1 /* 2 * Perf support for the Statistical Profiling Extension, introduced as 3 * part of ARMv8.2. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * Copyright (C) 2016 ARM Limited 18 * 19 * Author: Will Deacon <will.deacon@arm.com> 20 */ 21 22 #define PMUNAME "arm_spe" 23 #define DRVNAME PMUNAME "_pmu" 24 #define pr_fmt(fmt) DRVNAME ": " fmt 25 26 #include <linux/cpuhotplug.h> 27 #include <linux/interrupt.h> 28 #include <linux/irq.h> 29 #include <linux/module.h> 30 #include <linux/of_address.h> 31 #include <linux/of_device.h> 32 #include <linux/perf_event.h> 33 #include <linux/platform_device.h> 34 #include <linux/slab.h> 35 36 #include <asm/sysreg.h> 37 38 #define ARM_SPE_BUF_PAD_BYTE 0 39 40 struct arm_spe_pmu_buf { 41 int nr_pages; 42 bool snapshot; 43 void *base; 44 }; 45 46 struct arm_spe_pmu { 47 struct pmu pmu; 48 struct platform_device *pdev; 49 cpumask_t supported_cpus; 50 struct hlist_node hotplug_node; 51 52 int irq; /* PPI */ 53 54 u16 min_period; 55 u16 counter_sz; 56 57 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 58 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 59 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 60 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 61 #define SPE_PMU_FEAT_LDS (1UL << 4) 62 #define SPE_PMU_FEAT_ERND (1UL << 5) 63 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 64 u64 features; 65 66 u16 max_record_sz; 67 u16 align; 68 struct perf_output_handle __percpu *handle; 69 }; 70 71 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 72 73 /* Convert a free-running index from perf into an SPE buffer offset */ 74 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 75 76 /* Keep track of our dynamic hotplug state */ 77 static enum cpuhp_state arm_spe_pmu_online; 78 79 enum arm_spe_pmu_buf_fault_action { 80 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 81 SPE_PMU_BUF_FAULT_ACT_FATAL, 82 SPE_PMU_BUF_FAULT_ACT_OK, 83 }; 84 85 /* This sysfs gunk was really good fun to write. */ 86 enum arm_spe_pmu_capabilities { 87 SPE_PMU_CAP_ARCH_INST = 0, 88 SPE_PMU_CAP_ERND, 89 SPE_PMU_CAP_FEAT_MAX, 90 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 91 SPE_PMU_CAP_MIN_IVAL, 92 }; 93 94 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 95 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 96 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 97 }; 98 99 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 100 { 101 if (cap < SPE_PMU_CAP_FEAT_MAX) 102 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 103 104 switch (cap) { 105 case SPE_PMU_CAP_CNT_SZ: 106 return spe_pmu->counter_sz; 107 case SPE_PMU_CAP_MIN_IVAL: 108 return spe_pmu->min_period; 109 default: 110 WARN(1, "unknown cap %d\n", cap); 111 } 112 113 return 0; 114 } 115 116 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 117 struct device_attribute *attr, 118 char *buf) 119 { 120 struct platform_device *pdev = to_platform_device(dev); 121 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 122 struct dev_ext_attribute *ea = 123 container_of(attr, struct dev_ext_attribute, attr); 124 int cap = (long)ea->var; 125 126 return snprintf(buf, PAGE_SIZE, "%u\n", 127 arm_spe_pmu_cap_get(spe_pmu, cap)); 128 } 129 130 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 131 &((struct dev_ext_attribute[]) { \ 132 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 133 })[0].attr.attr 134 135 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 136 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 137 138 static struct attribute *arm_spe_pmu_cap_attr[] = { 139 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 140 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 141 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 142 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 143 NULL, 144 }; 145 146 static struct attribute_group arm_spe_pmu_cap_group = { 147 .name = "caps", 148 .attrs = arm_spe_pmu_cap_attr, 149 }; 150 151 /* User ABI */ 152 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 153 #define ATTR_CFG_FLD_ts_enable_LO 0 154 #define ATTR_CFG_FLD_ts_enable_HI 0 155 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 156 #define ATTR_CFG_FLD_pa_enable_LO 1 157 #define ATTR_CFG_FLD_pa_enable_HI 1 158 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 159 #define ATTR_CFG_FLD_pct_enable_LO 2 160 #define ATTR_CFG_FLD_pct_enable_HI 2 161 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 162 #define ATTR_CFG_FLD_jitter_LO 16 163 #define ATTR_CFG_FLD_jitter_HI 16 164 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 165 #define ATTR_CFG_FLD_branch_filter_LO 32 166 #define ATTR_CFG_FLD_branch_filter_HI 32 167 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 168 #define ATTR_CFG_FLD_load_filter_LO 33 169 #define ATTR_CFG_FLD_load_filter_HI 33 170 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 171 #define ATTR_CFG_FLD_store_filter_LO 34 172 #define ATTR_CFG_FLD_store_filter_HI 34 173 174 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 175 #define ATTR_CFG_FLD_event_filter_LO 0 176 #define ATTR_CFG_FLD_event_filter_HI 63 177 178 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 179 #define ATTR_CFG_FLD_min_latency_LO 0 180 #define ATTR_CFG_FLD_min_latency_HI 11 181 182 /* Why does everything I do descend into this? */ 183 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 184 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 185 186 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 187 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 188 189 #define GEN_PMU_FORMAT_ATTR(name) \ 190 PMU_FORMAT_ATTR(name, \ 191 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 192 ATTR_CFG_FLD_##name##_LO, \ 193 ATTR_CFG_FLD_##name##_HI)) 194 195 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 196 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 197 198 #define ATTR_CFG_GET_FLD(attr, name) \ 199 _ATTR_CFG_GET_FLD(attr, \ 200 ATTR_CFG_FLD_##name##_CFG, \ 201 ATTR_CFG_FLD_##name##_LO, \ 202 ATTR_CFG_FLD_##name##_HI) 203 204 GEN_PMU_FORMAT_ATTR(ts_enable); 205 GEN_PMU_FORMAT_ATTR(pa_enable); 206 GEN_PMU_FORMAT_ATTR(pct_enable); 207 GEN_PMU_FORMAT_ATTR(jitter); 208 GEN_PMU_FORMAT_ATTR(branch_filter); 209 GEN_PMU_FORMAT_ATTR(load_filter); 210 GEN_PMU_FORMAT_ATTR(store_filter); 211 GEN_PMU_FORMAT_ATTR(event_filter); 212 GEN_PMU_FORMAT_ATTR(min_latency); 213 214 static struct attribute *arm_spe_pmu_formats_attr[] = { 215 &format_attr_ts_enable.attr, 216 &format_attr_pa_enable.attr, 217 &format_attr_pct_enable.attr, 218 &format_attr_jitter.attr, 219 &format_attr_branch_filter.attr, 220 &format_attr_load_filter.attr, 221 &format_attr_store_filter.attr, 222 &format_attr_event_filter.attr, 223 &format_attr_min_latency.attr, 224 NULL, 225 }; 226 227 static struct attribute_group arm_spe_pmu_format_group = { 228 .name = "format", 229 .attrs = arm_spe_pmu_formats_attr, 230 }; 231 232 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, 233 struct device_attribute *attr, 234 char *buf) 235 { 236 struct platform_device *pdev = to_platform_device(dev); 237 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 238 239 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 240 } 241 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); 242 243 static struct attribute *arm_spe_pmu_attrs[] = { 244 &dev_attr_cpumask.attr, 245 NULL, 246 }; 247 248 static struct attribute_group arm_spe_pmu_group = { 249 .attrs = arm_spe_pmu_attrs, 250 }; 251 252 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 253 &arm_spe_pmu_group, 254 &arm_spe_pmu_cap_group, 255 &arm_spe_pmu_format_group, 256 NULL, 257 }; 258 259 /* Convert between user ABI and register values */ 260 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 261 { 262 struct perf_event_attr *attr = &event->attr; 263 u64 reg = 0; 264 265 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; 266 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; 267 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; 268 269 if (!attr->exclude_user) 270 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); 271 272 if (!attr->exclude_kernel) 273 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); 274 275 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) 276 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); 277 278 return reg; 279 } 280 281 static void arm_spe_event_sanitise_period(struct perf_event *event) 282 { 283 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 284 u64 period = event->hw.sample_period; 285 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK 286 << SYS_PMSIRR_EL1_INTERVAL_SHIFT; 287 288 if (period < spe_pmu->min_period) 289 period = spe_pmu->min_period; 290 else if (period > max_period) 291 period = max_period; 292 else 293 period &= max_period; 294 295 event->hw.sample_period = period; 296 } 297 298 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 299 { 300 struct perf_event_attr *attr = &event->attr; 301 u64 reg = 0; 302 303 arm_spe_event_sanitise_period(event); 304 305 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; 306 reg |= event->hw.sample_period; 307 308 return reg; 309 } 310 311 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 312 { 313 struct perf_event_attr *attr = &event->attr; 314 u64 reg = 0; 315 316 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; 317 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; 318 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; 319 320 if (reg) 321 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); 322 323 if (ATTR_CFG_GET_FLD(attr, event_filter)) 324 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); 325 326 if (ATTR_CFG_GET_FLD(attr, min_latency)) 327 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); 328 329 return reg; 330 } 331 332 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 333 { 334 struct perf_event_attr *attr = &event->attr; 335 return ATTR_CFG_GET_FLD(attr, event_filter); 336 } 337 338 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 339 { 340 struct perf_event_attr *attr = &event->attr; 341 return ATTR_CFG_GET_FLD(attr, min_latency) 342 << SYS_PMSLATFR_EL1_MINLAT_SHIFT; 343 } 344 345 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 346 { 347 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 348 u64 head = PERF_IDX2OFF(handle->head, buf); 349 350 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 351 if (!buf->snapshot) 352 perf_aux_output_skip(handle, len); 353 } 354 355 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 356 { 357 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 358 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 359 u64 head = PERF_IDX2OFF(handle->head, buf); 360 u64 limit = buf->nr_pages * PAGE_SIZE; 361 362 /* 363 * The trace format isn't parseable in reverse, so clamp 364 * the limit to half of the buffer size in snapshot mode 365 * so that the worst case is half a buffer of records, as 366 * opposed to a single record. 367 */ 368 if (head < limit >> 1) 369 limit >>= 1; 370 371 /* 372 * If we're within max_record_sz of the limit, we must 373 * pad, move the head index and recompute the limit. 374 */ 375 if (limit - head < spe_pmu->max_record_sz) { 376 arm_spe_pmu_pad_buf(handle, limit - head); 377 handle->head = PERF_IDX2OFF(limit, buf); 378 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 379 } 380 381 return limit; 382 } 383 384 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 385 { 386 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 387 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 388 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 389 u64 limit = bufsize; 390 u64 head, tail, wakeup; 391 392 /* 393 * The head can be misaligned for two reasons: 394 * 395 * 1. The hardware left PMBPTR pointing to the first byte after 396 * a record when generating a buffer management event. 397 * 398 * 2. We used perf_aux_output_skip to consume handle->size bytes 399 * and CIRC_SPACE was used to compute the size, which always 400 * leaves one entry free. 401 * 402 * Deal with this by padding to the next alignment boundary and 403 * moving the head index. If we run out of buffer space, we'll 404 * reduce handle->size to zero and end up reporting truncation. 405 */ 406 head = PERF_IDX2OFF(handle->head, buf); 407 if (!IS_ALIGNED(head, spe_pmu->align)) { 408 unsigned long delta = roundup(head, spe_pmu->align) - head; 409 410 delta = min(delta, handle->size); 411 arm_spe_pmu_pad_buf(handle, delta); 412 head = PERF_IDX2OFF(handle->head, buf); 413 } 414 415 /* If we've run out of free space, then nothing more to do */ 416 if (!handle->size) 417 goto no_space; 418 419 /* Compute the tail and wakeup indices now that we've aligned head */ 420 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 421 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 422 423 /* 424 * Avoid clobbering unconsumed data. We know we have space, so 425 * if we see head == tail we know that the buffer is empty. If 426 * head > tail, then there's nothing to clobber prior to 427 * wrapping. 428 */ 429 if (head < tail) 430 limit = round_down(tail, PAGE_SIZE); 431 432 /* 433 * Wakeup may be arbitrarily far into the future. If it's not in 434 * the current generation, either we'll wrap before hitting it, 435 * or it's in the past and has been handled already. 436 * 437 * If there's a wakeup before we wrap, arrange to be woken up by 438 * the page boundary following it. Keep the tail boundary if 439 * that's lower. 440 */ 441 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 442 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 443 444 if (limit > head) 445 return limit; 446 447 arm_spe_pmu_pad_buf(handle, handle->size); 448 no_space: 449 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 450 perf_aux_output_end(handle, 0); 451 return 0; 452 } 453 454 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 455 { 456 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 457 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 458 u64 limit = __arm_spe_pmu_next_off(handle); 459 u64 head = PERF_IDX2OFF(handle->head, buf); 460 461 /* 462 * If the head has come too close to the end of the buffer, 463 * then pad to the end and recompute the limit. 464 */ 465 if (limit && (limit - head < spe_pmu->max_record_sz)) { 466 arm_spe_pmu_pad_buf(handle, limit - head); 467 limit = __arm_spe_pmu_next_off(handle); 468 } 469 470 return limit; 471 } 472 473 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 474 struct perf_event *event) 475 { 476 u64 base, limit; 477 struct arm_spe_pmu_buf *buf; 478 479 /* Start a new aux session */ 480 buf = perf_aux_output_begin(handle, event); 481 if (!buf) { 482 event->hw.state |= PERF_HES_STOPPED; 483 /* 484 * We still need to clear the limit pointer, since the 485 * profiler might only be disabled by virtue of a fault. 486 */ 487 limit = 0; 488 goto out_write_limit; 489 } 490 491 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 492 : arm_spe_pmu_next_off(handle); 493 if (limit) 494 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); 495 496 limit += (u64)buf->base; 497 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 498 write_sysreg_s(base, SYS_PMBPTR_EL1); 499 500 out_write_limit: 501 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 502 } 503 504 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 505 { 506 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 507 u64 offset, size; 508 509 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 510 size = offset - PERF_IDX2OFF(handle->head, buf); 511 512 if (buf->snapshot) 513 handle->head = offset; 514 515 perf_aux_output_end(handle, size); 516 } 517 518 static void arm_spe_pmu_disable_and_drain_local(void) 519 { 520 /* Disable profiling at EL0 and EL1 */ 521 write_sysreg_s(0, SYS_PMSCR_EL1); 522 isb(); 523 524 /* Drain any buffered data */ 525 psb_csync(); 526 dsb(nsh); 527 528 /* Disable the profiling buffer */ 529 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 530 isb(); 531 } 532 533 /* IRQ handling */ 534 static enum arm_spe_pmu_buf_fault_action 535 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 536 { 537 const char *err_str; 538 u64 pmbsr; 539 enum arm_spe_pmu_buf_fault_action ret; 540 541 /* 542 * Ensure new profiling data is visible to the CPU and any external 543 * aborts have been resolved. 544 */ 545 psb_csync(); 546 dsb(nsh); 547 548 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 549 isb(); 550 551 /* Service required? */ 552 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 553 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) 554 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 555 556 /* 557 * If we've lost data, disable profiling and also set the PARTIAL 558 * flag to indicate that the last record is corrupted. 559 */ 560 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) 561 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 562 PERF_AUX_FLAG_PARTIAL); 563 564 /* Report collisions to userspace so that it can up the period */ 565 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) 566 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 567 568 /* We only expect buffer management events */ 569 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { 570 case SYS_PMBSR_EL1_EC_BUF: 571 /* Handled below */ 572 break; 573 case SYS_PMBSR_EL1_EC_FAULT_S1: 574 case SYS_PMBSR_EL1_EC_FAULT_S2: 575 err_str = "Unexpected buffer fault"; 576 goto out_err; 577 default: 578 err_str = "Unknown error code"; 579 goto out_err; 580 } 581 582 /* Buffer management event */ 583 switch (pmbsr & 584 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { 585 case SYS_PMBSR_EL1_BUF_BSC_FULL: 586 ret = SPE_PMU_BUF_FAULT_ACT_OK; 587 goto out_stop; 588 default: 589 err_str = "Unknown buffer status code"; 590 } 591 592 out_err: 593 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 594 err_str, smp_processor_id(), pmbsr, 595 read_sysreg_s(SYS_PMBPTR_EL1), 596 read_sysreg_s(SYS_PMBLIMITR_EL1)); 597 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 598 599 out_stop: 600 arm_spe_perf_aux_output_end(handle); 601 return ret; 602 } 603 604 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 605 { 606 struct perf_output_handle *handle = dev; 607 struct perf_event *event = handle->event; 608 enum arm_spe_pmu_buf_fault_action act; 609 610 if (!perf_get_aux(handle)) 611 return IRQ_NONE; 612 613 act = arm_spe_pmu_buf_get_fault_act(handle); 614 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 615 return IRQ_NONE; 616 617 /* 618 * Ensure perf callbacks have completed, which may disable the 619 * profiling buffer in response to a TRUNCATION flag. 620 */ 621 irq_work_run(); 622 623 switch (act) { 624 case SPE_PMU_BUF_FAULT_ACT_FATAL: 625 /* 626 * If a fatal exception occurred then leaving the profiling 627 * buffer enabled is a recipe waiting to happen. Since 628 * fatal faults don't always imply truncation, make sure 629 * that the profiling buffer is disabled explicitly before 630 * clearing the syndrome register. 631 */ 632 arm_spe_pmu_disable_and_drain_local(); 633 break; 634 case SPE_PMU_BUF_FAULT_ACT_OK: 635 /* 636 * We handled the fault (the buffer was full), so resume 637 * profiling as long as we didn't detect truncation. 638 * PMBPTR might be misaligned, but we'll burn that bridge 639 * when we get to it. 640 */ 641 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 642 arm_spe_perf_aux_output_begin(handle, event); 643 isb(); 644 } 645 break; 646 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 647 /* We've seen you before, but GCC has the memory of a sieve. */ 648 break; 649 } 650 651 /* The buffer pointers are now sane, so resume profiling. */ 652 write_sysreg_s(0, SYS_PMBSR_EL1); 653 return IRQ_HANDLED; 654 } 655 656 /* Perf callbacks */ 657 static int arm_spe_pmu_event_init(struct perf_event *event) 658 { 659 u64 reg; 660 struct perf_event_attr *attr = &event->attr; 661 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 662 663 /* This is, of course, deeply driver-specific */ 664 if (attr->type != event->pmu->type) 665 return -ENOENT; 666 667 if (event->cpu >= 0 && 668 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 669 return -ENOENT; 670 671 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) 672 return -EOPNOTSUPP; 673 674 if (attr->exclude_idle) 675 return -EOPNOTSUPP; 676 677 /* 678 * Feedback-directed frequency throttling doesn't work when we 679 * have a buffer of samples. We'd need to manually count the 680 * samples in the buffer when it fills up and adjust the event 681 * count to reflect that. Instead, just force the user to specify 682 * a sample period. 683 */ 684 if (attr->freq) 685 return -EINVAL; 686 687 reg = arm_spe_event_to_pmsfcr(event); 688 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && 689 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 690 return -EOPNOTSUPP; 691 692 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && 693 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 694 return -EOPNOTSUPP; 695 696 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && 697 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 698 return -EOPNOTSUPP; 699 700 reg = arm_spe_event_to_pmscr(event); 701 if (!capable(CAP_SYS_ADMIN) && 702 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | 703 BIT(SYS_PMSCR_EL1_CX_SHIFT) | 704 BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) 705 return -EACCES; 706 707 return 0; 708 } 709 710 static void arm_spe_pmu_start(struct perf_event *event, int flags) 711 { 712 u64 reg; 713 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 714 struct hw_perf_event *hwc = &event->hw; 715 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 716 717 hwc->state = 0; 718 arm_spe_perf_aux_output_begin(handle, event); 719 if (hwc->state) 720 return; 721 722 reg = arm_spe_event_to_pmsfcr(event); 723 write_sysreg_s(reg, SYS_PMSFCR_EL1); 724 725 reg = arm_spe_event_to_pmsevfr(event); 726 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 727 728 reg = arm_spe_event_to_pmslatfr(event); 729 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 730 731 if (flags & PERF_EF_RELOAD) { 732 reg = arm_spe_event_to_pmsirr(event); 733 write_sysreg_s(reg, SYS_PMSIRR_EL1); 734 isb(); 735 reg = local64_read(&hwc->period_left); 736 write_sysreg_s(reg, SYS_PMSICR_EL1); 737 } 738 739 reg = arm_spe_event_to_pmscr(event); 740 isb(); 741 write_sysreg_s(reg, SYS_PMSCR_EL1); 742 } 743 744 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 745 { 746 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 747 struct hw_perf_event *hwc = &event->hw; 748 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 749 750 /* If we're already stopped, then nothing to do */ 751 if (hwc->state & PERF_HES_STOPPED) 752 return; 753 754 /* Stop all trace generation */ 755 arm_spe_pmu_disable_and_drain_local(); 756 757 if (flags & PERF_EF_UPDATE) { 758 /* 759 * If there's a fault pending then ensure we contain it 760 * to this buffer, since we might be on the context-switch 761 * path. 762 */ 763 if (perf_get_aux(handle)) { 764 enum arm_spe_pmu_buf_fault_action act; 765 766 act = arm_spe_pmu_buf_get_fault_act(handle); 767 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 768 arm_spe_perf_aux_output_end(handle); 769 else 770 write_sysreg_s(0, SYS_PMBSR_EL1); 771 } 772 773 /* 774 * This may also contain ECOUNT, but nobody else should 775 * be looking at period_left, since we forbid frequency 776 * based sampling. 777 */ 778 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 779 hwc->state |= PERF_HES_UPTODATE; 780 } 781 782 hwc->state |= PERF_HES_STOPPED; 783 } 784 785 static int arm_spe_pmu_add(struct perf_event *event, int flags) 786 { 787 int ret = 0; 788 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 789 struct hw_perf_event *hwc = &event->hw; 790 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 791 792 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 793 return -ENOENT; 794 795 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 796 797 if (flags & PERF_EF_START) { 798 arm_spe_pmu_start(event, PERF_EF_RELOAD); 799 if (hwc->state & PERF_HES_STOPPED) 800 ret = -EINVAL; 801 } 802 803 return ret; 804 } 805 806 static void arm_spe_pmu_del(struct perf_event *event, int flags) 807 { 808 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 809 } 810 811 static void arm_spe_pmu_read(struct perf_event *event) 812 { 813 } 814 815 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages, 816 bool snapshot) 817 { 818 int i; 819 struct page **pglist; 820 struct arm_spe_pmu_buf *buf; 821 822 /* We need at least two pages for this to work. */ 823 if (nr_pages < 2) 824 return NULL; 825 826 /* 827 * We require an even number of pages for snapshot mode, so that 828 * we can effectively treat the buffer as consisting of two equal 829 * parts and give userspace a fighting chance of getting some 830 * useful data out of it. 831 */ 832 if (!nr_pages || (snapshot && (nr_pages & 1))) 833 return NULL; 834 835 if (cpu == -1) 836 cpu = raw_smp_processor_id(); 837 838 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 839 if (!buf) 840 return NULL; 841 842 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 843 if (!pglist) 844 goto out_free_buf; 845 846 for (i = 0; i < nr_pages; ++i) { 847 struct page *page = virt_to_page(pages[i]); 848 849 if (PagePrivate(page)) { 850 pr_warn("unexpected high-order page for auxbuf!"); 851 goto out_free_pglist; 852 } 853 854 pglist[i] = virt_to_page(pages[i]); 855 } 856 857 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 858 if (!buf->base) 859 goto out_free_pglist; 860 861 buf->nr_pages = nr_pages; 862 buf->snapshot = snapshot; 863 864 kfree(pglist); 865 return buf; 866 867 out_free_pglist: 868 kfree(pglist); 869 out_free_buf: 870 kfree(buf); 871 return NULL; 872 } 873 874 static void arm_spe_pmu_free_aux(void *aux) 875 { 876 struct arm_spe_pmu_buf *buf = aux; 877 878 vunmap(buf->base); 879 kfree(buf); 880 } 881 882 /* Initialisation and teardown functions */ 883 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 884 { 885 static atomic_t pmu_idx = ATOMIC_INIT(-1); 886 887 int idx; 888 char *name; 889 struct device *dev = &spe_pmu->pdev->dev; 890 891 spe_pmu->pmu = (struct pmu) { 892 .module = THIS_MODULE, 893 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 894 .attr_groups = arm_spe_pmu_attr_groups, 895 /* 896 * We hitch a ride on the software context here, so that 897 * we can support per-task profiling (which is not possible 898 * with the invalid context as it doesn't get sched callbacks). 899 * This requires that userspace either uses a dummy event for 900 * perf_event_open, since the aux buffer is not setup until 901 * a subsequent mmap, or creates the profiling event in a 902 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 903 * once the buffer has been created. 904 */ 905 .task_ctx_nr = perf_sw_context, 906 .event_init = arm_spe_pmu_event_init, 907 .add = arm_spe_pmu_add, 908 .del = arm_spe_pmu_del, 909 .start = arm_spe_pmu_start, 910 .stop = arm_spe_pmu_stop, 911 .read = arm_spe_pmu_read, 912 .setup_aux = arm_spe_pmu_setup_aux, 913 .free_aux = arm_spe_pmu_free_aux, 914 }; 915 916 idx = atomic_inc_return(&pmu_idx); 917 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 918 return perf_pmu_register(&spe_pmu->pmu, name, -1); 919 } 920 921 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 922 { 923 perf_pmu_unregister(&spe_pmu->pmu); 924 } 925 926 static void __arm_spe_pmu_dev_probe(void *info) 927 { 928 int fld; 929 u64 reg; 930 struct arm_spe_pmu *spe_pmu = info; 931 struct device *dev = &spe_pmu->pdev->dev; 932 933 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 934 ID_AA64DFR0_PMSVER_SHIFT); 935 if (!fld) { 936 dev_err(dev, 937 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 938 fld, smp_processor_id()); 939 return; 940 } 941 942 /* Read PMBIDR first to determine whether or not we have access */ 943 reg = read_sysreg_s(SYS_PMBIDR_EL1); 944 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { 945 dev_err(dev, 946 "profiling buffer owned by higher exception level\n"); 947 return; 948 } 949 950 /* Minimum alignment. If it's out-of-range, then fail the probe */ 951 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; 952 spe_pmu->align = 1 << fld; 953 if (spe_pmu->align > SZ_2K) { 954 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 955 fld, smp_processor_id()); 956 return; 957 } 958 959 /* It's now safe to read PMSIDR and figure out what we've got */ 960 reg = read_sysreg_s(SYS_PMSIDR_EL1); 961 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) 962 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 963 964 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) 965 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 966 967 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) 968 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 969 970 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) 971 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 972 973 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) 974 spe_pmu->features |= SPE_PMU_FEAT_LDS; 975 976 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) 977 spe_pmu->features |= SPE_PMU_FEAT_ERND; 978 979 /* This field has a spaced out encoding, so just use a look-up */ 980 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; 981 switch (fld) { 982 case 0: 983 spe_pmu->min_period = 256; 984 break; 985 case 2: 986 spe_pmu->min_period = 512; 987 break; 988 case 3: 989 spe_pmu->min_period = 768; 990 break; 991 case 4: 992 spe_pmu->min_period = 1024; 993 break; 994 case 5: 995 spe_pmu->min_period = 1536; 996 break; 997 case 6: 998 spe_pmu->min_period = 2048; 999 break; 1000 case 7: 1001 spe_pmu->min_period = 3072; 1002 break; 1003 default: 1004 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1005 fld); 1006 /* Fallthrough */ 1007 case 8: 1008 spe_pmu->min_period = 4096; 1009 } 1010 1011 /* Maximum record size. If it's out-of-range, then fail the probe */ 1012 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; 1013 spe_pmu->max_record_sz = 1 << fld; 1014 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1015 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1016 fld, smp_processor_id()); 1017 return; 1018 } 1019 1020 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; 1021 switch (fld) { 1022 default: 1023 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1024 fld); 1025 /* Fallthrough */ 1026 case 2: 1027 spe_pmu->counter_sz = 12; 1028 } 1029 1030 dev_info(dev, 1031 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1032 cpumask_pr_args(&spe_pmu->supported_cpus), 1033 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1034 1035 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1036 return; 1037 } 1038 1039 static void __arm_spe_pmu_reset_local(void) 1040 { 1041 /* 1042 * This is probably overkill, as we have no idea where we're 1043 * draining any buffered data to... 1044 */ 1045 arm_spe_pmu_disable_and_drain_local(); 1046 1047 /* Reset the buffer base pointer */ 1048 write_sysreg_s(0, SYS_PMBPTR_EL1); 1049 isb(); 1050 1051 /* Clear any pending management interrupts */ 1052 write_sysreg_s(0, SYS_PMBSR_EL1); 1053 isb(); 1054 } 1055 1056 static void __arm_spe_pmu_setup_one(void *info) 1057 { 1058 struct arm_spe_pmu *spe_pmu = info; 1059 1060 __arm_spe_pmu_reset_local(); 1061 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1062 } 1063 1064 static void __arm_spe_pmu_stop_one(void *info) 1065 { 1066 struct arm_spe_pmu *spe_pmu = info; 1067 1068 disable_percpu_irq(spe_pmu->irq); 1069 __arm_spe_pmu_reset_local(); 1070 } 1071 1072 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1073 { 1074 struct arm_spe_pmu *spe_pmu; 1075 1076 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1077 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1078 return 0; 1079 1080 __arm_spe_pmu_setup_one(spe_pmu); 1081 return 0; 1082 } 1083 1084 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1085 { 1086 struct arm_spe_pmu *spe_pmu; 1087 1088 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1089 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1090 return 0; 1091 1092 __arm_spe_pmu_stop_one(spe_pmu); 1093 return 0; 1094 } 1095 1096 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1097 { 1098 int ret; 1099 cpumask_t *mask = &spe_pmu->supported_cpus; 1100 1101 /* Make sure we probe the hardware on a relevant CPU */ 1102 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1103 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1104 return -ENXIO; 1105 1106 /* Request our PPIs (note that the IRQ is still disabled) */ 1107 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1108 spe_pmu->handle); 1109 if (ret) 1110 return ret; 1111 1112 /* 1113 * Register our hotplug notifier now so we don't miss any events. 1114 * This will enable the IRQ for any supported CPUs that are already 1115 * up. 1116 */ 1117 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1118 &spe_pmu->hotplug_node); 1119 if (ret) 1120 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1121 1122 return ret; 1123 } 1124 1125 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1126 { 1127 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1128 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1129 } 1130 1131 /* Driver and device probing */ 1132 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1133 { 1134 struct platform_device *pdev = spe_pmu->pdev; 1135 int irq = platform_get_irq(pdev, 0); 1136 1137 if (irq < 0) { 1138 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); 1139 return -ENXIO; 1140 } 1141 1142 if (!irq_is_percpu(irq)) { 1143 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1144 return -EINVAL; 1145 } 1146 1147 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1148 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1149 return -EINVAL; 1150 } 1151 1152 spe_pmu->irq = irq; 1153 return 0; 1154 } 1155 1156 static const struct of_device_id arm_spe_pmu_of_match[] = { 1157 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1158 { /* Sentinel */ }, 1159 }; 1160 1161 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) 1162 { 1163 int ret; 1164 struct arm_spe_pmu *spe_pmu; 1165 struct device *dev = &pdev->dev; 1166 1167 /* 1168 * If kernelspace is unmapped when running at EL0, then the SPE 1169 * buffer will fault and prematurely terminate the AUX session. 1170 */ 1171 if (arm64_kernel_unmapped_at_el0()) { 1172 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1173 return -EPERM; 1174 } 1175 1176 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1177 if (!spe_pmu) { 1178 dev_err(dev, "failed to allocate spe_pmu\n"); 1179 return -ENOMEM; 1180 } 1181 1182 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1183 if (!spe_pmu->handle) 1184 return -ENOMEM; 1185 1186 spe_pmu->pdev = pdev; 1187 platform_set_drvdata(pdev, spe_pmu); 1188 1189 ret = arm_spe_pmu_irq_probe(spe_pmu); 1190 if (ret) 1191 goto out_free_handle; 1192 1193 ret = arm_spe_pmu_dev_init(spe_pmu); 1194 if (ret) 1195 goto out_free_handle; 1196 1197 ret = arm_spe_pmu_perf_init(spe_pmu); 1198 if (ret) 1199 goto out_teardown_dev; 1200 1201 return 0; 1202 1203 out_teardown_dev: 1204 arm_spe_pmu_dev_teardown(spe_pmu); 1205 out_free_handle: 1206 free_percpu(spe_pmu->handle); 1207 return ret; 1208 } 1209 1210 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1211 { 1212 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1213 1214 arm_spe_pmu_perf_destroy(spe_pmu); 1215 arm_spe_pmu_dev_teardown(spe_pmu); 1216 free_percpu(spe_pmu->handle); 1217 return 0; 1218 } 1219 1220 static struct platform_driver arm_spe_pmu_driver = { 1221 .driver = { 1222 .name = DRVNAME, 1223 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1224 }, 1225 .probe = arm_spe_pmu_device_dt_probe, 1226 .remove = arm_spe_pmu_device_remove, 1227 }; 1228 1229 static int __init arm_spe_pmu_init(void) 1230 { 1231 int ret; 1232 1233 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1234 arm_spe_pmu_cpu_startup, 1235 arm_spe_pmu_cpu_teardown); 1236 if (ret < 0) 1237 return ret; 1238 arm_spe_pmu_online = ret; 1239 1240 ret = platform_driver_register(&arm_spe_pmu_driver); 1241 if (ret) 1242 cpuhp_remove_multi_state(arm_spe_pmu_online); 1243 1244 return ret; 1245 } 1246 1247 static void __exit arm_spe_pmu_exit(void) 1248 { 1249 platform_driver_unregister(&arm_spe_pmu_driver); 1250 cpuhp_remove_multi_state(arm_spe_pmu_online); 1251 } 1252 1253 module_init(arm_spe_pmu_init); 1254 module_exit(arm_spe_pmu_exit); 1255 1256 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1257 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1258 MODULE_LICENSE("GPL v2"); 1259