xref: /openbmc/linux/drivers/perf/riscv_pmu_sbi.c (revision bacf743e)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * RISC-V performance counter support.
4  *
5  * Copyright (C) 2021 Western Digital Corporation or its affiliates.
6  *
7  * This code is based on ARM perf event code which is in turn based on
8  * sparc64 and x86 code.
9  */
10 
11 #define pr_fmt(fmt) "riscv-pmu-sbi: " fmt
12 
13 #include <linux/mod_devicetable.h>
14 #include <linux/perf/riscv_pmu.h>
15 #include <linux/platform_device.h>
16 #include <linux/irq.h>
17 #include <linux/irqdomain.h>
18 #include <linux/of_irq.h>
19 #include <linux/of.h>
20 
21 #include <asm/sbi.h>
22 #include <asm/hwcap.h>
23 
24 union sbi_pmu_ctr_info {
25 	unsigned long value;
26 	struct {
27 		unsigned long csr:12;
28 		unsigned long width:6;
29 #if __riscv_xlen == 32
30 		unsigned long reserved:13;
31 #else
32 		unsigned long reserved:45;
33 #endif
34 		unsigned long type:1;
35 	};
36 };
37 
38 /**
39  * RISC-V doesn't have hetergenous harts yet. This need to be part of
40  * per_cpu in case of harts with different pmu counters
41  */
42 static union sbi_pmu_ctr_info *pmu_ctr_list;
43 static unsigned int riscv_pmu_irq;
44 
45 struct sbi_pmu_event_data {
46 	union {
47 		union {
48 			struct hw_gen_event {
49 				uint32_t event_code:16;
50 				uint32_t event_type:4;
51 				uint32_t reserved:12;
52 			} hw_gen_event;
53 			struct hw_cache_event {
54 				uint32_t result_id:1;
55 				uint32_t op_id:2;
56 				uint32_t cache_id:13;
57 				uint32_t event_type:4;
58 				uint32_t reserved:12;
59 			} hw_cache_event;
60 		};
61 		uint32_t event_idx;
62 	};
63 };
64 
65 static const struct sbi_pmu_event_data pmu_hw_event_map[] = {
66 	[PERF_COUNT_HW_CPU_CYCLES]		= {.hw_gen_event = {
67 							SBI_PMU_HW_CPU_CYCLES,
68 							SBI_PMU_EVENT_TYPE_HW, 0}},
69 	[PERF_COUNT_HW_INSTRUCTIONS]		= {.hw_gen_event = {
70 							SBI_PMU_HW_INSTRUCTIONS,
71 							SBI_PMU_EVENT_TYPE_HW, 0}},
72 	[PERF_COUNT_HW_CACHE_REFERENCES]	= {.hw_gen_event = {
73 							SBI_PMU_HW_CACHE_REFERENCES,
74 							SBI_PMU_EVENT_TYPE_HW, 0}},
75 	[PERF_COUNT_HW_CACHE_MISSES]		= {.hw_gen_event = {
76 							SBI_PMU_HW_CACHE_MISSES,
77 							SBI_PMU_EVENT_TYPE_HW, 0}},
78 	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= {.hw_gen_event = {
79 							SBI_PMU_HW_BRANCH_INSTRUCTIONS,
80 							SBI_PMU_EVENT_TYPE_HW, 0}},
81 	[PERF_COUNT_HW_BRANCH_MISSES]		= {.hw_gen_event = {
82 							SBI_PMU_HW_BRANCH_MISSES,
83 							SBI_PMU_EVENT_TYPE_HW, 0}},
84 	[PERF_COUNT_HW_BUS_CYCLES]		= {.hw_gen_event = {
85 							SBI_PMU_HW_BUS_CYCLES,
86 							SBI_PMU_EVENT_TYPE_HW, 0}},
87 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= {.hw_gen_event = {
88 							SBI_PMU_HW_STALLED_CYCLES_FRONTEND,
89 							SBI_PMU_EVENT_TYPE_HW, 0}},
90 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= {.hw_gen_event = {
91 							SBI_PMU_HW_STALLED_CYCLES_BACKEND,
92 							SBI_PMU_EVENT_TYPE_HW, 0}},
93 	[PERF_COUNT_HW_REF_CPU_CYCLES]		= {.hw_gen_event = {
94 							SBI_PMU_HW_REF_CPU_CYCLES,
95 							SBI_PMU_EVENT_TYPE_HW, 0}},
96 };
97 
98 #define C(x) PERF_COUNT_HW_CACHE_##x
99 static const struct sbi_pmu_event_data pmu_cache_event_map[PERF_COUNT_HW_CACHE_MAX]
100 [PERF_COUNT_HW_CACHE_OP_MAX]
101 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
102 	[C(L1D)] = {
103 		[C(OP_READ)] = {
104 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
105 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
106 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
107 					C(OP_READ), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
108 		},
109 		[C(OP_WRITE)] = {
110 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
111 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
112 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
113 					C(OP_WRITE), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
114 		},
115 		[C(OP_PREFETCH)] = {
116 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
117 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
118 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
119 					C(OP_PREFETCH), C(L1D), SBI_PMU_EVENT_TYPE_CACHE, 0}},
120 		},
121 	},
122 	[C(L1I)] = {
123 		[C(OP_READ)] = {
124 			[C(RESULT_ACCESS)] = {.hw_cache_event =	{C(RESULT_ACCESS),
125 					C(OP_READ), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
126 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS), C(OP_READ),
127 					C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
128 		},
129 		[C(OP_WRITE)] = {
130 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
131 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
132 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
133 					C(OP_WRITE), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
134 		},
135 		[C(OP_PREFETCH)] = {
136 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
137 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
138 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
139 					C(OP_PREFETCH), C(L1I), SBI_PMU_EVENT_TYPE_CACHE, 0}},
140 		},
141 	},
142 	[C(LL)] = {
143 		[C(OP_READ)] = {
144 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
145 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
146 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
147 					C(OP_READ), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
148 		},
149 		[C(OP_WRITE)] = {
150 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
151 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
152 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
153 					C(OP_WRITE), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
154 		},
155 		[C(OP_PREFETCH)] = {
156 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
157 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
158 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
159 					C(OP_PREFETCH), C(LL), SBI_PMU_EVENT_TYPE_CACHE, 0}},
160 		},
161 	},
162 	[C(DTLB)] = {
163 		[C(OP_READ)] = {
164 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
165 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
166 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
167 					C(OP_READ), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
168 		},
169 		[C(OP_WRITE)] = {
170 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
171 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
172 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
173 					C(OP_WRITE), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
174 		},
175 		[C(OP_PREFETCH)] = {
176 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
177 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
178 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
179 					C(OP_PREFETCH), C(DTLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
180 		},
181 	},
182 	[C(ITLB)] = {
183 		[C(OP_READ)] = {
184 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
185 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
186 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
187 					C(OP_READ), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
188 		},
189 		[C(OP_WRITE)] = {
190 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
191 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
192 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
193 					C(OP_WRITE), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
194 		},
195 		[C(OP_PREFETCH)] = {
196 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
197 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
198 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
199 					C(OP_PREFETCH), C(ITLB), SBI_PMU_EVENT_TYPE_CACHE, 0}},
200 		},
201 	},
202 	[C(BPU)] = {
203 		[C(OP_READ)] = {
204 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
205 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
206 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
207 					C(OP_READ), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
208 		},
209 		[C(OP_WRITE)] = {
210 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
211 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
212 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
213 					C(OP_WRITE), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
214 		},
215 		[C(OP_PREFETCH)] = {
216 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
217 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
218 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
219 					C(OP_PREFETCH), C(BPU), SBI_PMU_EVENT_TYPE_CACHE, 0}},
220 		},
221 	},
222 	[C(NODE)] = {
223 		[C(OP_READ)] = {
224 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
225 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
226 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
227 					C(OP_READ), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
228 		},
229 		[C(OP_WRITE)] = {
230 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
231 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
232 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
233 					C(OP_WRITE), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
234 		},
235 		[C(OP_PREFETCH)] = {
236 			[C(RESULT_ACCESS)] = {.hw_cache_event = {C(RESULT_ACCESS),
237 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
238 			[C(RESULT_MISS)] = {.hw_cache_event = {C(RESULT_MISS),
239 					C(OP_PREFETCH), C(NODE), SBI_PMU_EVENT_TYPE_CACHE, 0}},
240 		},
241 	},
242 };
243 
244 static int pmu_sbi_ctr_get_width(int idx)
245 {
246 	return pmu_ctr_list[idx].width;
247 }
248 
249 static bool pmu_sbi_ctr_is_fw(int cidx)
250 {
251 	union sbi_pmu_ctr_info *info;
252 
253 	info = &pmu_ctr_list[cidx];
254 	if (!info)
255 		return false;
256 
257 	return (info->type == SBI_PMU_CTR_TYPE_FW) ? true : false;
258 }
259 
260 static int pmu_sbi_ctr_get_idx(struct perf_event *event)
261 {
262 	struct hw_perf_event *hwc = &event->hw;
263 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
264 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
265 	struct sbiret ret;
266 	int idx;
267 	uint64_t cbase = 0;
268 	uint64_t cmask = GENMASK_ULL(rvpmu->num_counters - 1, 0);
269 	unsigned long cflags = 0;
270 
271 	if (event->attr.exclude_kernel)
272 		cflags |= SBI_PMU_CFG_FLAG_SET_SINH;
273 	if (event->attr.exclude_user)
274 		cflags |= SBI_PMU_CFG_FLAG_SET_UINH;
275 
276 	/* retrieve the available counter index */
277 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_CFG_MATCH, cbase, cmask,
278 			cflags, hwc->event_base, hwc->config, 0);
279 	if (ret.error) {
280 		pr_debug("Not able to find a counter for event %lx config %llx\n",
281 			hwc->event_base, hwc->config);
282 		return sbi_err_map_linux_errno(ret.error);
283 	}
284 
285 	idx = ret.value;
286 	if (idx >= rvpmu->num_counters || !pmu_ctr_list[idx].value)
287 		return -ENOENT;
288 
289 	/* Additional sanity check for the counter id */
290 	if (pmu_sbi_ctr_is_fw(idx)) {
291 		if (!test_and_set_bit(idx, cpuc->used_fw_ctrs))
292 			return idx;
293 	} else {
294 		if (!test_and_set_bit(idx, cpuc->used_hw_ctrs))
295 			return idx;
296 	}
297 
298 	return -ENOENT;
299 }
300 
301 static void pmu_sbi_ctr_clear_idx(struct perf_event *event)
302 {
303 
304 	struct hw_perf_event *hwc = &event->hw;
305 	struct riscv_pmu *rvpmu = to_riscv_pmu(event->pmu);
306 	struct cpu_hw_events *cpuc = this_cpu_ptr(rvpmu->hw_events);
307 	int idx = hwc->idx;
308 
309 	if (pmu_sbi_ctr_is_fw(idx))
310 		clear_bit(idx, cpuc->used_fw_ctrs);
311 	else
312 		clear_bit(idx, cpuc->used_hw_ctrs);
313 }
314 
315 static int pmu_event_find_cache(u64 config)
316 {
317 	unsigned int cache_type, cache_op, cache_result, ret;
318 
319 	cache_type = (config >>  0) & 0xff;
320 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
321 		return -EINVAL;
322 
323 	cache_op = (config >>  8) & 0xff;
324 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
325 		return -EINVAL;
326 
327 	cache_result = (config >> 16) & 0xff;
328 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
329 		return -EINVAL;
330 
331 	ret = pmu_cache_event_map[cache_type][cache_op][cache_result].event_idx;
332 
333 	return ret;
334 }
335 
336 static bool pmu_sbi_is_fw_event(struct perf_event *event)
337 {
338 	u32 type = event->attr.type;
339 	u64 config = event->attr.config;
340 
341 	if ((type == PERF_TYPE_RAW) && ((config >> 63) == 1))
342 		return true;
343 	else
344 		return false;
345 }
346 
347 static int pmu_sbi_event_map(struct perf_event *event, u64 *econfig)
348 {
349 	u32 type = event->attr.type;
350 	u64 config = event->attr.config;
351 	int bSoftware;
352 	u64 raw_config_val;
353 	int ret;
354 
355 	switch (type) {
356 	case PERF_TYPE_HARDWARE:
357 		if (config >= PERF_COUNT_HW_MAX)
358 			return -EINVAL;
359 		ret = pmu_hw_event_map[event->attr.config].event_idx;
360 		break;
361 	case PERF_TYPE_HW_CACHE:
362 		ret = pmu_event_find_cache(config);
363 		break;
364 	case PERF_TYPE_RAW:
365 		/*
366 		 * As per SBI specification, the upper 16 bits must be unused for
367 		 * a raw event. Use the MSB (63b) to distinguish between hardware
368 		 * raw event and firmware events.
369 		 */
370 		bSoftware = config >> 63;
371 		raw_config_val = config & RISCV_PMU_RAW_EVENT_MASK;
372 		if (bSoftware) {
373 			if (raw_config_val < SBI_PMU_FW_MAX)
374 				ret = (raw_config_val & 0xFFFF) |
375 				      (SBI_PMU_EVENT_TYPE_FW << 16);
376 			else
377 				return -EINVAL;
378 		} else {
379 			ret = RISCV_PMU_RAW_EVENT_IDX;
380 			*econfig = raw_config_val;
381 		}
382 		break;
383 	default:
384 		ret = -EINVAL;
385 		break;
386 	}
387 
388 	return ret;
389 }
390 
391 static u64 pmu_sbi_ctr_read(struct perf_event *event)
392 {
393 	struct hw_perf_event *hwc = &event->hw;
394 	int idx = hwc->idx;
395 	struct sbiret ret;
396 	union sbi_pmu_ctr_info info;
397 	u64 val = 0;
398 
399 	if (pmu_sbi_is_fw_event(event)) {
400 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_FW_READ,
401 				hwc->idx, 0, 0, 0, 0, 0);
402 		if (!ret.error)
403 			val = ret.value;
404 	} else {
405 		info = pmu_ctr_list[idx];
406 		val = riscv_pmu_ctr_read_csr(info.csr);
407 		if (IS_ENABLED(CONFIG_32BIT))
408 			val = ((u64)riscv_pmu_ctr_read_csr(info.csr + 0x80)) << 31 | val;
409 	}
410 
411 	return val;
412 }
413 
414 static void pmu_sbi_ctr_start(struct perf_event *event, u64 ival)
415 {
416 	struct sbiret ret;
417 	struct hw_perf_event *hwc = &event->hw;
418 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
419 
420 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, hwc->idx,
421 			1, flag, ival, ival >> 32, 0);
422 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STARTED))
423 		pr_err("Starting counter idx %d failed with error %d\n",
424 			hwc->idx, sbi_err_map_linux_errno(ret.error));
425 }
426 
427 static void pmu_sbi_ctr_stop(struct perf_event *event, unsigned long flag)
428 {
429 	struct sbiret ret;
430 	struct hw_perf_event *hwc = &event->hw;
431 
432 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, hwc->idx, 1, flag, 0, 0, 0);
433 	if (ret.error && (ret.error != SBI_ERR_ALREADY_STOPPED) &&
434 		flag != SBI_PMU_STOP_FLAG_RESET)
435 		pr_err("Stopping counter idx %d failed with error %d\n",
436 			hwc->idx, sbi_err_map_linux_errno(ret.error));
437 }
438 
439 static int pmu_sbi_find_num_ctrs(void)
440 {
441 	struct sbiret ret;
442 
443 	ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_NUM_COUNTERS, 0, 0, 0, 0, 0, 0);
444 	if (!ret.error)
445 		return ret.value;
446 	else
447 		return sbi_err_map_linux_errno(ret.error);
448 }
449 
450 static int pmu_sbi_get_ctrinfo(int nctr)
451 {
452 	struct sbiret ret;
453 	int i, num_hw_ctr = 0, num_fw_ctr = 0;
454 	union sbi_pmu_ctr_info cinfo;
455 
456 	pmu_ctr_list = kcalloc(nctr, sizeof(*pmu_ctr_list), GFP_KERNEL);
457 	if (!pmu_ctr_list)
458 		return -ENOMEM;
459 
460 	for (i = 0; i <= nctr; i++) {
461 		ret = sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_GET_INFO, i, 0, 0, 0, 0, 0);
462 		if (ret.error)
463 			/* The logical counter ids are not expected to be contiguous */
464 			continue;
465 		cinfo.value = ret.value;
466 		if (cinfo.type == SBI_PMU_CTR_TYPE_FW)
467 			num_fw_ctr++;
468 		else
469 			num_hw_ctr++;
470 		pmu_ctr_list[i].value = cinfo.value;
471 	}
472 
473 	pr_info("%d firmware and %d hardware counters\n", num_fw_ctr, num_hw_ctr);
474 
475 	return 0;
476 }
477 
478 static inline void pmu_sbi_stop_all(struct riscv_pmu *pmu)
479 {
480 	/**
481 	 * No need to check the error because we are disabling all the counters
482 	 * which may include counters that are not enabled yet.
483 	 */
484 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP,
485 		  0, GENMASK_ULL(pmu->num_counters - 1, 0), 0, 0, 0, 0);
486 }
487 
488 static inline void pmu_sbi_stop_hw_ctrs(struct riscv_pmu *pmu)
489 {
490 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
491 
492 	/* No need to check the error here as we can't do anything about the error */
493 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_STOP, 0,
494 		  cpu_hw_evt->used_hw_ctrs[0], 0, 0, 0, 0);
495 }
496 
497 /**
498  * This function starts all the used counters in two step approach.
499  * Any counter that did not overflow can be start in a single step
500  * while the overflowed counters need to be started with updated initialization
501  * value.
502  */
503 static inline void pmu_sbi_start_overflow_mask(struct riscv_pmu *pmu,
504 					       unsigned long ctr_ovf_mask)
505 {
506 	int idx = 0;
507 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
508 	struct perf_event *event;
509 	unsigned long flag = SBI_PMU_START_FLAG_SET_INIT_VALUE;
510 	unsigned long ctr_start_mask = 0;
511 	uint64_t max_period;
512 	struct hw_perf_event *hwc;
513 	u64 init_val = 0;
514 
515 	ctr_start_mask = cpu_hw_evt->used_hw_ctrs[0] & ~ctr_ovf_mask;
516 
517 	/* Start all the counters that did not overflow in a single shot */
518 	sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, 0, ctr_start_mask,
519 		  0, 0, 0, 0);
520 
521 	/* Reinitialize and start all the counter that overflowed */
522 	while (ctr_ovf_mask) {
523 		if (ctr_ovf_mask & 0x01) {
524 			event = cpu_hw_evt->events[idx];
525 			hwc = &event->hw;
526 			max_period = riscv_pmu_ctr_get_width_mask(event);
527 			init_val = local64_read(&hwc->prev_count) & max_period;
528 			sbi_ecall(SBI_EXT_PMU, SBI_EXT_PMU_COUNTER_START, idx, 1,
529 				  flag, init_val, 0, 0);
530 		}
531 		ctr_ovf_mask = ctr_ovf_mask >> 1;
532 		idx++;
533 	}
534 }
535 
536 static irqreturn_t pmu_sbi_ovf_handler(int irq, void *dev)
537 {
538 	struct perf_sample_data data;
539 	struct pt_regs *regs;
540 	struct hw_perf_event *hw_evt;
541 	union sbi_pmu_ctr_info *info;
542 	int lidx, hidx, fidx;
543 	struct riscv_pmu *pmu;
544 	struct perf_event *event;
545 	unsigned long overflow;
546 	unsigned long overflowed_ctrs = 0;
547 	struct cpu_hw_events *cpu_hw_evt = dev;
548 
549 	if (WARN_ON_ONCE(!cpu_hw_evt))
550 		return IRQ_NONE;
551 
552 	/* Firmware counter don't support overflow yet */
553 	fidx = find_first_bit(cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS);
554 	event = cpu_hw_evt->events[fidx];
555 	if (!event) {
556 		csr_clear(CSR_SIP, SIP_LCOFIP);
557 		return IRQ_NONE;
558 	}
559 
560 	pmu = to_riscv_pmu(event->pmu);
561 	pmu_sbi_stop_hw_ctrs(pmu);
562 
563 	/* Overflow status register should only be read after counter are stopped */
564 	overflow = csr_read(CSR_SSCOUNTOVF);
565 
566 	/**
567 	 * Overflow interrupt pending bit should only be cleared after stopping
568 	 * all the counters to avoid any race condition.
569 	 */
570 	csr_clear(CSR_SIP, SIP_LCOFIP);
571 
572 	/* No overflow bit is set */
573 	if (!overflow)
574 		return IRQ_NONE;
575 
576 	regs = get_irq_regs();
577 
578 	for_each_set_bit(lidx, cpu_hw_evt->used_hw_ctrs, RISCV_MAX_COUNTERS) {
579 		struct perf_event *event = cpu_hw_evt->events[lidx];
580 
581 		/* Skip if invalid event or user did not request a sampling */
582 		if (!event || !is_sampling_event(event))
583 			continue;
584 
585 		info = &pmu_ctr_list[lidx];
586 		/* Do a sanity check */
587 		if (!info || info->type != SBI_PMU_CTR_TYPE_HW)
588 			continue;
589 
590 		/* compute hardware counter index */
591 		hidx = info->csr - CSR_CYCLE;
592 		/* check if the corresponding bit is set in sscountovf */
593 		if (!(overflow & (1 << hidx)))
594 			continue;
595 
596 		/*
597 		 * Keep a track of overflowed counters so that they can be started
598 		 * with updated initial value.
599 		 */
600 		overflowed_ctrs |= 1 << lidx;
601 		hw_evt = &event->hw;
602 		riscv_pmu_event_update(event);
603 		perf_sample_data_init(&data, 0, hw_evt->last_period);
604 		if (riscv_pmu_event_set_period(event)) {
605 			/*
606 			 * Unlike other ISAs, RISC-V don't have to disable interrupts
607 			 * to avoid throttling here. As per the specification, the
608 			 * interrupt remains disabled until the OF bit is set.
609 			 * Interrupts are enabled again only during the start.
610 			 * TODO: We will need to stop the guest counters once
611 			 * virtualization support is added.
612 			 */
613 			perf_event_overflow(event, &data, regs);
614 		}
615 	}
616 	pmu_sbi_start_overflow_mask(pmu, overflowed_ctrs);
617 
618 	return IRQ_HANDLED;
619 }
620 
621 static int pmu_sbi_starting_cpu(unsigned int cpu, struct hlist_node *node)
622 {
623 	struct riscv_pmu *pmu = hlist_entry_safe(node, struct riscv_pmu, node);
624 	struct cpu_hw_events *cpu_hw_evt = this_cpu_ptr(pmu->hw_events);
625 
626 	/* Enable the access for TIME csr only from the user mode now */
627 	csr_write(CSR_SCOUNTEREN, 0x2);
628 
629 	/* Stop all the counters so that they can be enabled from perf */
630 	pmu_sbi_stop_all(pmu);
631 
632 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
633 		cpu_hw_evt->irq = riscv_pmu_irq;
634 		csr_clear(CSR_IP, BIT(RV_IRQ_PMU));
635 		csr_set(CSR_IE, BIT(RV_IRQ_PMU));
636 		enable_percpu_irq(riscv_pmu_irq, IRQ_TYPE_NONE);
637 	}
638 
639 	return 0;
640 }
641 
642 static int pmu_sbi_dying_cpu(unsigned int cpu, struct hlist_node *node)
643 {
644 	if (riscv_isa_extension_available(NULL, SSCOFPMF)) {
645 		disable_percpu_irq(riscv_pmu_irq);
646 		csr_clear(CSR_IE, BIT(RV_IRQ_PMU));
647 	}
648 
649 	/* Disable all counters access for user mode now */
650 	csr_write(CSR_SCOUNTEREN, 0x0);
651 
652 	return 0;
653 }
654 
655 static int pmu_sbi_setup_irqs(struct riscv_pmu *pmu, struct platform_device *pdev)
656 {
657 	int ret;
658 	struct cpu_hw_events __percpu *hw_events = pmu->hw_events;
659 	struct device_node *cpu, *child;
660 	struct irq_domain *domain = NULL;
661 
662 	if (!riscv_isa_extension_available(NULL, SSCOFPMF))
663 		return -EOPNOTSUPP;
664 
665 	for_each_of_cpu_node(cpu) {
666 		child = of_get_compatible_child(cpu, "riscv,cpu-intc");
667 		if (!child) {
668 			pr_err("Failed to find INTC node\n");
669 			return -ENODEV;
670 		}
671 		domain = irq_find_host(child);
672 		of_node_put(child);
673 		if (domain)
674 			break;
675 	}
676 	if (!domain) {
677 		pr_err("Failed to find INTC IRQ root domain\n");
678 		return -ENODEV;
679 	}
680 
681 	riscv_pmu_irq = irq_create_mapping(domain, RV_IRQ_PMU);
682 	if (!riscv_pmu_irq) {
683 		pr_err("Failed to map PMU interrupt for node\n");
684 		return -ENODEV;
685 	}
686 
687 	ret = request_percpu_irq(riscv_pmu_irq, pmu_sbi_ovf_handler, "riscv-pmu", hw_events);
688 	if (ret) {
689 		pr_err("registering percpu irq failed [%d]\n", ret);
690 		return ret;
691 	}
692 
693 	return 0;
694 }
695 
696 static int pmu_sbi_device_probe(struct platform_device *pdev)
697 {
698 	struct riscv_pmu *pmu = NULL;
699 	int num_counters;
700 	int ret = -ENODEV;
701 
702 	pr_info("SBI PMU extension is available\n");
703 	pmu = riscv_pmu_alloc();
704 	if (!pmu)
705 		return -ENOMEM;
706 
707 	num_counters = pmu_sbi_find_num_ctrs();
708 	if (num_counters < 0) {
709 		pr_err("SBI PMU extension doesn't provide any counters\n");
710 		goto out_free;
711 	}
712 
713 	/* cache all the information about counters now */
714 	if (pmu_sbi_get_ctrinfo(num_counters))
715 		goto out_free;
716 
717 	ret = pmu_sbi_setup_irqs(pmu, pdev);
718 	if (ret < 0) {
719 		pr_info("Perf sampling/filtering is not supported as sscof extension is not available\n");
720 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
721 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
722 	}
723 	pmu->num_counters = num_counters;
724 	pmu->ctr_start = pmu_sbi_ctr_start;
725 	pmu->ctr_stop = pmu_sbi_ctr_stop;
726 	pmu->event_map = pmu_sbi_event_map;
727 	pmu->ctr_get_idx = pmu_sbi_ctr_get_idx;
728 	pmu->ctr_get_width = pmu_sbi_ctr_get_width;
729 	pmu->ctr_clear_idx = pmu_sbi_ctr_clear_idx;
730 	pmu->ctr_read = pmu_sbi_ctr_read;
731 
732 	ret = cpuhp_state_add_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
733 	if (ret)
734 		return ret;
735 
736 	ret = perf_pmu_register(&pmu->pmu, "cpu", PERF_TYPE_RAW);
737 	if (ret) {
738 		cpuhp_state_remove_instance(CPUHP_AP_PERF_RISCV_STARTING, &pmu->node);
739 		return ret;
740 	}
741 
742 	return 0;
743 
744 out_free:
745 	kfree(pmu);
746 	return ret;
747 }
748 
749 static struct platform_driver pmu_sbi_driver = {
750 	.probe		= pmu_sbi_device_probe,
751 	.driver		= {
752 		.name	= RISCV_PMU_PDEV_NAME,
753 	},
754 };
755 
756 static int __init pmu_sbi_devinit(void)
757 {
758 	int ret;
759 	struct platform_device *pdev;
760 
761 	if (sbi_spec_version < sbi_mk_version(0, 3) ||
762 	    sbi_probe_extension(SBI_EXT_PMU) <= 0) {
763 		return 0;
764 	}
765 
766 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_RISCV_STARTING,
767 				      "perf/riscv/pmu:starting",
768 				      pmu_sbi_starting_cpu, pmu_sbi_dying_cpu);
769 	if (ret) {
770 		pr_err("CPU hotplug notifier could not be registered: %d\n",
771 		       ret);
772 		return ret;
773 	}
774 
775 	ret = platform_driver_register(&pmu_sbi_driver);
776 	if (ret)
777 		return ret;
778 
779 	pdev = platform_device_register_simple(RISCV_PMU_PDEV_NAME, -1, NULL, 0);
780 	if (IS_ERR(pdev)) {
781 		platform_driver_unregister(&pmu_sbi_driver);
782 		return PTR_ERR(pdev);
783 	}
784 
785 	/* Notify legacy implementation that SBI pmu is available*/
786 	riscv_pmu_legacy_skip_init();
787 
788 	return ret;
789 }
790 device_initcall(pmu_sbi_devinit)
791