xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision feac8c8b)
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  */
21 
22 #define PMUNAME					"arm_spe"
23 #define DRVNAME					PMUNAME "_pmu"
24 #define pr_fmt(fmt)				DRVNAME ": " fmt
25 
26 #include <linux/cpuhotplug.h>
27 #include <linux/interrupt.h>
28 #include <linux/irq.h>
29 #include <linux/module.h>
30 #include <linux/of_address.h>
31 #include <linux/of_device.h>
32 #include <linux/perf_event.h>
33 #include <linux/platform_device.h>
34 #include <linux/slab.h>
35 
36 #include <asm/sysreg.h>
37 
38 #define ARM_SPE_BUF_PAD_BYTE			0
39 
40 struct arm_spe_pmu_buf {
41 	int					nr_pages;
42 	bool					snapshot;
43 	void					*base;
44 };
45 
46 struct arm_spe_pmu {
47 	struct pmu				pmu;
48 	struct platform_device			*pdev;
49 	cpumask_t				supported_cpus;
50 	struct hlist_node			hotplug_node;
51 
52 	int					irq; /* PPI */
53 
54 	u16					min_period;
55 	u16					counter_sz;
56 
57 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
58 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
59 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
60 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
61 #define SPE_PMU_FEAT_LDS			(1UL << 4)
62 #define SPE_PMU_FEAT_ERND			(1UL << 5)
63 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
64 	u64					features;
65 
66 	u16					max_record_sz;
67 	u16					align;
68 	struct perf_output_handle __percpu	*handle;
69 };
70 
71 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
72 
73 /* Convert a free-running index from perf into an SPE buffer offset */
74 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
75 
76 /* Keep track of our dynamic hotplug state */
77 static enum cpuhp_state arm_spe_pmu_online;
78 
79 enum arm_spe_pmu_buf_fault_action {
80 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
81 	SPE_PMU_BUF_FAULT_ACT_FATAL,
82 	SPE_PMU_BUF_FAULT_ACT_OK,
83 };
84 
85 /* This sysfs gunk was really good fun to write. */
86 enum arm_spe_pmu_capabilities {
87 	SPE_PMU_CAP_ARCH_INST = 0,
88 	SPE_PMU_CAP_ERND,
89 	SPE_PMU_CAP_FEAT_MAX,
90 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
91 	SPE_PMU_CAP_MIN_IVAL,
92 };
93 
94 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
95 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
96 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
97 };
98 
99 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
100 {
101 	if (cap < SPE_PMU_CAP_FEAT_MAX)
102 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
103 
104 	switch (cap) {
105 	case SPE_PMU_CAP_CNT_SZ:
106 		return spe_pmu->counter_sz;
107 	case SPE_PMU_CAP_MIN_IVAL:
108 		return spe_pmu->min_period;
109 	default:
110 		WARN(1, "unknown cap %d\n", cap);
111 	}
112 
113 	return 0;
114 }
115 
116 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
117 				    struct device_attribute *attr,
118 				    char *buf)
119 {
120 	struct platform_device *pdev = to_platform_device(dev);
121 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
122 	struct dev_ext_attribute *ea =
123 		container_of(attr, struct dev_ext_attribute, attr);
124 	int cap = (long)ea->var;
125 
126 	return snprintf(buf, PAGE_SIZE, "%u\n",
127 		arm_spe_pmu_cap_get(spe_pmu, cap));
128 }
129 
130 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
131 	&((struct dev_ext_attribute[]) {				\
132 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
133 	})[0].attr.attr
134 
135 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
136 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
137 
138 static struct attribute *arm_spe_pmu_cap_attr[] = {
139 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
140 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
141 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
142 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
143 	NULL,
144 };
145 
146 static struct attribute_group arm_spe_pmu_cap_group = {
147 	.name	= "caps",
148 	.attrs	= arm_spe_pmu_cap_attr,
149 };
150 
151 /* User ABI */
152 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
153 #define ATTR_CFG_FLD_ts_enable_LO		0
154 #define ATTR_CFG_FLD_ts_enable_HI		0
155 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
156 #define ATTR_CFG_FLD_pa_enable_LO		1
157 #define ATTR_CFG_FLD_pa_enable_HI		1
158 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
159 #define ATTR_CFG_FLD_pct_enable_LO		2
160 #define ATTR_CFG_FLD_pct_enable_HI		2
161 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
162 #define ATTR_CFG_FLD_jitter_LO			16
163 #define ATTR_CFG_FLD_jitter_HI			16
164 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
165 #define ATTR_CFG_FLD_branch_filter_LO		32
166 #define ATTR_CFG_FLD_branch_filter_HI		32
167 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
168 #define ATTR_CFG_FLD_load_filter_LO		33
169 #define ATTR_CFG_FLD_load_filter_HI		33
170 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
171 #define ATTR_CFG_FLD_store_filter_LO		34
172 #define ATTR_CFG_FLD_store_filter_HI		34
173 
174 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
175 #define ATTR_CFG_FLD_event_filter_LO		0
176 #define ATTR_CFG_FLD_event_filter_HI		63
177 
178 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
179 #define ATTR_CFG_FLD_min_latency_LO		0
180 #define ATTR_CFG_FLD_min_latency_HI		11
181 
182 /* Why does everything I do descend into this? */
183 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
184 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
185 
186 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
187 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
188 
189 #define GEN_PMU_FORMAT_ATTR(name)					\
190 	PMU_FORMAT_ATTR(name,						\
191 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
192 			     ATTR_CFG_FLD_##name##_LO,			\
193 			     ATTR_CFG_FLD_##name##_HI))
194 
195 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
196 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
197 
198 #define ATTR_CFG_GET_FLD(attr, name)					\
199 	_ATTR_CFG_GET_FLD(attr,						\
200 			  ATTR_CFG_FLD_##name##_CFG,			\
201 			  ATTR_CFG_FLD_##name##_LO,			\
202 			  ATTR_CFG_FLD_##name##_HI)
203 
204 GEN_PMU_FORMAT_ATTR(ts_enable);
205 GEN_PMU_FORMAT_ATTR(pa_enable);
206 GEN_PMU_FORMAT_ATTR(pct_enable);
207 GEN_PMU_FORMAT_ATTR(jitter);
208 GEN_PMU_FORMAT_ATTR(branch_filter);
209 GEN_PMU_FORMAT_ATTR(load_filter);
210 GEN_PMU_FORMAT_ATTR(store_filter);
211 GEN_PMU_FORMAT_ATTR(event_filter);
212 GEN_PMU_FORMAT_ATTR(min_latency);
213 
214 static struct attribute *arm_spe_pmu_formats_attr[] = {
215 	&format_attr_ts_enable.attr,
216 	&format_attr_pa_enable.attr,
217 	&format_attr_pct_enable.attr,
218 	&format_attr_jitter.attr,
219 	&format_attr_branch_filter.attr,
220 	&format_attr_load_filter.attr,
221 	&format_attr_store_filter.attr,
222 	&format_attr_event_filter.attr,
223 	&format_attr_min_latency.attr,
224 	NULL,
225 };
226 
227 static struct attribute_group arm_spe_pmu_format_group = {
228 	.name	= "format",
229 	.attrs	= arm_spe_pmu_formats_attr,
230 };
231 
232 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
233 					    struct device_attribute *attr,
234 					    char *buf)
235 {
236 	struct platform_device *pdev = to_platform_device(dev);
237 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
238 
239 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
240 }
241 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
242 
243 static struct attribute *arm_spe_pmu_attrs[] = {
244 	&dev_attr_cpumask.attr,
245 	NULL,
246 };
247 
248 static struct attribute_group arm_spe_pmu_group = {
249 	.attrs	= arm_spe_pmu_attrs,
250 };
251 
252 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
253 	&arm_spe_pmu_group,
254 	&arm_spe_pmu_cap_group,
255 	&arm_spe_pmu_format_group,
256 	NULL,
257 };
258 
259 /* Convert between user ABI and register values */
260 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
261 {
262 	struct perf_event_attr *attr = &event->attr;
263 	u64 reg = 0;
264 
265 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
266 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
267 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
268 
269 	if (!attr->exclude_user)
270 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
271 
272 	if (!attr->exclude_kernel)
273 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
274 
275 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
276 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
277 
278 	return reg;
279 }
280 
281 static void arm_spe_event_sanitise_period(struct perf_event *event)
282 {
283 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
284 	u64 period = event->hw.sample_period;
285 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
286 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
287 
288 	if (period < spe_pmu->min_period)
289 		period = spe_pmu->min_period;
290 	else if (period > max_period)
291 		period = max_period;
292 	else
293 		period &= max_period;
294 
295 	event->hw.sample_period = period;
296 }
297 
298 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
299 {
300 	struct perf_event_attr *attr = &event->attr;
301 	u64 reg = 0;
302 
303 	arm_spe_event_sanitise_period(event);
304 
305 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
306 	reg |= event->hw.sample_period;
307 
308 	return reg;
309 }
310 
311 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
312 {
313 	struct perf_event_attr *attr = &event->attr;
314 	u64 reg = 0;
315 
316 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
317 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
318 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
319 
320 	if (reg)
321 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
322 
323 	if (ATTR_CFG_GET_FLD(attr, event_filter))
324 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
325 
326 	if (ATTR_CFG_GET_FLD(attr, min_latency))
327 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
328 
329 	return reg;
330 }
331 
332 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
333 {
334 	struct perf_event_attr *attr = &event->attr;
335 	return ATTR_CFG_GET_FLD(attr, event_filter);
336 }
337 
338 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
339 {
340 	struct perf_event_attr *attr = &event->attr;
341 	return ATTR_CFG_GET_FLD(attr, min_latency)
342 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
343 }
344 
345 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
346 {
347 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
348 	u64 head = PERF_IDX2OFF(handle->head, buf);
349 
350 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
351 	if (!buf->snapshot)
352 		perf_aux_output_skip(handle, len);
353 }
354 
355 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
356 {
357 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
358 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
359 	u64 head = PERF_IDX2OFF(handle->head, buf);
360 	u64 limit = buf->nr_pages * PAGE_SIZE;
361 
362 	/*
363 	 * The trace format isn't parseable in reverse, so clamp
364 	 * the limit to half of the buffer size in snapshot mode
365 	 * so that the worst case is half a buffer of records, as
366 	 * opposed to a single record.
367 	 */
368 	if (head < limit >> 1)
369 		limit >>= 1;
370 
371 	/*
372 	 * If we're within max_record_sz of the limit, we must
373 	 * pad, move the head index and recompute the limit.
374 	 */
375 	if (limit - head < spe_pmu->max_record_sz) {
376 		arm_spe_pmu_pad_buf(handle, limit - head);
377 		handle->head = PERF_IDX2OFF(limit, buf);
378 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
379 	}
380 
381 	return limit;
382 }
383 
384 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
385 {
386 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
387 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
388 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
389 	u64 limit = bufsize;
390 	u64 head, tail, wakeup;
391 
392 	/*
393 	 * The head can be misaligned for two reasons:
394 	 *
395 	 * 1. The hardware left PMBPTR pointing to the first byte after
396 	 *    a record when generating a buffer management event.
397 	 *
398 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
399 	 *    and CIRC_SPACE was used to compute the size, which always
400 	 *    leaves one entry free.
401 	 *
402 	 * Deal with this by padding to the next alignment boundary and
403 	 * moving the head index. If we run out of buffer space, we'll
404 	 * reduce handle->size to zero and end up reporting truncation.
405 	 */
406 	head = PERF_IDX2OFF(handle->head, buf);
407 	if (!IS_ALIGNED(head, spe_pmu->align)) {
408 		unsigned long delta = roundup(head, spe_pmu->align) - head;
409 
410 		delta = min(delta, handle->size);
411 		arm_spe_pmu_pad_buf(handle, delta);
412 		head = PERF_IDX2OFF(handle->head, buf);
413 	}
414 
415 	/* If we've run out of free space, then nothing more to do */
416 	if (!handle->size)
417 		goto no_space;
418 
419 	/* Compute the tail and wakeup indices now that we've aligned head */
420 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
421 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
422 
423 	/*
424 	 * Avoid clobbering unconsumed data. We know we have space, so
425 	 * if we see head == tail we know that the buffer is empty. If
426 	 * head > tail, then there's nothing to clobber prior to
427 	 * wrapping.
428 	 */
429 	if (head < tail)
430 		limit = round_down(tail, PAGE_SIZE);
431 
432 	/*
433 	 * Wakeup may be arbitrarily far into the future. If it's not in
434 	 * the current generation, either we'll wrap before hitting it,
435 	 * or it's in the past and has been handled already.
436 	 *
437 	 * If there's a wakeup before we wrap, arrange to be woken up by
438 	 * the page boundary following it. Keep the tail boundary if
439 	 * that's lower.
440 	 */
441 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
442 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
443 
444 	if (limit > head)
445 		return limit;
446 
447 	arm_spe_pmu_pad_buf(handle, handle->size);
448 no_space:
449 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
450 	perf_aux_output_end(handle, 0);
451 	return 0;
452 }
453 
454 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
455 {
456 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
457 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
458 	u64 limit = __arm_spe_pmu_next_off(handle);
459 	u64 head = PERF_IDX2OFF(handle->head, buf);
460 
461 	/*
462 	 * If the head has come too close to the end of the buffer,
463 	 * then pad to the end and recompute the limit.
464 	 */
465 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
466 		arm_spe_pmu_pad_buf(handle, limit - head);
467 		limit = __arm_spe_pmu_next_off(handle);
468 	}
469 
470 	return limit;
471 }
472 
473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
474 					  struct perf_event *event)
475 {
476 	u64 base, limit;
477 	struct arm_spe_pmu_buf *buf;
478 
479 	/* Start a new aux session */
480 	buf = perf_aux_output_begin(handle, event);
481 	if (!buf) {
482 		event->hw.state |= PERF_HES_STOPPED;
483 		/*
484 		 * We still need to clear the limit pointer, since the
485 		 * profiler might only be disabled by virtue of a fault.
486 		 */
487 		limit = 0;
488 		goto out_write_limit;
489 	}
490 
491 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
492 			      : arm_spe_pmu_next_off(handle);
493 	if (limit)
494 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
495 
496 	limit += (u64)buf->base;
497 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
498 	write_sysreg_s(base, SYS_PMBPTR_EL1);
499 
500 out_write_limit:
501 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
502 }
503 
504 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
505 {
506 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
507 	u64 offset, size;
508 
509 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
510 	size = offset - PERF_IDX2OFF(handle->head, buf);
511 
512 	if (buf->snapshot)
513 		handle->head = offset;
514 
515 	perf_aux_output_end(handle, size);
516 }
517 
518 static void arm_spe_pmu_disable_and_drain_local(void)
519 {
520 	/* Disable profiling at EL0 and EL1 */
521 	write_sysreg_s(0, SYS_PMSCR_EL1);
522 	isb();
523 
524 	/* Drain any buffered data */
525 	psb_csync();
526 	dsb(nsh);
527 
528 	/* Disable the profiling buffer */
529 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
530 	isb();
531 }
532 
533 /* IRQ handling */
534 static enum arm_spe_pmu_buf_fault_action
535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
536 {
537 	const char *err_str;
538 	u64 pmbsr;
539 	enum arm_spe_pmu_buf_fault_action ret;
540 
541 	/*
542 	 * Ensure new profiling data is visible to the CPU and any external
543 	 * aborts have been resolved.
544 	 */
545 	psb_csync();
546 	dsb(nsh);
547 
548 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
549 	isb();
550 
551 	/* Service required? */
552 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
553 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
554 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
555 
556 	/*
557 	 * If we've lost data, disable profiling and also set the PARTIAL
558 	 * flag to indicate that the last record is corrupted.
559 	 */
560 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
561 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
562 					     PERF_AUX_FLAG_PARTIAL);
563 
564 	/* Report collisions to userspace so that it can up the period */
565 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
566 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
567 
568 	/* We only expect buffer management events */
569 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
570 	case SYS_PMBSR_EL1_EC_BUF:
571 		/* Handled below */
572 		break;
573 	case SYS_PMBSR_EL1_EC_FAULT_S1:
574 	case SYS_PMBSR_EL1_EC_FAULT_S2:
575 		err_str = "Unexpected buffer fault";
576 		goto out_err;
577 	default:
578 		err_str = "Unknown error code";
579 		goto out_err;
580 	}
581 
582 	/* Buffer management event */
583 	switch (pmbsr &
584 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
585 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
586 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
587 		goto out_stop;
588 	default:
589 		err_str = "Unknown buffer status code";
590 	}
591 
592 out_err:
593 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
594 			   err_str, smp_processor_id(), pmbsr,
595 			   read_sysreg_s(SYS_PMBPTR_EL1),
596 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
597 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
598 
599 out_stop:
600 	arm_spe_perf_aux_output_end(handle);
601 	return ret;
602 }
603 
604 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
605 {
606 	struct perf_output_handle *handle = dev;
607 	struct perf_event *event = handle->event;
608 	enum arm_spe_pmu_buf_fault_action act;
609 
610 	if (!perf_get_aux(handle))
611 		return IRQ_NONE;
612 
613 	act = arm_spe_pmu_buf_get_fault_act(handle);
614 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
615 		return IRQ_NONE;
616 
617 	/*
618 	 * Ensure perf callbacks have completed, which may disable the
619 	 * profiling buffer in response to a TRUNCATION flag.
620 	 */
621 	irq_work_run();
622 
623 	switch (act) {
624 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
625 		/*
626 		 * If a fatal exception occurred then leaving the profiling
627 		 * buffer enabled is a recipe waiting to happen. Since
628 		 * fatal faults don't always imply truncation, make sure
629 		 * that the profiling buffer is disabled explicitly before
630 		 * clearing the syndrome register.
631 		 */
632 		arm_spe_pmu_disable_and_drain_local();
633 		break;
634 	case SPE_PMU_BUF_FAULT_ACT_OK:
635 		/*
636 		 * We handled the fault (the buffer was full), so resume
637 		 * profiling as long as we didn't detect truncation.
638 		 * PMBPTR might be misaligned, but we'll burn that bridge
639 		 * when we get to it.
640 		 */
641 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
642 			arm_spe_perf_aux_output_begin(handle, event);
643 			isb();
644 		}
645 		break;
646 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
647 		/* We've seen you before, but GCC has the memory of a sieve. */
648 		break;
649 	}
650 
651 	/* The buffer pointers are now sane, so resume profiling. */
652 	write_sysreg_s(0, SYS_PMBSR_EL1);
653 	return IRQ_HANDLED;
654 }
655 
656 /* Perf callbacks */
657 static int arm_spe_pmu_event_init(struct perf_event *event)
658 {
659 	u64 reg;
660 	struct perf_event_attr *attr = &event->attr;
661 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
662 
663 	/* This is, of course, deeply driver-specific */
664 	if (attr->type != event->pmu->type)
665 		return -ENOENT;
666 
667 	if (event->cpu >= 0 &&
668 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
669 		return -ENOENT;
670 
671 	if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
672 		return -EOPNOTSUPP;
673 
674 	if (attr->exclude_idle)
675 		return -EOPNOTSUPP;
676 
677 	/*
678 	 * Feedback-directed frequency throttling doesn't work when we
679 	 * have a buffer of samples. We'd need to manually count the
680 	 * samples in the buffer when it fills up and adjust the event
681 	 * count to reflect that. Instead, just force the user to specify
682 	 * a sample period.
683 	 */
684 	if (attr->freq)
685 		return -EINVAL;
686 
687 	reg = arm_spe_event_to_pmsfcr(event);
688 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
689 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
690 		return -EOPNOTSUPP;
691 
692 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
693 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
694 		return -EOPNOTSUPP;
695 
696 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
697 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
698 		return -EOPNOTSUPP;
699 
700 	reg = arm_spe_event_to_pmscr(event);
701 	if (!capable(CAP_SYS_ADMIN) &&
702 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
703 		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
704 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
705 		return -EACCES;
706 
707 	return 0;
708 }
709 
710 static void arm_spe_pmu_start(struct perf_event *event, int flags)
711 {
712 	u64 reg;
713 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
714 	struct hw_perf_event *hwc = &event->hw;
715 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
716 
717 	hwc->state = 0;
718 	arm_spe_perf_aux_output_begin(handle, event);
719 	if (hwc->state)
720 		return;
721 
722 	reg = arm_spe_event_to_pmsfcr(event);
723 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
724 
725 	reg = arm_spe_event_to_pmsevfr(event);
726 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
727 
728 	reg = arm_spe_event_to_pmslatfr(event);
729 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
730 
731 	if (flags & PERF_EF_RELOAD) {
732 		reg = arm_spe_event_to_pmsirr(event);
733 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
734 		isb();
735 		reg = local64_read(&hwc->period_left);
736 		write_sysreg_s(reg, SYS_PMSICR_EL1);
737 	}
738 
739 	reg = arm_spe_event_to_pmscr(event);
740 	isb();
741 	write_sysreg_s(reg, SYS_PMSCR_EL1);
742 }
743 
744 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
745 {
746 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
747 	struct hw_perf_event *hwc = &event->hw;
748 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
749 
750 	/* If we're already stopped, then nothing to do */
751 	if (hwc->state & PERF_HES_STOPPED)
752 		return;
753 
754 	/* Stop all trace generation */
755 	arm_spe_pmu_disable_and_drain_local();
756 
757 	if (flags & PERF_EF_UPDATE) {
758 		/*
759 		 * If there's a fault pending then ensure we contain it
760 		 * to this buffer, since we might be on the context-switch
761 		 * path.
762 		 */
763 		if (perf_get_aux(handle)) {
764 			enum arm_spe_pmu_buf_fault_action act;
765 
766 			act = arm_spe_pmu_buf_get_fault_act(handle);
767 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
768 				arm_spe_perf_aux_output_end(handle);
769 			else
770 				write_sysreg_s(0, SYS_PMBSR_EL1);
771 		}
772 
773 		/*
774 		 * This may also contain ECOUNT, but nobody else should
775 		 * be looking at period_left, since we forbid frequency
776 		 * based sampling.
777 		 */
778 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
779 		hwc->state |= PERF_HES_UPTODATE;
780 	}
781 
782 	hwc->state |= PERF_HES_STOPPED;
783 }
784 
785 static int arm_spe_pmu_add(struct perf_event *event, int flags)
786 {
787 	int ret = 0;
788 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
789 	struct hw_perf_event *hwc = &event->hw;
790 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
791 
792 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
793 		return -ENOENT;
794 
795 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
796 
797 	if (flags & PERF_EF_START) {
798 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
799 		if (hwc->state & PERF_HES_STOPPED)
800 			ret = -EINVAL;
801 	}
802 
803 	return ret;
804 }
805 
806 static void arm_spe_pmu_del(struct perf_event *event, int flags)
807 {
808 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
809 }
810 
811 static void arm_spe_pmu_read(struct perf_event *event)
812 {
813 }
814 
815 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
816 				   bool snapshot)
817 {
818 	int i;
819 	struct page **pglist;
820 	struct arm_spe_pmu_buf *buf;
821 
822 	/* We need at least two pages for this to work. */
823 	if (nr_pages < 2)
824 		return NULL;
825 
826 	/*
827 	 * We require an even number of pages for snapshot mode, so that
828 	 * we can effectively treat the buffer as consisting of two equal
829 	 * parts and give userspace a fighting chance of getting some
830 	 * useful data out of it.
831 	 */
832 	if (!nr_pages || (snapshot && (nr_pages & 1)))
833 		return NULL;
834 
835 	if (cpu == -1)
836 		cpu = raw_smp_processor_id();
837 
838 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
839 	if (!buf)
840 		return NULL;
841 
842 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
843 	if (!pglist)
844 		goto out_free_buf;
845 
846 	for (i = 0; i < nr_pages; ++i) {
847 		struct page *page = virt_to_page(pages[i]);
848 
849 		if (PagePrivate(page)) {
850 			pr_warn("unexpected high-order page for auxbuf!");
851 			goto out_free_pglist;
852 		}
853 
854 		pglist[i] = virt_to_page(pages[i]);
855 	}
856 
857 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
858 	if (!buf->base)
859 		goto out_free_pglist;
860 
861 	buf->nr_pages	= nr_pages;
862 	buf->snapshot	= snapshot;
863 
864 	kfree(pglist);
865 	return buf;
866 
867 out_free_pglist:
868 	kfree(pglist);
869 out_free_buf:
870 	kfree(buf);
871 	return NULL;
872 }
873 
874 static void arm_spe_pmu_free_aux(void *aux)
875 {
876 	struct arm_spe_pmu_buf *buf = aux;
877 
878 	vunmap(buf->base);
879 	kfree(buf);
880 }
881 
882 /* Initialisation and teardown functions */
883 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
884 {
885 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
886 
887 	int idx;
888 	char *name;
889 	struct device *dev = &spe_pmu->pdev->dev;
890 
891 	spe_pmu->pmu = (struct pmu) {
892 		.module = THIS_MODULE,
893 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
894 		.attr_groups	= arm_spe_pmu_attr_groups,
895 		/*
896 		 * We hitch a ride on the software context here, so that
897 		 * we can support per-task profiling (which is not possible
898 		 * with the invalid context as it doesn't get sched callbacks).
899 		 * This requires that userspace either uses a dummy event for
900 		 * perf_event_open, since the aux buffer is not setup until
901 		 * a subsequent mmap, or creates the profiling event in a
902 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
903 		 * once the buffer has been created.
904 		 */
905 		.task_ctx_nr	= perf_sw_context,
906 		.event_init	= arm_spe_pmu_event_init,
907 		.add		= arm_spe_pmu_add,
908 		.del		= arm_spe_pmu_del,
909 		.start		= arm_spe_pmu_start,
910 		.stop		= arm_spe_pmu_stop,
911 		.read		= arm_spe_pmu_read,
912 		.setup_aux	= arm_spe_pmu_setup_aux,
913 		.free_aux	= arm_spe_pmu_free_aux,
914 	};
915 
916 	idx = atomic_inc_return(&pmu_idx);
917 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
918 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
919 }
920 
921 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
922 {
923 	perf_pmu_unregister(&spe_pmu->pmu);
924 }
925 
926 static void __arm_spe_pmu_dev_probe(void *info)
927 {
928 	int fld;
929 	u64 reg;
930 	struct arm_spe_pmu *spe_pmu = info;
931 	struct device *dev = &spe_pmu->pdev->dev;
932 
933 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
934 						   ID_AA64DFR0_PMSVER_SHIFT);
935 	if (!fld) {
936 		dev_err(dev,
937 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
938 			fld, smp_processor_id());
939 		return;
940 	}
941 
942 	/* Read PMBIDR first to determine whether or not we have access */
943 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
944 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
945 		dev_err(dev,
946 			"profiling buffer owned by higher exception level\n");
947 		return;
948 	}
949 
950 	/* Minimum alignment. If it's out-of-range, then fail the probe */
951 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
952 	spe_pmu->align = 1 << fld;
953 	if (spe_pmu->align > SZ_2K) {
954 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
955 			fld, smp_processor_id());
956 		return;
957 	}
958 
959 	/* It's now safe to read PMSIDR and figure out what we've got */
960 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
961 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
962 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
963 
964 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
965 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
966 
967 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
968 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
969 
970 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
971 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
972 
973 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
974 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
975 
976 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
977 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
978 
979 	/* This field has a spaced out encoding, so just use a look-up */
980 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
981 	switch (fld) {
982 	case 0:
983 		spe_pmu->min_period = 256;
984 		break;
985 	case 2:
986 		spe_pmu->min_period = 512;
987 		break;
988 	case 3:
989 		spe_pmu->min_period = 768;
990 		break;
991 	case 4:
992 		spe_pmu->min_period = 1024;
993 		break;
994 	case 5:
995 		spe_pmu->min_period = 1536;
996 		break;
997 	case 6:
998 		spe_pmu->min_period = 2048;
999 		break;
1000 	case 7:
1001 		spe_pmu->min_period = 3072;
1002 		break;
1003 	default:
1004 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1005 			 fld);
1006 		/* Fallthrough */
1007 	case 8:
1008 		spe_pmu->min_period = 4096;
1009 	}
1010 
1011 	/* Maximum record size. If it's out-of-range, then fail the probe */
1012 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1013 	spe_pmu->max_record_sz = 1 << fld;
1014 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1015 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1016 			fld, smp_processor_id());
1017 		return;
1018 	}
1019 
1020 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1021 	switch (fld) {
1022 	default:
1023 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1024 			 fld);
1025 		/* Fallthrough */
1026 	case 2:
1027 		spe_pmu->counter_sz = 12;
1028 	}
1029 
1030 	dev_info(dev,
1031 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1032 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1033 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1034 
1035 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1036 	return;
1037 }
1038 
1039 static void __arm_spe_pmu_reset_local(void)
1040 {
1041 	/*
1042 	 * This is probably overkill, as we have no idea where we're
1043 	 * draining any buffered data to...
1044 	 */
1045 	arm_spe_pmu_disable_and_drain_local();
1046 
1047 	/* Reset the buffer base pointer */
1048 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1049 	isb();
1050 
1051 	/* Clear any pending management interrupts */
1052 	write_sysreg_s(0, SYS_PMBSR_EL1);
1053 	isb();
1054 }
1055 
1056 static void __arm_spe_pmu_setup_one(void *info)
1057 {
1058 	struct arm_spe_pmu *spe_pmu = info;
1059 
1060 	__arm_spe_pmu_reset_local();
1061 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1062 }
1063 
1064 static void __arm_spe_pmu_stop_one(void *info)
1065 {
1066 	struct arm_spe_pmu *spe_pmu = info;
1067 
1068 	disable_percpu_irq(spe_pmu->irq);
1069 	__arm_spe_pmu_reset_local();
1070 }
1071 
1072 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1073 {
1074 	struct arm_spe_pmu *spe_pmu;
1075 
1076 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1077 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1078 		return 0;
1079 
1080 	__arm_spe_pmu_setup_one(spe_pmu);
1081 	return 0;
1082 }
1083 
1084 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1085 {
1086 	struct arm_spe_pmu *spe_pmu;
1087 
1088 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090 		return 0;
1091 
1092 	__arm_spe_pmu_stop_one(spe_pmu);
1093 	return 0;
1094 }
1095 
1096 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1097 {
1098 	int ret;
1099 	cpumask_t *mask = &spe_pmu->supported_cpus;
1100 
1101 	/* Make sure we probe the hardware on a relevant CPU */
1102 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1103 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1104 		return -ENXIO;
1105 
1106 	/* Request our PPIs (note that the IRQ is still disabled) */
1107 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1108 				 spe_pmu->handle);
1109 	if (ret)
1110 		return ret;
1111 
1112 	/*
1113 	 * Register our hotplug notifier now so we don't miss any events.
1114 	 * This will enable the IRQ for any supported CPUs that are already
1115 	 * up.
1116 	 */
1117 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1118 				       &spe_pmu->hotplug_node);
1119 	if (ret)
1120 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1121 
1122 	return ret;
1123 }
1124 
1125 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1126 {
1127 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1128 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1129 }
1130 
1131 /* Driver and device probing */
1132 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1133 {
1134 	struct platform_device *pdev = spe_pmu->pdev;
1135 	int irq = platform_get_irq(pdev, 0);
1136 
1137 	if (irq < 0) {
1138 		dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1139 		return -ENXIO;
1140 	}
1141 
1142 	if (!irq_is_percpu(irq)) {
1143 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1144 		return -EINVAL;
1145 	}
1146 
1147 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1148 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1149 		return -EINVAL;
1150 	}
1151 
1152 	spe_pmu->irq = irq;
1153 	return 0;
1154 }
1155 
1156 static const struct of_device_id arm_spe_pmu_of_match[] = {
1157 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1158 	{ /* Sentinel */ },
1159 };
1160 
1161 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1162 {
1163 	int ret;
1164 	struct arm_spe_pmu *spe_pmu;
1165 	struct device *dev = &pdev->dev;
1166 
1167 	/*
1168 	 * If kernelspace is unmapped when running at EL0, then the SPE
1169 	 * buffer will fault and prematurely terminate the AUX session.
1170 	 */
1171 	if (arm64_kernel_unmapped_at_el0()) {
1172 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1173 		return -EPERM;
1174 	}
1175 
1176 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1177 	if (!spe_pmu) {
1178 		dev_err(dev, "failed to allocate spe_pmu\n");
1179 		return -ENOMEM;
1180 	}
1181 
1182 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1183 	if (!spe_pmu->handle)
1184 		return -ENOMEM;
1185 
1186 	spe_pmu->pdev = pdev;
1187 	platform_set_drvdata(pdev, spe_pmu);
1188 
1189 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1190 	if (ret)
1191 		goto out_free_handle;
1192 
1193 	ret = arm_spe_pmu_dev_init(spe_pmu);
1194 	if (ret)
1195 		goto out_free_handle;
1196 
1197 	ret = arm_spe_pmu_perf_init(spe_pmu);
1198 	if (ret)
1199 		goto out_teardown_dev;
1200 
1201 	return 0;
1202 
1203 out_teardown_dev:
1204 	arm_spe_pmu_dev_teardown(spe_pmu);
1205 out_free_handle:
1206 	free_percpu(spe_pmu->handle);
1207 	return ret;
1208 }
1209 
1210 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1211 {
1212 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1213 
1214 	arm_spe_pmu_perf_destroy(spe_pmu);
1215 	arm_spe_pmu_dev_teardown(spe_pmu);
1216 	free_percpu(spe_pmu->handle);
1217 	return 0;
1218 }
1219 
1220 static struct platform_driver arm_spe_pmu_driver = {
1221 	.driver	= {
1222 		.name		= DRVNAME,
1223 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1224 	},
1225 	.probe	= arm_spe_pmu_device_dt_probe,
1226 	.remove	= arm_spe_pmu_device_remove,
1227 };
1228 
1229 static int __init arm_spe_pmu_init(void)
1230 {
1231 	int ret;
1232 
1233 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1234 				      arm_spe_pmu_cpu_startup,
1235 				      arm_spe_pmu_cpu_teardown);
1236 	if (ret < 0)
1237 		return ret;
1238 	arm_spe_pmu_online = ret;
1239 
1240 	ret = platform_driver_register(&arm_spe_pmu_driver);
1241 	if (ret)
1242 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1243 
1244 	return ret;
1245 }
1246 
1247 static void __exit arm_spe_pmu_exit(void)
1248 {
1249 	platform_driver_unregister(&arm_spe_pmu_driver);
1250 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1251 }
1252 
1253 module_init(arm_spe_pmu_init);
1254 module_exit(arm_spe_pmu_exit);
1255 
1256 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1257 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1258 MODULE_LICENSE("GPL v2");
1259