xref: /openbmc/linux/drivers/perf/hisilicon/hisi_uncore_pmu.c (revision 7f2e85840871f199057e65232ebde846192ed989)
1 /*
2  * HiSilicon SoC Hardware event counters support
3  *
4  * Copyright (C) 2017 Hisilicon Limited
5  * Author: Anurup M <anurup.m@huawei.com>
6  *         Shaokun Zhang <zhangshaokun@hisilicon.com>
7  *
8  * This code is based on the uncore PMUs like arm-cci and arm-ccn.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License version 2 as
12  * published by the Free Software Foundation.
13  */
14 #include <linux/bitmap.h>
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/err.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 
21 #include <asm/local64.h>
22 
23 #include "hisi_uncore_pmu.h"
24 
25 #define HISI_GET_EVENTID(ev) (ev->hw.config_base & 0xff)
26 #define HISI_MAX_PERIOD(nr) (BIT_ULL(nr) - 1)
27 
28 /*
29  * PMU format attributes
30  */
31 ssize_t hisi_format_sysfs_show(struct device *dev,
32 			       struct device_attribute *attr, char *buf)
33 {
34 	struct dev_ext_attribute *eattr;
35 
36 	eattr = container_of(attr, struct dev_ext_attribute, attr);
37 
38 	return sprintf(buf, "%s\n", (char *)eattr->var);
39 }
40 
41 /*
42  * PMU event attributes
43  */
44 ssize_t hisi_event_sysfs_show(struct device *dev,
45 			      struct device_attribute *attr, char *page)
46 {
47 	struct dev_ext_attribute *eattr;
48 
49 	eattr = container_of(attr, struct dev_ext_attribute, attr);
50 
51 	return sprintf(page, "config=0x%lx\n", (unsigned long)eattr->var);
52 }
53 
54 /*
55  * sysfs cpumask attributes. For uncore PMU, we only have a single CPU to show
56  */
57 ssize_t hisi_cpumask_sysfs_show(struct device *dev,
58 				struct device_attribute *attr, char *buf)
59 {
60 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(dev_get_drvdata(dev));
61 
62 	return sprintf(buf, "%d\n", hisi_pmu->on_cpu);
63 }
64 
65 static bool hisi_validate_event_group(struct perf_event *event)
66 {
67 	struct perf_event *sibling, *leader = event->group_leader;
68 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
69 	/* Include count for the event */
70 	int counters = 1;
71 
72 	if (!is_software_event(leader)) {
73 		/*
74 		 * We must NOT create groups containing mixed PMUs, although
75 		 * software events are acceptable
76 		 */
77 		if (leader->pmu != event->pmu)
78 			return false;
79 
80 		/* Increment counter for the leader */
81 		if (leader != event)
82 			counters++;
83 	}
84 
85 	list_for_each_entry(sibling, &event->group_leader->sibling_list,
86 			    group_entry) {
87 		if (is_software_event(sibling))
88 			continue;
89 		if (sibling->pmu != event->pmu)
90 			return false;
91 		/* Increment counter for each sibling */
92 		counters++;
93 	}
94 
95 	/* The group can not count events more than the counters in the HW */
96 	return counters <= hisi_pmu->num_counters;
97 }
98 
99 int hisi_uncore_pmu_counter_valid(struct hisi_pmu *hisi_pmu, int idx)
100 {
101 	return idx >= 0 && idx < hisi_pmu->num_counters;
102 }
103 
104 int hisi_uncore_pmu_get_event_idx(struct perf_event *event)
105 {
106 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
107 	unsigned long *used_mask = hisi_pmu->pmu_events.used_mask;
108 	u32 num_counters = hisi_pmu->num_counters;
109 	int idx;
110 
111 	idx = find_first_zero_bit(used_mask, num_counters);
112 	if (idx == num_counters)
113 		return -EAGAIN;
114 
115 	set_bit(idx, used_mask);
116 
117 	return idx;
118 }
119 
120 static void hisi_uncore_pmu_clear_event_idx(struct hisi_pmu *hisi_pmu, int idx)
121 {
122 	if (!hisi_uncore_pmu_counter_valid(hisi_pmu, idx)) {
123 		dev_err(hisi_pmu->dev, "Unsupported event index:%d!\n", idx);
124 		return;
125 	}
126 
127 	clear_bit(idx, hisi_pmu->pmu_events.used_mask);
128 }
129 
130 int hisi_uncore_pmu_event_init(struct perf_event *event)
131 {
132 	struct hw_perf_event *hwc = &event->hw;
133 	struct hisi_pmu *hisi_pmu;
134 
135 	if (event->attr.type != event->pmu->type)
136 		return -ENOENT;
137 
138 	/*
139 	 * We do not support sampling as the counters are all
140 	 * shared by all CPU cores in a CPU die(SCCL). Also we
141 	 * do not support attach to a task(per-process mode)
142 	 */
143 	if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
144 		return -EOPNOTSUPP;
145 
146 	/* counters do not have these bits */
147 	if (event->attr.exclude_user	||
148 	    event->attr.exclude_kernel	||
149 	    event->attr.exclude_host	||
150 	    event->attr.exclude_guest	||
151 	    event->attr.exclude_hv	||
152 	    event->attr.exclude_idle)
153 		return -EINVAL;
154 
155 	/*
156 	 *  The uncore counters not specific to any CPU, so cannot
157 	 *  support per-task
158 	 */
159 	if (event->cpu < 0)
160 		return -EINVAL;
161 
162 	/*
163 	 * Validate if the events in group does not exceed the
164 	 * available counters in hardware.
165 	 */
166 	if (!hisi_validate_event_group(event))
167 		return -EINVAL;
168 
169 	hisi_pmu = to_hisi_pmu(event->pmu);
170 	if (event->attr.config > hisi_pmu->check_event)
171 		return -EINVAL;
172 
173 	if (hisi_pmu->on_cpu == -1)
174 		return -EINVAL;
175 	/*
176 	 * We don't assign an index until we actually place the event onto
177 	 * hardware. Use -1 to signify that we haven't decided where to put it
178 	 * yet.
179 	 */
180 	hwc->idx		= -1;
181 	hwc->config_base	= event->attr.config;
182 
183 	/* Enforce to use the same CPU for all events in this PMU */
184 	event->cpu = hisi_pmu->on_cpu;
185 
186 	return 0;
187 }
188 
189 /*
190  * Set the counter to count the event that we're interested in,
191  * and enable interrupt and counter.
192  */
193 static void hisi_uncore_pmu_enable_event(struct perf_event *event)
194 {
195 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
196 	struct hw_perf_event *hwc = &event->hw;
197 
198 	hisi_pmu->ops->write_evtype(hisi_pmu, hwc->idx,
199 				    HISI_GET_EVENTID(event));
200 
201 	hisi_pmu->ops->enable_counter_int(hisi_pmu, hwc);
202 	hisi_pmu->ops->enable_counter(hisi_pmu, hwc);
203 }
204 
205 /*
206  * Disable counter and interrupt.
207  */
208 static void hisi_uncore_pmu_disable_event(struct perf_event *event)
209 {
210 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
211 	struct hw_perf_event *hwc = &event->hw;
212 
213 	hisi_pmu->ops->disable_counter(hisi_pmu, hwc);
214 	hisi_pmu->ops->disable_counter_int(hisi_pmu, hwc);
215 }
216 
217 void hisi_uncore_pmu_set_event_period(struct perf_event *event)
218 {
219 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
220 	struct hw_perf_event *hwc = &event->hw;
221 
222 	/*
223 	 * The HiSilicon PMU counters support 32 bits or 48 bits, depending on
224 	 * the PMU. We reduce it to 2^(counter_bits - 1) to account for the
225 	 * extreme interrupt latency. So we could hopefully handle the overflow
226 	 * interrupt before another 2^(counter_bits - 1) events occur and the
227 	 * counter overtakes its previous value.
228 	 */
229 	u64 val = BIT_ULL(hisi_pmu->counter_bits - 1);
230 
231 	local64_set(&hwc->prev_count, val);
232 	/* Write start value to the hardware event counter */
233 	hisi_pmu->ops->write_counter(hisi_pmu, hwc, val);
234 }
235 
236 void hisi_uncore_pmu_event_update(struct perf_event *event)
237 {
238 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
239 	struct hw_perf_event *hwc = &event->hw;
240 	u64 delta, prev_raw_count, new_raw_count;
241 
242 	do {
243 		/* Read the count from the counter register */
244 		new_raw_count = hisi_pmu->ops->read_counter(hisi_pmu, hwc);
245 		prev_raw_count = local64_read(&hwc->prev_count);
246 	} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
247 				 new_raw_count) != prev_raw_count);
248 	/*
249 	 * compute the delta
250 	 */
251 	delta = (new_raw_count - prev_raw_count) &
252 		HISI_MAX_PERIOD(hisi_pmu->counter_bits);
253 	local64_add(delta, &event->count);
254 }
255 
256 void hisi_uncore_pmu_start(struct perf_event *event, int flags)
257 {
258 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
259 	struct hw_perf_event *hwc = &event->hw;
260 
261 	if (WARN_ON_ONCE(!(hwc->state & PERF_HES_STOPPED)))
262 		return;
263 
264 	WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
265 	hwc->state = 0;
266 	hisi_uncore_pmu_set_event_period(event);
267 
268 	if (flags & PERF_EF_RELOAD) {
269 		u64 prev_raw_count =  local64_read(&hwc->prev_count);
270 
271 		hisi_pmu->ops->write_counter(hisi_pmu, hwc, prev_raw_count);
272 	}
273 
274 	hisi_uncore_pmu_enable_event(event);
275 	perf_event_update_userpage(event);
276 }
277 
278 void hisi_uncore_pmu_stop(struct perf_event *event, int flags)
279 {
280 	struct hw_perf_event *hwc = &event->hw;
281 
282 	hisi_uncore_pmu_disable_event(event);
283 	WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
284 	hwc->state |= PERF_HES_STOPPED;
285 
286 	if (hwc->state & PERF_HES_UPTODATE)
287 		return;
288 
289 	/* Read hardware counter and update the perf counter statistics */
290 	hisi_uncore_pmu_event_update(event);
291 	hwc->state |= PERF_HES_UPTODATE;
292 }
293 
294 int hisi_uncore_pmu_add(struct perf_event *event, int flags)
295 {
296 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
297 	struct hw_perf_event *hwc = &event->hw;
298 	int idx;
299 
300 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
301 
302 	/* Get an available counter index for counting */
303 	idx = hisi_pmu->ops->get_event_idx(event);
304 	if (idx < 0)
305 		return idx;
306 
307 	event->hw.idx = idx;
308 	hisi_pmu->pmu_events.hw_events[idx] = event;
309 
310 	if (flags & PERF_EF_START)
311 		hisi_uncore_pmu_start(event, PERF_EF_RELOAD);
312 
313 	return 0;
314 }
315 
316 void hisi_uncore_pmu_del(struct perf_event *event, int flags)
317 {
318 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(event->pmu);
319 	struct hw_perf_event *hwc = &event->hw;
320 
321 	hisi_uncore_pmu_stop(event, PERF_EF_UPDATE);
322 	hisi_uncore_pmu_clear_event_idx(hisi_pmu, hwc->idx);
323 	perf_event_update_userpage(event);
324 	hisi_pmu->pmu_events.hw_events[hwc->idx] = NULL;
325 }
326 
327 void hisi_uncore_pmu_read(struct perf_event *event)
328 {
329 	/* Read hardware counter and update the perf counter statistics */
330 	hisi_uncore_pmu_event_update(event);
331 }
332 
333 void hisi_uncore_pmu_enable(struct pmu *pmu)
334 {
335 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu);
336 	int enabled = bitmap_weight(hisi_pmu->pmu_events.used_mask,
337 				    hisi_pmu->num_counters);
338 
339 	if (!enabled)
340 		return;
341 
342 	hisi_pmu->ops->start_counters(hisi_pmu);
343 }
344 
345 void hisi_uncore_pmu_disable(struct pmu *pmu)
346 {
347 	struct hisi_pmu *hisi_pmu = to_hisi_pmu(pmu);
348 
349 	hisi_pmu->ops->stop_counters(hisi_pmu);
350 }
351 
352 /*
353  * Read Super CPU cluster and CPU cluster ID from MPIDR_EL1.
354  * If multi-threading is supported, SCCL_ID is in MPIDR[aff3] and CCL_ID
355  * is in MPIDR[aff2]; if not, SCCL_ID is in MPIDR[aff2] and CCL_ID is
356  * in MPIDR[aff1]. If this changes in future, this shall be updated.
357  */
358 static void hisi_read_sccl_and_ccl_id(int *sccl_id, int *ccl_id)
359 {
360 	u64 mpidr = read_cpuid_mpidr();
361 
362 	if (mpidr & MPIDR_MT_BITMASK) {
363 		if (sccl_id)
364 			*sccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 3);
365 		if (ccl_id)
366 			*ccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
367 	} else {
368 		if (sccl_id)
369 			*sccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 2);
370 		if (ccl_id)
371 			*ccl_id = MPIDR_AFFINITY_LEVEL(mpidr, 1);
372 	}
373 }
374 
375 /*
376  * Check whether the CPU is associated with this uncore PMU
377  */
378 static bool hisi_pmu_cpu_is_associated_pmu(struct hisi_pmu *hisi_pmu)
379 {
380 	int sccl_id, ccl_id;
381 
382 	if (hisi_pmu->ccl_id == -1) {
383 		/* If CCL_ID is -1, the PMU only shares the same SCCL */
384 		hisi_read_sccl_and_ccl_id(&sccl_id, NULL);
385 
386 		return sccl_id == hisi_pmu->sccl_id;
387 	}
388 
389 	hisi_read_sccl_and_ccl_id(&sccl_id, &ccl_id);
390 
391 	return sccl_id == hisi_pmu->sccl_id && ccl_id == hisi_pmu->ccl_id;
392 }
393 
394 int hisi_uncore_pmu_online_cpu(unsigned int cpu, struct hlist_node *node)
395 {
396 	struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu,
397 						     node);
398 
399 	if (!hisi_pmu_cpu_is_associated_pmu(hisi_pmu))
400 		return 0;
401 
402 	cpumask_set_cpu(cpu, &hisi_pmu->associated_cpus);
403 
404 	/* If another CPU is already managing this PMU, simply return. */
405 	if (hisi_pmu->on_cpu != -1)
406 		return 0;
407 
408 	/* Use this CPU in cpumask for event counting */
409 	hisi_pmu->on_cpu = cpu;
410 
411 	/* Overflow interrupt also should use the same CPU */
412 	WARN_ON(irq_set_affinity(hisi_pmu->irq, cpumask_of(cpu)));
413 
414 	return 0;
415 }
416 
417 int hisi_uncore_pmu_offline_cpu(unsigned int cpu, struct hlist_node *node)
418 {
419 	struct hisi_pmu *hisi_pmu = hlist_entry_safe(node, struct hisi_pmu,
420 						     node);
421 	cpumask_t pmu_online_cpus;
422 	unsigned int target;
423 
424 	if (!cpumask_test_and_clear_cpu(cpu, &hisi_pmu->associated_cpus))
425 		return 0;
426 
427 	/* Nothing to do if this CPU doesn't own the PMU */
428 	if (hisi_pmu->on_cpu != cpu)
429 		return 0;
430 
431 	/* Give up ownership of the PMU */
432 	hisi_pmu->on_cpu = -1;
433 
434 	/* Choose a new CPU to migrate ownership of the PMU to */
435 	cpumask_and(&pmu_online_cpus, &hisi_pmu->associated_cpus,
436 		    cpu_online_mask);
437 	target = cpumask_any_but(&pmu_online_cpus, cpu);
438 	if (target >= nr_cpu_ids)
439 		return 0;
440 
441 	perf_pmu_migrate_context(&hisi_pmu->pmu, cpu, target);
442 	/* Use this CPU for event counting */
443 	hisi_pmu->on_cpu = target;
444 	WARN_ON(irq_set_affinity(hisi_pmu->irq, cpumask_of(target)));
445 
446 	return 0;
447 }
448