xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision fca3aa16)
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  */
21 
22 #define PMUNAME					"arm_spe"
23 #define DRVNAME					PMUNAME "_pmu"
24 #define pr_fmt(fmt)				DRVNAME ": " fmt
25 
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
46 
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
49 #include <asm/mmu.h>
50 #include <asm/sysreg.h>
51 
52 #define ARM_SPE_BUF_PAD_BYTE			0
53 
54 struct arm_spe_pmu_buf {
55 	int					nr_pages;
56 	bool					snapshot;
57 	void					*base;
58 };
59 
60 struct arm_spe_pmu {
61 	struct pmu				pmu;
62 	struct platform_device			*pdev;
63 	cpumask_t				supported_cpus;
64 	struct hlist_node			hotplug_node;
65 
66 	int					irq; /* PPI */
67 
68 	u16					min_period;
69 	u16					counter_sz;
70 
71 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
75 #define SPE_PMU_FEAT_LDS			(1UL << 4)
76 #define SPE_PMU_FEAT_ERND			(1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
78 	u64					features;
79 
80 	u16					max_record_sz;
81 	u16					align;
82 	struct perf_output_handle __percpu	*handle;
83 };
84 
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
86 
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
89 
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online;
92 
93 enum arm_spe_pmu_buf_fault_action {
94 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
95 	SPE_PMU_BUF_FAULT_ACT_FATAL,
96 	SPE_PMU_BUF_FAULT_ACT_OK,
97 };
98 
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities {
101 	SPE_PMU_CAP_ARCH_INST = 0,
102 	SPE_PMU_CAP_ERND,
103 	SPE_PMU_CAP_FEAT_MAX,
104 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
105 	SPE_PMU_CAP_MIN_IVAL,
106 };
107 
108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
109 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
110 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
111 };
112 
113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
114 {
115 	if (cap < SPE_PMU_CAP_FEAT_MAX)
116 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
117 
118 	switch (cap) {
119 	case SPE_PMU_CAP_CNT_SZ:
120 		return spe_pmu->counter_sz;
121 	case SPE_PMU_CAP_MIN_IVAL:
122 		return spe_pmu->min_period;
123 	default:
124 		WARN(1, "unknown cap %d\n", cap);
125 	}
126 
127 	return 0;
128 }
129 
130 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
131 				    struct device_attribute *attr,
132 				    char *buf)
133 {
134 	struct platform_device *pdev = to_platform_device(dev);
135 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
136 	struct dev_ext_attribute *ea =
137 		container_of(attr, struct dev_ext_attribute, attr);
138 	int cap = (long)ea->var;
139 
140 	return snprintf(buf, PAGE_SIZE, "%u\n",
141 		arm_spe_pmu_cap_get(spe_pmu, cap));
142 }
143 
144 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
145 	&((struct dev_ext_attribute[]) {				\
146 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
147 	})[0].attr.attr
148 
149 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
150 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
151 
152 static struct attribute *arm_spe_pmu_cap_attr[] = {
153 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
154 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
155 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
156 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
157 	NULL,
158 };
159 
160 static struct attribute_group arm_spe_pmu_cap_group = {
161 	.name	= "caps",
162 	.attrs	= arm_spe_pmu_cap_attr,
163 };
164 
165 /* User ABI */
166 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
167 #define ATTR_CFG_FLD_ts_enable_LO		0
168 #define ATTR_CFG_FLD_ts_enable_HI		0
169 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
170 #define ATTR_CFG_FLD_pa_enable_LO		1
171 #define ATTR_CFG_FLD_pa_enable_HI		1
172 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
173 #define ATTR_CFG_FLD_pct_enable_LO		2
174 #define ATTR_CFG_FLD_pct_enable_HI		2
175 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
176 #define ATTR_CFG_FLD_jitter_LO			16
177 #define ATTR_CFG_FLD_jitter_HI			16
178 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
179 #define ATTR_CFG_FLD_branch_filter_LO		32
180 #define ATTR_CFG_FLD_branch_filter_HI		32
181 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
182 #define ATTR_CFG_FLD_load_filter_LO		33
183 #define ATTR_CFG_FLD_load_filter_HI		33
184 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
185 #define ATTR_CFG_FLD_store_filter_LO		34
186 #define ATTR_CFG_FLD_store_filter_HI		34
187 
188 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
189 #define ATTR_CFG_FLD_event_filter_LO		0
190 #define ATTR_CFG_FLD_event_filter_HI		63
191 
192 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
193 #define ATTR_CFG_FLD_min_latency_LO		0
194 #define ATTR_CFG_FLD_min_latency_HI		11
195 
196 /* Why does everything I do descend into this? */
197 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
198 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
199 
200 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
201 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
202 
203 #define GEN_PMU_FORMAT_ATTR(name)					\
204 	PMU_FORMAT_ATTR(name,						\
205 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
206 			     ATTR_CFG_FLD_##name##_LO,			\
207 			     ATTR_CFG_FLD_##name##_HI))
208 
209 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
210 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
211 
212 #define ATTR_CFG_GET_FLD(attr, name)					\
213 	_ATTR_CFG_GET_FLD(attr,						\
214 			  ATTR_CFG_FLD_##name##_CFG,			\
215 			  ATTR_CFG_FLD_##name##_LO,			\
216 			  ATTR_CFG_FLD_##name##_HI)
217 
218 GEN_PMU_FORMAT_ATTR(ts_enable);
219 GEN_PMU_FORMAT_ATTR(pa_enable);
220 GEN_PMU_FORMAT_ATTR(pct_enable);
221 GEN_PMU_FORMAT_ATTR(jitter);
222 GEN_PMU_FORMAT_ATTR(branch_filter);
223 GEN_PMU_FORMAT_ATTR(load_filter);
224 GEN_PMU_FORMAT_ATTR(store_filter);
225 GEN_PMU_FORMAT_ATTR(event_filter);
226 GEN_PMU_FORMAT_ATTR(min_latency);
227 
228 static struct attribute *arm_spe_pmu_formats_attr[] = {
229 	&format_attr_ts_enable.attr,
230 	&format_attr_pa_enable.attr,
231 	&format_attr_pct_enable.attr,
232 	&format_attr_jitter.attr,
233 	&format_attr_branch_filter.attr,
234 	&format_attr_load_filter.attr,
235 	&format_attr_store_filter.attr,
236 	&format_attr_event_filter.attr,
237 	&format_attr_min_latency.attr,
238 	NULL,
239 };
240 
241 static struct attribute_group arm_spe_pmu_format_group = {
242 	.name	= "format",
243 	.attrs	= arm_spe_pmu_formats_attr,
244 };
245 
246 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
247 					    struct device_attribute *attr,
248 					    char *buf)
249 {
250 	struct platform_device *pdev = to_platform_device(dev);
251 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
252 
253 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
254 }
255 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
256 
257 static struct attribute *arm_spe_pmu_attrs[] = {
258 	&dev_attr_cpumask.attr,
259 	NULL,
260 };
261 
262 static struct attribute_group arm_spe_pmu_group = {
263 	.attrs	= arm_spe_pmu_attrs,
264 };
265 
266 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
267 	&arm_spe_pmu_group,
268 	&arm_spe_pmu_cap_group,
269 	&arm_spe_pmu_format_group,
270 	NULL,
271 };
272 
273 /* Convert between user ABI and register values */
274 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
275 {
276 	struct perf_event_attr *attr = &event->attr;
277 	u64 reg = 0;
278 
279 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
280 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
281 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
282 
283 	if (!attr->exclude_user)
284 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
285 
286 	if (!attr->exclude_kernel)
287 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
288 
289 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
290 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
291 
292 	return reg;
293 }
294 
295 static void arm_spe_event_sanitise_period(struct perf_event *event)
296 {
297 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
298 	u64 period = event->hw.sample_period;
299 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
300 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
301 
302 	if (period < spe_pmu->min_period)
303 		period = spe_pmu->min_period;
304 	else if (period > max_period)
305 		period = max_period;
306 	else
307 		period &= max_period;
308 
309 	event->hw.sample_period = period;
310 }
311 
312 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
313 {
314 	struct perf_event_attr *attr = &event->attr;
315 	u64 reg = 0;
316 
317 	arm_spe_event_sanitise_period(event);
318 
319 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
320 	reg |= event->hw.sample_period;
321 
322 	return reg;
323 }
324 
325 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
326 {
327 	struct perf_event_attr *attr = &event->attr;
328 	u64 reg = 0;
329 
330 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
331 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
332 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
333 
334 	if (reg)
335 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
336 
337 	if (ATTR_CFG_GET_FLD(attr, event_filter))
338 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
339 
340 	if (ATTR_CFG_GET_FLD(attr, min_latency))
341 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
342 
343 	return reg;
344 }
345 
346 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
347 {
348 	struct perf_event_attr *attr = &event->attr;
349 	return ATTR_CFG_GET_FLD(attr, event_filter);
350 }
351 
352 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
353 {
354 	struct perf_event_attr *attr = &event->attr;
355 	return ATTR_CFG_GET_FLD(attr, min_latency)
356 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
357 }
358 
359 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
360 {
361 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
362 	u64 head = PERF_IDX2OFF(handle->head, buf);
363 
364 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
365 	if (!buf->snapshot)
366 		perf_aux_output_skip(handle, len);
367 }
368 
369 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
370 {
371 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
372 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
373 	u64 head = PERF_IDX2OFF(handle->head, buf);
374 	u64 limit = buf->nr_pages * PAGE_SIZE;
375 
376 	/*
377 	 * The trace format isn't parseable in reverse, so clamp
378 	 * the limit to half of the buffer size in snapshot mode
379 	 * so that the worst case is half a buffer of records, as
380 	 * opposed to a single record.
381 	 */
382 	if (head < limit >> 1)
383 		limit >>= 1;
384 
385 	/*
386 	 * If we're within max_record_sz of the limit, we must
387 	 * pad, move the head index and recompute the limit.
388 	 */
389 	if (limit - head < spe_pmu->max_record_sz) {
390 		arm_spe_pmu_pad_buf(handle, limit - head);
391 		handle->head = PERF_IDX2OFF(limit, buf);
392 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
393 	}
394 
395 	return limit;
396 }
397 
398 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
399 {
400 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
401 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
402 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
403 	u64 limit = bufsize;
404 	u64 head, tail, wakeup;
405 
406 	/*
407 	 * The head can be misaligned for two reasons:
408 	 *
409 	 * 1. The hardware left PMBPTR pointing to the first byte after
410 	 *    a record when generating a buffer management event.
411 	 *
412 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
413 	 *    and CIRC_SPACE was used to compute the size, which always
414 	 *    leaves one entry free.
415 	 *
416 	 * Deal with this by padding to the next alignment boundary and
417 	 * moving the head index. If we run out of buffer space, we'll
418 	 * reduce handle->size to zero and end up reporting truncation.
419 	 */
420 	head = PERF_IDX2OFF(handle->head, buf);
421 	if (!IS_ALIGNED(head, spe_pmu->align)) {
422 		unsigned long delta = roundup(head, spe_pmu->align) - head;
423 
424 		delta = min(delta, handle->size);
425 		arm_spe_pmu_pad_buf(handle, delta);
426 		head = PERF_IDX2OFF(handle->head, buf);
427 	}
428 
429 	/* If we've run out of free space, then nothing more to do */
430 	if (!handle->size)
431 		goto no_space;
432 
433 	/* Compute the tail and wakeup indices now that we've aligned head */
434 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
435 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
436 
437 	/*
438 	 * Avoid clobbering unconsumed data. We know we have space, so
439 	 * if we see head == tail we know that the buffer is empty. If
440 	 * head > tail, then there's nothing to clobber prior to
441 	 * wrapping.
442 	 */
443 	if (head < tail)
444 		limit = round_down(tail, PAGE_SIZE);
445 
446 	/*
447 	 * Wakeup may be arbitrarily far into the future. If it's not in
448 	 * the current generation, either we'll wrap before hitting it,
449 	 * or it's in the past and has been handled already.
450 	 *
451 	 * If there's a wakeup before we wrap, arrange to be woken up by
452 	 * the page boundary following it. Keep the tail boundary if
453 	 * that's lower.
454 	 */
455 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
456 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
457 
458 	if (limit > head)
459 		return limit;
460 
461 	arm_spe_pmu_pad_buf(handle, handle->size);
462 no_space:
463 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
464 	perf_aux_output_end(handle, 0);
465 	return 0;
466 }
467 
468 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
469 {
470 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
471 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
472 	u64 limit = __arm_spe_pmu_next_off(handle);
473 	u64 head = PERF_IDX2OFF(handle->head, buf);
474 
475 	/*
476 	 * If the head has come too close to the end of the buffer,
477 	 * then pad to the end and recompute the limit.
478 	 */
479 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
480 		arm_spe_pmu_pad_buf(handle, limit - head);
481 		limit = __arm_spe_pmu_next_off(handle);
482 	}
483 
484 	return limit;
485 }
486 
487 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
488 					  struct perf_event *event)
489 {
490 	u64 base, limit;
491 	struct arm_spe_pmu_buf *buf;
492 
493 	/* Start a new aux session */
494 	buf = perf_aux_output_begin(handle, event);
495 	if (!buf) {
496 		event->hw.state |= PERF_HES_STOPPED;
497 		/*
498 		 * We still need to clear the limit pointer, since the
499 		 * profiler might only be disabled by virtue of a fault.
500 		 */
501 		limit = 0;
502 		goto out_write_limit;
503 	}
504 
505 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
506 			      : arm_spe_pmu_next_off(handle);
507 	if (limit)
508 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
509 
510 	limit += (u64)buf->base;
511 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
512 	write_sysreg_s(base, SYS_PMBPTR_EL1);
513 
514 out_write_limit:
515 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
516 }
517 
518 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
519 {
520 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
521 	u64 offset, size;
522 
523 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
524 	size = offset - PERF_IDX2OFF(handle->head, buf);
525 
526 	if (buf->snapshot)
527 		handle->head = offset;
528 
529 	perf_aux_output_end(handle, size);
530 }
531 
532 static void arm_spe_pmu_disable_and_drain_local(void)
533 {
534 	/* Disable profiling at EL0 and EL1 */
535 	write_sysreg_s(0, SYS_PMSCR_EL1);
536 	isb();
537 
538 	/* Drain any buffered data */
539 	psb_csync();
540 	dsb(nsh);
541 
542 	/* Disable the profiling buffer */
543 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
544 	isb();
545 }
546 
547 /* IRQ handling */
548 static enum arm_spe_pmu_buf_fault_action
549 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
550 {
551 	const char *err_str;
552 	u64 pmbsr;
553 	enum arm_spe_pmu_buf_fault_action ret;
554 
555 	/*
556 	 * Ensure new profiling data is visible to the CPU and any external
557 	 * aborts have been resolved.
558 	 */
559 	psb_csync();
560 	dsb(nsh);
561 
562 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
563 	isb();
564 
565 	/* Service required? */
566 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
567 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
568 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
569 
570 	/*
571 	 * If we've lost data, disable profiling and also set the PARTIAL
572 	 * flag to indicate that the last record is corrupted.
573 	 */
574 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
575 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
576 					     PERF_AUX_FLAG_PARTIAL);
577 
578 	/* Report collisions to userspace so that it can up the period */
579 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
580 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
581 
582 	/* We only expect buffer management events */
583 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
584 	case SYS_PMBSR_EL1_EC_BUF:
585 		/* Handled below */
586 		break;
587 	case SYS_PMBSR_EL1_EC_FAULT_S1:
588 	case SYS_PMBSR_EL1_EC_FAULT_S2:
589 		err_str = "Unexpected buffer fault";
590 		goto out_err;
591 	default:
592 		err_str = "Unknown error code";
593 		goto out_err;
594 	}
595 
596 	/* Buffer management event */
597 	switch (pmbsr &
598 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
599 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
600 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
601 		goto out_stop;
602 	default:
603 		err_str = "Unknown buffer status code";
604 	}
605 
606 out_err:
607 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
608 			   err_str, smp_processor_id(), pmbsr,
609 			   read_sysreg_s(SYS_PMBPTR_EL1),
610 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
611 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
612 
613 out_stop:
614 	arm_spe_perf_aux_output_end(handle);
615 	return ret;
616 }
617 
618 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
619 {
620 	struct perf_output_handle *handle = dev;
621 	struct perf_event *event = handle->event;
622 	enum arm_spe_pmu_buf_fault_action act;
623 
624 	if (!perf_get_aux(handle))
625 		return IRQ_NONE;
626 
627 	act = arm_spe_pmu_buf_get_fault_act(handle);
628 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
629 		return IRQ_NONE;
630 
631 	/*
632 	 * Ensure perf callbacks have completed, which may disable the
633 	 * profiling buffer in response to a TRUNCATION flag.
634 	 */
635 	irq_work_run();
636 
637 	switch (act) {
638 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
639 		/*
640 		 * If a fatal exception occurred then leaving the profiling
641 		 * buffer enabled is a recipe waiting to happen. Since
642 		 * fatal faults don't always imply truncation, make sure
643 		 * that the profiling buffer is disabled explicitly before
644 		 * clearing the syndrome register.
645 		 */
646 		arm_spe_pmu_disable_and_drain_local();
647 		break;
648 	case SPE_PMU_BUF_FAULT_ACT_OK:
649 		/*
650 		 * We handled the fault (the buffer was full), so resume
651 		 * profiling as long as we didn't detect truncation.
652 		 * PMBPTR might be misaligned, but we'll burn that bridge
653 		 * when we get to it.
654 		 */
655 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
656 			arm_spe_perf_aux_output_begin(handle, event);
657 			isb();
658 		}
659 		break;
660 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
661 		/* We've seen you before, but GCC has the memory of a sieve. */
662 		break;
663 	}
664 
665 	/* The buffer pointers are now sane, so resume profiling. */
666 	write_sysreg_s(0, SYS_PMBSR_EL1);
667 	return IRQ_HANDLED;
668 }
669 
670 /* Perf callbacks */
671 static int arm_spe_pmu_event_init(struct perf_event *event)
672 {
673 	u64 reg;
674 	struct perf_event_attr *attr = &event->attr;
675 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
676 
677 	/* This is, of course, deeply driver-specific */
678 	if (attr->type != event->pmu->type)
679 		return -ENOENT;
680 
681 	if (event->cpu >= 0 &&
682 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
683 		return -ENOENT;
684 
685 	if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
686 		return -EOPNOTSUPP;
687 
688 	if (attr->exclude_idle)
689 		return -EOPNOTSUPP;
690 
691 	/*
692 	 * Feedback-directed frequency throttling doesn't work when we
693 	 * have a buffer of samples. We'd need to manually count the
694 	 * samples in the buffer when it fills up and adjust the event
695 	 * count to reflect that. Instead, just force the user to specify
696 	 * a sample period.
697 	 */
698 	if (attr->freq)
699 		return -EINVAL;
700 
701 	reg = arm_spe_event_to_pmsfcr(event);
702 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
703 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
704 		return -EOPNOTSUPP;
705 
706 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
707 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
708 		return -EOPNOTSUPP;
709 
710 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
711 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
712 		return -EOPNOTSUPP;
713 
714 	reg = arm_spe_event_to_pmscr(event);
715 	if (!capable(CAP_SYS_ADMIN) &&
716 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
717 		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
718 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
719 		return -EACCES;
720 
721 	return 0;
722 }
723 
724 static void arm_spe_pmu_start(struct perf_event *event, int flags)
725 {
726 	u64 reg;
727 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
728 	struct hw_perf_event *hwc = &event->hw;
729 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
730 
731 	hwc->state = 0;
732 	arm_spe_perf_aux_output_begin(handle, event);
733 	if (hwc->state)
734 		return;
735 
736 	reg = arm_spe_event_to_pmsfcr(event);
737 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
738 
739 	reg = arm_spe_event_to_pmsevfr(event);
740 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
741 
742 	reg = arm_spe_event_to_pmslatfr(event);
743 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
744 
745 	if (flags & PERF_EF_RELOAD) {
746 		reg = arm_spe_event_to_pmsirr(event);
747 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
748 		isb();
749 		reg = local64_read(&hwc->period_left);
750 		write_sysreg_s(reg, SYS_PMSICR_EL1);
751 	}
752 
753 	reg = arm_spe_event_to_pmscr(event);
754 	isb();
755 	write_sysreg_s(reg, SYS_PMSCR_EL1);
756 }
757 
758 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
759 {
760 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
761 	struct hw_perf_event *hwc = &event->hw;
762 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
763 
764 	/* If we're already stopped, then nothing to do */
765 	if (hwc->state & PERF_HES_STOPPED)
766 		return;
767 
768 	/* Stop all trace generation */
769 	arm_spe_pmu_disable_and_drain_local();
770 
771 	if (flags & PERF_EF_UPDATE) {
772 		/*
773 		 * If there's a fault pending then ensure we contain it
774 		 * to this buffer, since we might be on the context-switch
775 		 * path.
776 		 */
777 		if (perf_get_aux(handle)) {
778 			enum arm_spe_pmu_buf_fault_action act;
779 
780 			act = arm_spe_pmu_buf_get_fault_act(handle);
781 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
782 				arm_spe_perf_aux_output_end(handle);
783 			else
784 				write_sysreg_s(0, SYS_PMBSR_EL1);
785 		}
786 
787 		/*
788 		 * This may also contain ECOUNT, but nobody else should
789 		 * be looking at period_left, since we forbid frequency
790 		 * based sampling.
791 		 */
792 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
793 		hwc->state |= PERF_HES_UPTODATE;
794 	}
795 
796 	hwc->state |= PERF_HES_STOPPED;
797 }
798 
799 static int arm_spe_pmu_add(struct perf_event *event, int flags)
800 {
801 	int ret = 0;
802 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
803 	struct hw_perf_event *hwc = &event->hw;
804 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
805 
806 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
807 		return -ENOENT;
808 
809 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
810 
811 	if (flags & PERF_EF_START) {
812 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
813 		if (hwc->state & PERF_HES_STOPPED)
814 			ret = -EINVAL;
815 	}
816 
817 	return ret;
818 }
819 
820 static void arm_spe_pmu_del(struct perf_event *event, int flags)
821 {
822 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823 }
824 
825 static void arm_spe_pmu_read(struct perf_event *event)
826 {
827 }
828 
829 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages,
830 				   bool snapshot)
831 {
832 	int i;
833 	struct page **pglist;
834 	struct arm_spe_pmu_buf *buf;
835 
836 	/* We need at least two pages for this to work. */
837 	if (nr_pages < 2)
838 		return NULL;
839 
840 	/*
841 	 * We require an even number of pages for snapshot mode, so that
842 	 * we can effectively treat the buffer as consisting of two equal
843 	 * parts and give userspace a fighting chance of getting some
844 	 * useful data out of it.
845 	 */
846 	if (!nr_pages || (snapshot && (nr_pages & 1)))
847 		return NULL;
848 
849 	if (cpu == -1)
850 		cpu = raw_smp_processor_id();
851 
852 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
853 	if (!buf)
854 		return NULL;
855 
856 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
857 	if (!pglist)
858 		goto out_free_buf;
859 
860 	for (i = 0; i < nr_pages; ++i) {
861 		struct page *page = virt_to_page(pages[i]);
862 
863 		if (PagePrivate(page)) {
864 			pr_warn("unexpected high-order page for auxbuf!");
865 			goto out_free_pglist;
866 		}
867 
868 		pglist[i] = virt_to_page(pages[i]);
869 	}
870 
871 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
872 	if (!buf->base)
873 		goto out_free_pglist;
874 
875 	buf->nr_pages	= nr_pages;
876 	buf->snapshot	= snapshot;
877 
878 	kfree(pglist);
879 	return buf;
880 
881 out_free_pglist:
882 	kfree(pglist);
883 out_free_buf:
884 	kfree(buf);
885 	return NULL;
886 }
887 
888 static void arm_spe_pmu_free_aux(void *aux)
889 {
890 	struct arm_spe_pmu_buf *buf = aux;
891 
892 	vunmap(buf->base);
893 	kfree(buf);
894 }
895 
896 /* Initialisation and teardown functions */
897 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
898 {
899 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
900 
901 	int idx;
902 	char *name;
903 	struct device *dev = &spe_pmu->pdev->dev;
904 
905 	spe_pmu->pmu = (struct pmu) {
906 		.module = THIS_MODULE,
907 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
908 		.attr_groups	= arm_spe_pmu_attr_groups,
909 		/*
910 		 * We hitch a ride on the software context here, so that
911 		 * we can support per-task profiling (which is not possible
912 		 * with the invalid context as it doesn't get sched callbacks).
913 		 * This requires that userspace either uses a dummy event for
914 		 * perf_event_open, since the aux buffer is not setup until
915 		 * a subsequent mmap, or creates the profiling event in a
916 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
917 		 * once the buffer has been created.
918 		 */
919 		.task_ctx_nr	= perf_sw_context,
920 		.event_init	= arm_spe_pmu_event_init,
921 		.add		= arm_spe_pmu_add,
922 		.del		= arm_spe_pmu_del,
923 		.start		= arm_spe_pmu_start,
924 		.stop		= arm_spe_pmu_stop,
925 		.read		= arm_spe_pmu_read,
926 		.setup_aux	= arm_spe_pmu_setup_aux,
927 		.free_aux	= arm_spe_pmu_free_aux,
928 	};
929 
930 	idx = atomic_inc_return(&pmu_idx);
931 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
932 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
933 }
934 
935 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
936 {
937 	perf_pmu_unregister(&spe_pmu->pmu);
938 }
939 
940 static void __arm_spe_pmu_dev_probe(void *info)
941 {
942 	int fld;
943 	u64 reg;
944 	struct arm_spe_pmu *spe_pmu = info;
945 	struct device *dev = &spe_pmu->pdev->dev;
946 
947 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
948 						   ID_AA64DFR0_PMSVER_SHIFT);
949 	if (!fld) {
950 		dev_err(dev,
951 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
952 			fld, smp_processor_id());
953 		return;
954 	}
955 
956 	/* Read PMBIDR first to determine whether or not we have access */
957 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
958 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
959 		dev_err(dev,
960 			"profiling buffer owned by higher exception level\n");
961 		return;
962 	}
963 
964 	/* Minimum alignment. If it's out-of-range, then fail the probe */
965 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
966 	spe_pmu->align = 1 << fld;
967 	if (spe_pmu->align > SZ_2K) {
968 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
969 			fld, smp_processor_id());
970 		return;
971 	}
972 
973 	/* It's now safe to read PMSIDR and figure out what we've got */
974 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
975 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
976 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
977 
978 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
979 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
980 
981 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
982 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
983 
984 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
985 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
986 
987 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
988 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
989 
990 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
991 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
992 
993 	/* This field has a spaced out encoding, so just use a look-up */
994 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
995 	switch (fld) {
996 	case 0:
997 		spe_pmu->min_period = 256;
998 		break;
999 	case 2:
1000 		spe_pmu->min_period = 512;
1001 		break;
1002 	case 3:
1003 		spe_pmu->min_period = 768;
1004 		break;
1005 	case 4:
1006 		spe_pmu->min_period = 1024;
1007 		break;
1008 	case 5:
1009 		spe_pmu->min_period = 1536;
1010 		break;
1011 	case 6:
1012 		spe_pmu->min_period = 2048;
1013 		break;
1014 	case 7:
1015 		spe_pmu->min_period = 3072;
1016 		break;
1017 	default:
1018 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1019 			 fld);
1020 		/* Fallthrough */
1021 	case 8:
1022 		spe_pmu->min_period = 4096;
1023 	}
1024 
1025 	/* Maximum record size. If it's out-of-range, then fail the probe */
1026 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1027 	spe_pmu->max_record_sz = 1 << fld;
1028 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1029 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1030 			fld, smp_processor_id());
1031 		return;
1032 	}
1033 
1034 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1035 	switch (fld) {
1036 	default:
1037 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1038 			 fld);
1039 		/* Fallthrough */
1040 	case 2:
1041 		spe_pmu->counter_sz = 12;
1042 	}
1043 
1044 	dev_info(dev,
1045 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1046 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1047 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1048 
1049 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1050 	return;
1051 }
1052 
1053 static void __arm_spe_pmu_reset_local(void)
1054 {
1055 	/*
1056 	 * This is probably overkill, as we have no idea where we're
1057 	 * draining any buffered data to...
1058 	 */
1059 	arm_spe_pmu_disable_and_drain_local();
1060 
1061 	/* Reset the buffer base pointer */
1062 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1063 	isb();
1064 
1065 	/* Clear any pending management interrupts */
1066 	write_sysreg_s(0, SYS_PMBSR_EL1);
1067 	isb();
1068 }
1069 
1070 static void __arm_spe_pmu_setup_one(void *info)
1071 {
1072 	struct arm_spe_pmu *spe_pmu = info;
1073 
1074 	__arm_spe_pmu_reset_local();
1075 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1076 }
1077 
1078 static void __arm_spe_pmu_stop_one(void *info)
1079 {
1080 	struct arm_spe_pmu *spe_pmu = info;
1081 
1082 	disable_percpu_irq(spe_pmu->irq);
1083 	__arm_spe_pmu_reset_local();
1084 }
1085 
1086 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1087 {
1088 	struct arm_spe_pmu *spe_pmu;
1089 
1090 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1091 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1092 		return 0;
1093 
1094 	__arm_spe_pmu_setup_one(spe_pmu);
1095 	return 0;
1096 }
1097 
1098 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1099 {
1100 	struct arm_spe_pmu *spe_pmu;
1101 
1102 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1103 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1104 		return 0;
1105 
1106 	__arm_spe_pmu_stop_one(spe_pmu);
1107 	return 0;
1108 }
1109 
1110 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1111 {
1112 	int ret;
1113 	cpumask_t *mask = &spe_pmu->supported_cpus;
1114 
1115 	/* Make sure we probe the hardware on a relevant CPU */
1116 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1117 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1118 		return -ENXIO;
1119 
1120 	/* Request our PPIs (note that the IRQ is still disabled) */
1121 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1122 				 spe_pmu->handle);
1123 	if (ret)
1124 		return ret;
1125 
1126 	/*
1127 	 * Register our hotplug notifier now so we don't miss any events.
1128 	 * This will enable the IRQ for any supported CPUs that are already
1129 	 * up.
1130 	 */
1131 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1132 				       &spe_pmu->hotplug_node);
1133 	if (ret)
1134 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1135 
1136 	return ret;
1137 }
1138 
1139 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1140 {
1141 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1142 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1143 }
1144 
1145 /* Driver and device probing */
1146 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1147 {
1148 	struct platform_device *pdev = spe_pmu->pdev;
1149 	int irq = platform_get_irq(pdev, 0);
1150 
1151 	if (irq < 0) {
1152 		dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1153 		return -ENXIO;
1154 	}
1155 
1156 	if (!irq_is_percpu(irq)) {
1157 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1158 		return -EINVAL;
1159 	}
1160 
1161 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1162 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1163 		return -EINVAL;
1164 	}
1165 
1166 	spe_pmu->irq = irq;
1167 	return 0;
1168 }
1169 
1170 static const struct of_device_id arm_spe_pmu_of_match[] = {
1171 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1172 	{ /* Sentinel */ },
1173 };
1174 
1175 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1176 {
1177 	int ret;
1178 	struct arm_spe_pmu *spe_pmu;
1179 	struct device *dev = &pdev->dev;
1180 
1181 	/*
1182 	 * If kernelspace is unmapped when running at EL0, then the SPE
1183 	 * buffer will fault and prematurely terminate the AUX session.
1184 	 */
1185 	if (arm64_kernel_unmapped_at_el0()) {
1186 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1187 		return -EPERM;
1188 	}
1189 
1190 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1191 	if (!spe_pmu) {
1192 		dev_err(dev, "failed to allocate spe_pmu\n");
1193 		return -ENOMEM;
1194 	}
1195 
1196 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1197 	if (!spe_pmu->handle)
1198 		return -ENOMEM;
1199 
1200 	spe_pmu->pdev = pdev;
1201 	platform_set_drvdata(pdev, spe_pmu);
1202 
1203 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1204 	if (ret)
1205 		goto out_free_handle;
1206 
1207 	ret = arm_spe_pmu_dev_init(spe_pmu);
1208 	if (ret)
1209 		goto out_free_handle;
1210 
1211 	ret = arm_spe_pmu_perf_init(spe_pmu);
1212 	if (ret)
1213 		goto out_teardown_dev;
1214 
1215 	return 0;
1216 
1217 out_teardown_dev:
1218 	arm_spe_pmu_dev_teardown(spe_pmu);
1219 out_free_handle:
1220 	free_percpu(spe_pmu->handle);
1221 	return ret;
1222 }
1223 
1224 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1225 {
1226 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1227 
1228 	arm_spe_pmu_perf_destroy(spe_pmu);
1229 	arm_spe_pmu_dev_teardown(spe_pmu);
1230 	free_percpu(spe_pmu->handle);
1231 	return 0;
1232 }
1233 
1234 static struct platform_driver arm_spe_pmu_driver = {
1235 	.driver	= {
1236 		.name		= DRVNAME,
1237 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1238 	},
1239 	.probe	= arm_spe_pmu_device_dt_probe,
1240 	.remove	= arm_spe_pmu_device_remove,
1241 };
1242 
1243 static int __init arm_spe_pmu_init(void)
1244 {
1245 	int ret;
1246 
1247 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1248 				      arm_spe_pmu_cpu_startup,
1249 				      arm_spe_pmu_cpu_teardown);
1250 	if (ret < 0)
1251 		return ret;
1252 	arm_spe_pmu_online = ret;
1253 
1254 	ret = platform_driver_register(&arm_spe_pmu_driver);
1255 	if (ret)
1256 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1257 
1258 	return ret;
1259 }
1260 
1261 static void __exit arm_spe_pmu_exit(void)
1262 {
1263 	platform_driver_unregister(&arm_spe_pmu_driver);
1264 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1265 }
1266 
1267 module_init(arm_spe_pmu_init);
1268 module_exit(arm_spe_pmu_exit);
1269 
1270 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1271 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1272 MODULE_LICENSE("GPL v2");
1273