTX_REG46, 0xffff},
1370 		{RXTX_REG47, 0xfffc},
1371 		{RXTX_REG48, 0x0},
1372 		{RXTX_REG49, 0x0},
1373 		{RXTX_REG50, 0x0},
1374 		{RXTX_REG51, 0x0},
1375 		{RXTX_REG52, 0x0},
1376 		{RXTX_REG53, 0x0},
1377 		{RXTX_REG54, 0x0},
1378 		{RXTX_REG55, 0x0},
1379 	};
1380 
1381 	/* Start SUMMER calibration */
1382 	serdes_setbits(ctx, lane, RXTX_REG127,
1383 		       RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1384 	/*
1385 	 * As per PHY design spec, the Summer calibration requires a minimum
1386 	 * of 100us to complete.
1387 	 */
1388 	usleep_range(100, 500);
1389 	serdes_clrbits(ctx, lane, RXTX_REG127,
1390 			RXTX_REG127_FORCE_SUM_CAL_START_MASK);
1391 	/*
1392 	 * As per PHY design spec, the auto calibration requires a minimum
1393 	 * of 100us to complete.
1394 	 */
1395 	usleep_range(100, 500);
1396 
1397 	/* Start latch calibration */
1398 	serdes_setbits(ctx, lane, RXTX_REG127,
1399 		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1400 	/*
1401 	 * As per PHY design spec, the latch calibration requires a minimum
1402 	 * of 100us to complete.
1403 	 */
1404 	usleep_range(100, 500);
1405 	serdes_clrbits(ctx, lane, RXTX_REG127,
1406 		       RXTX_REG127_FORCE_LAT_CAL_START_MASK);
1407 
1408 	/* Configure the PHY lane for calibration */
1409 	serdes_wr(ctx, lane, RXTX_REG28, 0x7);
1410 	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1411 	serdes_clrbits(ctx, lane, RXTX_REG4,
1412 		       RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
1413 	serdes_clrbits(ctx, lane, RXTX_REG7,
1414 		       RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
1415 	for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
1416 		serdes_wr(ctx, lane, serdes_reg[i].reg,
1417 			  serdes_reg[i].val);
1418 }
1419 
1420 static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
1421 {
1422 	/* Reset digital Rx */
1423 	serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1424 	/* As per PHY design spec, the reset requires a minimum of 100us. */
1425 	usleep_range(100, 150);
1426 	serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
1427 }
1428 
1429 static int xgene_phy_get_avg(int accum, int samples)
1430 {
1431 	return (accum + (samples / 2)) / samples;
1432 }
1433 
1434 static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
1435 {
1436 	int max_loop = 10;
1437 	int avg_loop = 0;
1438 	int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
1439 	int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
1440 	int sum_cal = 0;
1441 	int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
1442 	int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
1443 	int sum_cal_itr;
1444 	int fail_even;
1445 	int fail_odd;
1446 	u32 val;
1447 
1448 	dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
1449 		lane);
1450 
1451 	/* Enable RX Hi-Z termination */
1452 	serdes_setbits(ctx, lane, RXTX_REG12,
1453 			RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
1454 	/* Turn off DFE */
1455 	serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
1456 	/* DFE Presets to zero */
1457 	serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
1458 
1459 	/*
1460 	 * Receiver Offset Calibration:
1461 	 * Calibrate the receiver signal path offset in two steps - summar
1462 	 * and latch calibration.
1463 	 * Runs the "Receiver Offset Calibration multiple times to determine
1464 	 * the average value to use.
1465 	 */
1466 	while (avg_loop < max_loop) {
1467 		/* Start the calibration */
1468 		xgene_phy_force_lat_summer_cal(ctx, lane);
1469 
1470 		serdes_rd(ctx, lane, RXTX_REG21, &val);
1471 		lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
1472 		lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
1473 		fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
1474 
1475 		serdes_rd(ctx, lane, RXTX_REG22, &val);
1476 		lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
1477 		lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
1478 		fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
1479 
1480 		serdes_rd(ctx, lane, RXTX_REG23, &val);
1481 		lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
1482 		lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
1483 
1484 		serdes_rd(ctx, lane, RXTX_REG24, &val);
1485 		lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
1486 		lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
1487 
1488 		serdes_rd(ctx, lane, RXTX_REG121, &val);
1489 		sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
1490 
1491 		/* Check for failure. If passed, sum them for averaging */
1492 		if ((fail_even == 0 || fail_even == 1) &&
1493 		    (fail_odd == 0 || fail_odd == 1)) {
1494 			lat_do += lat_do_itr;
1495 			lat_xo += lat_xo_itr;
1496 			lat_eo += lat_eo_itr;
1497 			lat_so += lat_so_itr;
1498 			lat_de += lat_de_itr;
1499 			lat_xe += lat_xe_itr;
1500 			lat_ee += lat_ee_itr;
1501 			lat_se += lat_se_itr;
1502 			sum_cal += sum_cal_itr;
1503 
1504 			dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
1505 			dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1506 				lat_do_itr, lat_xo_itr, lat_eo_itr,
1507 				lat_so_itr);
1508 			dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1509 				lat_de_itr, lat_xe_itr, lat_ee_itr,
1510 				lat_se_itr);
1511 			dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
1512 			++avg_loop;
1513 		} else {
1514 			dev_err(ctx->dev,
1515 				"Receiver calibration failed at %d loop\n",
1516 				avg_loop);
1517 		}
1518 		xgene_phy_reset_rxd(ctx, lane);
1519 	}
1520 
1521 	/* Update latch manual calibration with average value */
1522 	serdes_rd(ctx, lane, RXTX_REG127, &val);
1523 	val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
1524 		xgene_phy_get_avg(lat_do, max_loop));
1525 	val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
1526 		xgene_phy_get_avg(lat_xo, max_loop));
1527 	serdes_wr(ctx, lane, RXTX_REG127, val);
1528 
1529 	serdes_rd(ctx, lane, RXTX_REG128, &val);
1530 	val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
1531 		xgene_phy_get_avg(lat_eo, max_loop));
1532 	val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
1533 		xgene_phy_get_avg(lat_so, max_loop));
1534 	serdes_wr(ctx, lane, RXTX_REG128, val);
1535 
1536 	serdes_rd(ctx, lane, RXTX_REG129, &val);
1537 	val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
1538 		xgene_phy_get_avg(lat_de, max_loop));
1539 	val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
1540 		xgene_phy_get_avg(lat_xe, max_loop));
1541 	serdes_wr(ctx, lane, RXTX_REG129, val);
1542 
1543 	serdes_rd(ctx, lane, RXTX_REG130, &val);
1544 	val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
1545 		xgene_phy_get_avg(lat_ee, max_loop));
1546 	val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
1547 		xgene_phy_get_avg(lat_se, max_loop));
1548 	serdes_wr(ctx, lane, RXTX_REG130, val);
1549 
1550 	/* Update SUMMER calibration with average value */
1551 	serdes_rd(ctx, lane, RXTX_REG14, &val);
1552 	val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
1553 		xgene_phy_get_avg(sum_cal, max_loop));
1554 	serdes_wr(ctx, lane, RXTX_REG14, val);
1555 
1556 	dev_dbg(ctx->dev, "Average Value:\n");
1557 	dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
1558 		 xgene_phy_get_avg(lat_do, max_loop),
1559 		 xgene_phy_get_avg(lat_xo, max_loop),
1560 		 xgene_phy_get_avg(lat_eo, max_loop),
1561 		 xgene_phy_get_avg(lat_so, max_loop));
1562 	dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
1563 		 xgene_phy_get_avg(lat_de, max_loop),
1564 		 xgene_phy_get_avg(lat_xe, max_loop),
1565 		 xgene_phy_get_avg(lat_ee, max_loop),
1566 		 xgene_phy_get_avg(lat_se, max_loop));
1567 	dev_dbg(ctx->dev, "SUM 0x%x\n",
1568 		xgene_phy_get_avg(sum_cal, max_loop));
1569 
1570 	serdes_rd(ctx, lane, RXTX_REG14, &val);
1571 	val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
1572 	serdes_wr(ctx, lane, RXTX_REG14, val);
1573 	dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
1574 
1575 	serdes_rd(ctx, lane, RXTX_REG127, &val);
1576 	val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
1577 	dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
1578 	serdes_wr(ctx, lane, RXTX_REG127, val);
1579 
1580 	/* Disable RX Hi-Z termination */
1581 	serdes_rd(ctx, lane, RXTX_REG12, &val);
1582 	val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
1583 	serdes_wr(ctx, lane, RXTX_REG12, val);
1584 	/* Turn on DFE */
1585 	serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
1586 	/* Set DFE preset */
1587 	serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
1588 }
1589 
1590 static int xgene_phy_hw_init(struct phy *phy)
1591 {
1592 	struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
1593 	int rc;
1594 	int i;
1595 
1596 	rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
1597 	if (rc) {
1598 		dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
1599 		return rc;
1600 	}
1601 
1602 	/* Setup clock properly after PHY configuration */
1603 	if (!IS_ERR(ctx->clk)) {
1604 		/* HW requires an toggle of the clock */
1605 		clk_prepare_enable(ctx->clk);
1606 		clk_disable_unprepare(ctx->clk);
1607 		clk_prepare_enable(ctx->clk);
1608 	}
1609 
1610 	/* Compute average value */
1611 	for (i = 0; i < MAX_LANE; i++)
1612 		xgene_phy_gen_avg_val(ctx, i);
1613 
1614 	dev_dbg(ctx->dev, "PHY initialized\n");
1615 	return 0;
1616 }
1617 
1618 static const struct phy_ops xgene_phy_ops = {
1619 	.init		= xgene_phy_hw_init,
1620 	.owner		= THIS_MODULE,
1621 };
1622 
1623 static struct phy *xgene_phy_xlate(struct device *dev,
1624 				   struct of_phandle_args *args)
1625 {
1626 	struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
1627 
1628 	if (args->args_count <= 0)
1629 		return ERR_PTR(-EINVAL);
1630 	if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
1631 		return ERR_PTR(-EINVAL);
1632 
1633 	ctx->mode = args->args[0];
1634 	return ctx->phy;
1635 }
1636 
1637 static void xgene_phy_get_param(struct platform_device *pdev,
1638 				const char *name, u32 *buffer,
1639 				int count, u32 *default_val,
1640 				u32 conv_factor)
1641 {
1642 	int i;
1643 
1644 	if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
1645 					count)) {
1646 		for (i = 0; i < count; i++)
1647 			buffer[i] /= conv_factor;
1648 		return;
1649 	}
1650 	/* Does not exist, load default */
1651 	for (i = 0; i < count; i++)
1652 		buffer[i] = default_val[i % 3];
1653 }
1654 
1655 static int xgene_phy_probe(struct platform_device *pdev)
1656 {
1657 	struct phy_provider *phy_provider;
1658 	struct xgene_phy_ctx *ctx;
1659 	struct resource *res;
1660 	int rc = 0;
1661 	u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
1662 	u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
1663 	u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
1664 	u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
1665 	u32 default_txamp[] = DEFAULT_SATA_TXAMP;
1666 	u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
1667 	u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
1668 	u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
1669 	int i;
1670 
1671 	ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
1672 	if (!ctx)
1673 		return -ENOMEM;
1674 
1675 	ctx->dev = &pdev->dev;
1676 
1677 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1678 	ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
1679 	if (IS_ERR(ctx->sds_base)) {
1680 		rc = PTR_ERR(ctx->sds_base);
1681 		goto error;
1682 	}
1683 
1684 	/* Retrieve optional clock */
1685 	ctx->clk = clk_get(&pdev->dev, NULL);
1686 
1687 	/* Load override paramaters */
1688 	xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
1689 		ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
1690 	xgene_phy_get_param(pdev, "apm,tx-eye-direction",
1691 		ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
1692 	xgene_phy_get_param(pdev, "apm,tx-boost-gain",
1693 		ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
1694 	xgene_phy_get_param(pdev, "apm,tx-amplitude",
1695 		ctx->sata_param.txamplitude, 6, default_txamp, 13300);
1696 	xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
1697 		ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
1698 	xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
1699 		ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
1700 	xgene_phy_get_param(pdev, "apm,tx-post-cursor",
1701 		ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
1702 	xgene_phy_get_param(pdev, "apm,tx-speed",
1703 		ctx->sata_param.txspeed, 3, default_spd, 1);
1704 	for (i = 0; i < MAX_LANE; i++)
1705 		ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
1706 
1707 	ctx->dev = &pdev->dev;
1708 	platform_set_drvdata(pdev, ctx);
1709 
1710 	ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops);
1711 	if (IS_ERR(ctx->phy)) {
1712 		dev_dbg(&pdev->dev, "Failed to create PHY\n");
1713 		rc = PTR_ERR(ctx->phy);
1714 		goto error;
1715 	}
1716 	phy_set_drvdata(ctx->phy, ctx);
1717 
1718 	phy_provider = devm_of_phy_provider_register(ctx->dev,
1719 						     xgene_phy_xlate);
1720 	if (IS_ERR(phy_provider)) {
1721 		rc = PTR_ERR(phy_provider);
1722 		goto error;
1723 	}
1724 
1725 	return 0;
1726 
1727 error:
1728 	return rc;
1729 }
1730 
1731 static const struct of_device_id xgene_phy_of_match[] = {
1732 	{.compatible = "apm,xgene-phy",},
1733 	{},
1734 };
1735 MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
1736 
1737 static struct platform_driver xgene_phy_driver = {
1738 	.probe = xgene_phy_probe,
1739 	.driver = {
1740 		   .name = "xgene-phy",
1741 		   .of_match_table = xgene_phy_of_match,
1742 	},
1743 };
1744 module_platform_driver(xgene_phy_driver);
1745 
1746 MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
1747 MODULE_AUTHOR("Loc Ho <lho@apm.com>");
1748 MODULE_LICENSE("GPL v2");
1749 MODULE_VERSION("0.1");
1750