xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision b1a792601f264df7172a728f1a83a05b6b399dfb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 #define ARM_SPE_BUF_PAD_BYTE			0
43 
44 struct arm_spe_pmu_buf {
45 	int					nr_pages;
46 	bool					snapshot;
47 	void					*base;
48 };
49 
50 struct arm_spe_pmu {
51 	struct pmu				pmu;
52 	struct platform_device			*pdev;
53 	cpumask_t				supported_cpus;
54 	struct hlist_node			hotplug_node;
55 
56 	int					irq; /* PPI */
57 	u16					pmsver;
58 	u16					min_period;
59 	u16					counter_sz;
60 
61 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
65 #define SPE_PMU_FEAT_LDS			(1UL << 4)
66 #define SPE_PMU_FEAT_ERND			(1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
68 	u64					features;
69 
70 	u16					max_record_sz;
71 	u16					align;
72 	struct perf_output_handle __percpu	*handle;
73 };
74 
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76 
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79 
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82 
83 enum arm_spe_pmu_buf_fault_action {
84 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 	SPE_PMU_BUF_FAULT_ACT_FATAL,
86 	SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88 
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91 	SPE_PMU_CAP_ARCH_INST = 0,
92 	SPE_PMU_CAP_ERND,
93 	SPE_PMU_CAP_FEAT_MAX,
94 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 	SPE_PMU_CAP_MIN_IVAL,
96 };
97 
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
100 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
101 };
102 
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105 	if (cap < SPE_PMU_CAP_FEAT_MAX)
106 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107 
108 	switch (cap) {
109 	case SPE_PMU_CAP_CNT_SZ:
110 		return spe_pmu->counter_sz;
111 	case SPE_PMU_CAP_MIN_IVAL:
112 		return spe_pmu->min_period;
113 	default:
114 		WARN(1, "unknown cap %d\n", cap);
115 	}
116 
117 	return 0;
118 }
119 
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 				    struct device_attribute *attr,
122 				    char *buf)
123 {
124 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125 	struct dev_ext_attribute *ea =
126 		container_of(attr, struct dev_ext_attribute, attr);
127 	int cap = (long)ea->var;
128 
129 	return snprintf(buf, PAGE_SIZE, "%u\n",
130 		arm_spe_pmu_cap_get(spe_pmu, cap));
131 }
132 
133 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
134 	&((struct dev_ext_attribute[]) {				\
135 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
136 	})[0].attr.attr
137 
138 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
139 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
140 
141 static struct attribute *arm_spe_pmu_cap_attr[] = {
142 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
143 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
144 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
145 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
146 	NULL,
147 };
148 
149 static const struct attribute_group arm_spe_pmu_cap_group = {
150 	.name	= "caps",
151 	.attrs	= arm_spe_pmu_cap_attr,
152 };
153 
154 /* User ABI */
155 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
156 #define ATTR_CFG_FLD_ts_enable_LO		0
157 #define ATTR_CFG_FLD_ts_enable_HI		0
158 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
159 #define ATTR_CFG_FLD_pa_enable_LO		1
160 #define ATTR_CFG_FLD_pa_enable_HI		1
161 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
162 #define ATTR_CFG_FLD_pct_enable_LO		2
163 #define ATTR_CFG_FLD_pct_enable_HI		2
164 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
165 #define ATTR_CFG_FLD_jitter_LO			16
166 #define ATTR_CFG_FLD_jitter_HI			16
167 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
168 #define ATTR_CFG_FLD_branch_filter_LO		32
169 #define ATTR_CFG_FLD_branch_filter_HI		32
170 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
171 #define ATTR_CFG_FLD_load_filter_LO		33
172 #define ATTR_CFG_FLD_load_filter_HI		33
173 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
174 #define ATTR_CFG_FLD_store_filter_LO		34
175 #define ATTR_CFG_FLD_store_filter_HI		34
176 
177 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
178 #define ATTR_CFG_FLD_event_filter_LO		0
179 #define ATTR_CFG_FLD_event_filter_HI		63
180 
181 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
182 #define ATTR_CFG_FLD_min_latency_LO		0
183 #define ATTR_CFG_FLD_min_latency_HI		11
184 
185 /* Why does everything I do descend into this? */
186 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
187 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
188 
189 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
190 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
191 
192 #define GEN_PMU_FORMAT_ATTR(name)					\
193 	PMU_FORMAT_ATTR(name,						\
194 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
195 			     ATTR_CFG_FLD_##name##_LO,			\
196 			     ATTR_CFG_FLD_##name##_HI))
197 
198 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
199 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
200 
201 #define ATTR_CFG_GET_FLD(attr, name)					\
202 	_ATTR_CFG_GET_FLD(attr,						\
203 			  ATTR_CFG_FLD_##name##_CFG,			\
204 			  ATTR_CFG_FLD_##name##_LO,			\
205 			  ATTR_CFG_FLD_##name##_HI)
206 
207 GEN_PMU_FORMAT_ATTR(ts_enable);
208 GEN_PMU_FORMAT_ATTR(pa_enable);
209 GEN_PMU_FORMAT_ATTR(pct_enable);
210 GEN_PMU_FORMAT_ATTR(jitter);
211 GEN_PMU_FORMAT_ATTR(branch_filter);
212 GEN_PMU_FORMAT_ATTR(load_filter);
213 GEN_PMU_FORMAT_ATTR(store_filter);
214 GEN_PMU_FORMAT_ATTR(event_filter);
215 GEN_PMU_FORMAT_ATTR(min_latency);
216 
217 static struct attribute *arm_spe_pmu_formats_attr[] = {
218 	&format_attr_ts_enable.attr,
219 	&format_attr_pa_enable.attr,
220 	&format_attr_pct_enable.attr,
221 	&format_attr_jitter.attr,
222 	&format_attr_branch_filter.attr,
223 	&format_attr_load_filter.attr,
224 	&format_attr_store_filter.attr,
225 	&format_attr_event_filter.attr,
226 	&format_attr_min_latency.attr,
227 	NULL,
228 };
229 
230 static const struct attribute_group arm_spe_pmu_format_group = {
231 	.name	= "format",
232 	.attrs	= arm_spe_pmu_formats_attr,
233 };
234 
235 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
236 					    struct device_attribute *attr,
237 					    char *buf)
238 {
239 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
240 
241 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
242 }
243 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
244 
245 static struct attribute *arm_spe_pmu_attrs[] = {
246 	&dev_attr_cpumask.attr,
247 	NULL,
248 };
249 
250 static const struct attribute_group arm_spe_pmu_group = {
251 	.attrs	= arm_spe_pmu_attrs,
252 };
253 
254 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
255 	&arm_spe_pmu_group,
256 	&arm_spe_pmu_cap_group,
257 	&arm_spe_pmu_format_group,
258 	NULL,
259 };
260 
261 /* Convert between user ABI and register values */
262 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
263 {
264 	struct perf_event_attr *attr = &event->attr;
265 	u64 reg = 0;
266 
267 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
268 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
269 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
270 
271 	if (!attr->exclude_user)
272 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
273 
274 	if (!attr->exclude_kernel)
275 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
276 
277 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
278 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
279 
280 	return reg;
281 }
282 
283 static void arm_spe_event_sanitise_period(struct perf_event *event)
284 {
285 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
286 	u64 period = event->hw.sample_period;
287 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
288 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
289 
290 	if (period < spe_pmu->min_period)
291 		period = spe_pmu->min_period;
292 	else if (period > max_period)
293 		period = max_period;
294 	else
295 		period &= max_period;
296 
297 	event->hw.sample_period = period;
298 }
299 
300 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
301 {
302 	struct perf_event_attr *attr = &event->attr;
303 	u64 reg = 0;
304 
305 	arm_spe_event_sanitise_period(event);
306 
307 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
308 	reg |= event->hw.sample_period;
309 
310 	return reg;
311 }
312 
313 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
314 {
315 	struct perf_event_attr *attr = &event->attr;
316 	u64 reg = 0;
317 
318 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
319 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
320 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
321 
322 	if (reg)
323 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
324 
325 	if (ATTR_CFG_GET_FLD(attr, event_filter))
326 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
327 
328 	if (ATTR_CFG_GET_FLD(attr, min_latency))
329 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
330 
331 	return reg;
332 }
333 
334 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
335 {
336 	struct perf_event_attr *attr = &event->attr;
337 	return ATTR_CFG_GET_FLD(attr, event_filter);
338 }
339 
340 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
341 {
342 	struct perf_event_attr *attr = &event->attr;
343 	return ATTR_CFG_GET_FLD(attr, min_latency)
344 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
345 }
346 
347 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
348 {
349 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
350 	u64 head = PERF_IDX2OFF(handle->head, buf);
351 
352 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
353 	if (!buf->snapshot)
354 		perf_aux_output_skip(handle, len);
355 }
356 
357 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
358 {
359 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
361 	u64 head = PERF_IDX2OFF(handle->head, buf);
362 	u64 limit = buf->nr_pages * PAGE_SIZE;
363 
364 	/*
365 	 * The trace format isn't parseable in reverse, so clamp
366 	 * the limit to half of the buffer size in snapshot mode
367 	 * so that the worst case is half a buffer of records, as
368 	 * opposed to a single record.
369 	 */
370 	if (head < limit >> 1)
371 		limit >>= 1;
372 
373 	/*
374 	 * If we're within max_record_sz of the limit, we must
375 	 * pad, move the head index and recompute the limit.
376 	 */
377 	if (limit - head < spe_pmu->max_record_sz) {
378 		arm_spe_pmu_pad_buf(handle, limit - head);
379 		handle->head = PERF_IDX2OFF(limit, buf);
380 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
381 	}
382 
383 	return limit;
384 }
385 
386 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
387 {
388 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
389 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
390 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
391 	u64 limit = bufsize;
392 	u64 head, tail, wakeup;
393 
394 	/*
395 	 * The head can be misaligned for two reasons:
396 	 *
397 	 * 1. The hardware left PMBPTR pointing to the first byte after
398 	 *    a record when generating a buffer management event.
399 	 *
400 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
401 	 *    and CIRC_SPACE was used to compute the size, which always
402 	 *    leaves one entry free.
403 	 *
404 	 * Deal with this by padding to the next alignment boundary and
405 	 * moving the head index. If we run out of buffer space, we'll
406 	 * reduce handle->size to zero and end up reporting truncation.
407 	 */
408 	head = PERF_IDX2OFF(handle->head, buf);
409 	if (!IS_ALIGNED(head, spe_pmu->align)) {
410 		unsigned long delta = roundup(head, spe_pmu->align) - head;
411 
412 		delta = min(delta, handle->size);
413 		arm_spe_pmu_pad_buf(handle, delta);
414 		head = PERF_IDX2OFF(handle->head, buf);
415 	}
416 
417 	/* If we've run out of free space, then nothing more to do */
418 	if (!handle->size)
419 		goto no_space;
420 
421 	/* Compute the tail and wakeup indices now that we've aligned head */
422 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
423 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
424 
425 	/*
426 	 * Avoid clobbering unconsumed data. We know we have space, so
427 	 * if we see head == tail we know that the buffer is empty. If
428 	 * head > tail, then there's nothing to clobber prior to
429 	 * wrapping.
430 	 */
431 	if (head < tail)
432 		limit = round_down(tail, PAGE_SIZE);
433 
434 	/*
435 	 * Wakeup may be arbitrarily far into the future. If it's not in
436 	 * the current generation, either we'll wrap before hitting it,
437 	 * or it's in the past and has been handled already.
438 	 *
439 	 * If there's a wakeup before we wrap, arrange to be woken up by
440 	 * the page boundary following it. Keep the tail boundary if
441 	 * that's lower.
442 	 */
443 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
444 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
445 
446 	if (limit > head)
447 		return limit;
448 
449 	arm_spe_pmu_pad_buf(handle, handle->size);
450 no_space:
451 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
452 	perf_aux_output_end(handle, 0);
453 	return 0;
454 }
455 
456 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
457 {
458 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
459 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
460 	u64 limit = __arm_spe_pmu_next_off(handle);
461 	u64 head = PERF_IDX2OFF(handle->head, buf);
462 
463 	/*
464 	 * If the head has come too close to the end of the buffer,
465 	 * then pad to the end and recompute the limit.
466 	 */
467 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
468 		arm_spe_pmu_pad_buf(handle, limit - head);
469 		limit = __arm_spe_pmu_next_off(handle);
470 	}
471 
472 	return limit;
473 }
474 
475 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
476 					  struct perf_event *event)
477 {
478 	u64 base, limit;
479 	struct arm_spe_pmu_buf *buf;
480 
481 	/* Start a new aux session */
482 	buf = perf_aux_output_begin(handle, event);
483 	if (!buf) {
484 		event->hw.state |= PERF_HES_STOPPED;
485 		/*
486 		 * We still need to clear the limit pointer, since the
487 		 * profiler might only be disabled by virtue of a fault.
488 		 */
489 		limit = 0;
490 		goto out_write_limit;
491 	}
492 
493 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
494 			      : arm_spe_pmu_next_off(handle);
495 	if (limit)
496 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
497 
498 	limit += (u64)buf->base;
499 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
500 	write_sysreg_s(base, SYS_PMBPTR_EL1);
501 
502 out_write_limit:
503 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
504 }
505 
506 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
507 {
508 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
509 	u64 offset, size;
510 
511 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
512 	size = offset - PERF_IDX2OFF(handle->head, buf);
513 
514 	if (buf->snapshot)
515 		handle->head = offset;
516 
517 	perf_aux_output_end(handle, size);
518 }
519 
520 static void arm_spe_pmu_disable_and_drain_local(void)
521 {
522 	/* Disable profiling at EL0 and EL1 */
523 	write_sysreg_s(0, SYS_PMSCR_EL1);
524 	isb();
525 
526 	/* Drain any buffered data */
527 	psb_csync();
528 	dsb(nsh);
529 
530 	/* Disable the profiling buffer */
531 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
532 	isb();
533 }
534 
535 /* IRQ handling */
536 static enum arm_spe_pmu_buf_fault_action
537 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
538 {
539 	const char *err_str;
540 	u64 pmbsr;
541 	enum arm_spe_pmu_buf_fault_action ret;
542 
543 	/*
544 	 * Ensure new profiling data is visible to the CPU and any external
545 	 * aborts have been resolved.
546 	 */
547 	psb_csync();
548 	dsb(nsh);
549 
550 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
551 	isb();
552 
553 	/* Service required? */
554 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
555 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
556 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
557 
558 	/*
559 	 * If we've lost data, disable profiling and also set the PARTIAL
560 	 * flag to indicate that the last record is corrupted.
561 	 */
562 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
563 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
564 					     PERF_AUX_FLAG_PARTIAL);
565 
566 	/* Report collisions to userspace so that it can up the period */
567 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
568 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
569 
570 	/* We only expect buffer management events */
571 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
572 	case SYS_PMBSR_EL1_EC_BUF:
573 		/* Handled below */
574 		break;
575 	case SYS_PMBSR_EL1_EC_FAULT_S1:
576 	case SYS_PMBSR_EL1_EC_FAULT_S2:
577 		err_str = "Unexpected buffer fault";
578 		goto out_err;
579 	default:
580 		err_str = "Unknown error code";
581 		goto out_err;
582 	}
583 
584 	/* Buffer management event */
585 	switch (pmbsr &
586 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
587 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
588 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
589 		goto out_stop;
590 	default:
591 		err_str = "Unknown buffer status code";
592 	}
593 
594 out_err:
595 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
596 			   err_str, smp_processor_id(), pmbsr,
597 			   read_sysreg_s(SYS_PMBPTR_EL1),
598 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
599 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
600 
601 out_stop:
602 	arm_spe_perf_aux_output_end(handle);
603 	return ret;
604 }
605 
606 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
607 {
608 	struct perf_output_handle *handle = dev;
609 	struct perf_event *event = handle->event;
610 	enum arm_spe_pmu_buf_fault_action act;
611 
612 	if (!perf_get_aux(handle))
613 		return IRQ_NONE;
614 
615 	act = arm_spe_pmu_buf_get_fault_act(handle);
616 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
617 		return IRQ_NONE;
618 
619 	/*
620 	 * Ensure perf callbacks have completed, which may disable the
621 	 * profiling buffer in response to a TRUNCATION flag.
622 	 */
623 	irq_work_run();
624 
625 	switch (act) {
626 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
627 		/*
628 		 * If a fatal exception occurred then leaving the profiling
629 		 * buffer enabled is a recipe waiting to happen. Since
630 		 * fatal faults don't always imply truncation, make sure
631 		 * that the profiling buffer is disabled explicitly before
632 		 * clearing the syndrome register.
633 		 */
634 		arm_spe_pmu_disable_and_drain_local();
635 		break;
636 	case SPE_PMU_BUF_FAULT_ACT_OK:
637 		/*
638 		 * We handled the fault (the buffer was full), so resume
639 		 * profiling as long as we didn't detect truncation.
640 		 * PMBPTR might be misaligned, but we'll burn that bridge
641 		 * when we get to it.
642 		 */
643 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
644 			arm_spe_perf_aux_output_begin(handle, event);
645 			isb();
646 		}
647 		break;
648 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
649 		/* We've seen you before, but GCC has the memory of a sieve. */
650 		break;
651 	}
652 
653 	/* The buffer pointers are now sane, so resume profiling. */
654 	write_sysreg_s(0, SYS_PMBSR_EL1);
655 	return IRQ_HANDLED;
656 }
657 
658 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
659 {
660 	switch (pmsver) {
661 	case ID_AA64DFR0_PMSVER_8_2:
662 		return SYS_PMSEVFR_EL1_RES0_8_2;
663 	case ID_AA64DFR0_PMSVER_8_3:
664 	/* Return the highest version we support in default */
665 	default:
666 		return SYS_PMSEVFR_EL1_RES0_8_3;
667 	}
668 }
669 
670 /* Perf callbacks */
671 static int arm_spe_pmu_event_init(struct perf_event *event)
672 {
673 	u64 reg;
674 	struct perf_event_attr *attr = &event->attr;
675 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
676 
677 	/* This is, of course, deeply driver-specific */
678 	if (attr->type != event->pmu->type)
679 		return -ENOENT;
680 
681 	if (event->cpu >= 0 &&
682 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
683 		return -ENOENT;
684 
685 	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
686 		return -EOPNOTSUPP;
687 
688 	if (attr->exclude_idle)
689 		return -EOPNOTSUPP;
690 
691 	/*
692 	 * Feedback-directed frequency throttling doesn't work when we
693 	 * have a buffer of samples. We'd need to manually count the
694 	 * samples in the buffer when it fills up and adjust the event
695 	 * count to reflect that. Instead, just force the user to specify
696 	 * a sample period.
697 	 */
698 	if (attr->freq)
699 		return -EINVAL;
700 
701 	reg = arm_spe_event_to_pmsfcr(event);
702 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
703 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
704 		return -EOPNOTSUPP;
705 
706 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
707 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
708 		return -EOPNOTSUPP;
709 
710 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
711 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
712 		return -EOPNOTSUPP;
713 
714 	reg = arm_spe_event_to_pmscr(event);
715 	if (!perfmon_capable() &&
716 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
717 		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
718 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
719 		return -EACCES;
720 
721 	return 0;
722 }
723 
724 static void arm_spe_pmu_start(struct perf_event *event, int flags)
725 {
726 	u64 reg;
727 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
728 	struct hw_perf_event *hwc = &event->hw;
729 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
730 
731 	hwc->state = 0;
732 	arm_spe_perf_aux_output_begin(handle, event);
733 	if (hwc->state)
734 		return;
735 
736 	reg = arm_spe_event_to_pmsfcr(event);
737 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
738 
739 	reg = arm_spe_event_to_pmsevfr(event);
740 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
741 
742 	reg = arm_spe_event_to_pmslatfr(event);
743 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
744 
745 	if (flags & PERF_EF_RELOAD) {
746 		reg = arm_spe_event_to_pmsirr(event);
747 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
748 		isb();
749 		reg = local64_read(&hwc->period_left);
750 		write_sysreg_s(reg, SYS_PMSICR_EL1);
751 	}
752 
753 	reg = arm_spe_event_to_pmscr(event);
754 	isb();
755 	write_sysreg_s(reg, SYS_PMSCR_EL1);
756 }
757 
758 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
759 {
760 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
761 	struct hw_perf_event *hwc = &event->hw;
762 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
763 
764 	/* If we're already stopped, then nothing to do */
765 	if (hwc->state & PERF_HES_STOPPED)
766 		return;
767 
768 	/* Stop all trace generation */
769 	arm_spe_pmu_disable_and_drain_local();
770 
771 	if (flags & PERF_EF_UPDATE) {
772 		/*
773 		 * If there's a fault pending then ensure we contain it
774 		 * to this buffer, since we might be on the context-switch
775 		 * path.
776 		 */
777 		if (perf_get_aux(handle)) {
778 			enum arm_spe_pmu_buf_fault_action act;
779 
780 			act = arm_spe_pmu_buf_get_fault_act(handle);
781 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
782 				arm_spe_perf_aux_output_end(handle);
783 			else
784 				write_sysreg_s(0, SYS_PMBSR_EL1);
785 		}
786 
787 		/*
788 		 * This may also contain ECOUNT, but nobody else should
789 		 * be looking at period_left, since we forbid frequency
790 		 * based sampling.
791 		 */
792 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
793 		hwc->state |= PERF_HES_UPTODATE;
794 	}
795 
796 	hwc->state |= PERF_HES_STOPPED;
797 }
798 
799 static int arm_spe_pmu_add(struct perf_event *event, int flags)
800 {
801 	int ret = 0;
802 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
803 	struct hw_perf_event *hwc = &event->hw;
804 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
805 
806 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
807 		return -ENOENT;
808 
809 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
810 
811 	if (flags & PERF_EF_START) {
812 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
813 		if (hwc->state & PERF_HES_STOPPED)
814 			ret = -EINVAL;
815 	}
816 
817 	return ret;
818 }
819 
820 static void arm_spe_pmu_del(struct perf_event *event, int flags)
821 {
822 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
823 }
824 
825 static void arm_spe_pmu_read(struct perf_event *event)
826 {
827 }
828 
829 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
830 				   int nr_pages, bool snapshot)
831 {
832 	int i, cpu = event->cpu;
833 	struct page **pglist;
834 	struct arm_spe_pmu_buf *buf;
835 
836 	/* We need at least two pages for this to work. */
837 	if (nr_pages < 2)
838 		return NULL;
839 
840 	/*
841 	 * We require an even number of pages for snapshot mode, so that
842 	 * we can effectively treat the buffer as consisting of two equal
843 	 * parts and give userspace a fighting chance of getting some
844 	 * useful data out of it.
845 	 */
846 	if (snapshot && (nr_pages & 1))
847 		return NULL;
848 
849 	if (cpu == -1)
850 		cpu = raw_smp_processor_id();
851 
852 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
853 	if (!buf)
854 		return NULL;
855 
856 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
857 	if (!pglist)
858 		goto out_free_buf;
859 
860 	for (i = 0; i < nr_pages; ++i)
861 		pglist[i] = virt_to_page(pages[i]);
862 
863 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
864 	if (!buf->base)
865 		goto out_free_pglist;
866 
867 	buf->nr_pages	= nr_pages;
868 	buf->snapshot	= snapshot;
869 
870 	kfree(pglist);
871 	return buf;
872 
873 out_free_pglist:
874 	kfree(pglist);
875 out_free_buf:
876 	kfree(buf);
877 	return NULL;
878 }
879 
880 static void arm_spe_pmu_free_aux(void *aux)
881 {
882 	struct arm_spe_pmu_buf *buf = aux;
883 
884 	vunmap(buf->base);
885 	kfree(buf);
886 }
887 
888 /* Initialisation and teardown functions */
889 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
890 {
891 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
892 
893 	int idx;
894 	char *name;
895 	struct device *dev = &spe_pmu->pdev->dev;
896 
897 	spe_pmu->pmu = (struct pmu) {
898 		.module = THIS_MODULE,
899 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
900 		.attr_groups	= arm_spe_pmu_attr_groups,
901 		/*
902 		 * We hitch a ride on the software context here, so that
903 		 * we can support per-task profiling (which is not possible
904 		 * with the invalid context as it doesn't get sched callbacks).
905 		 * This requires that userspace either uses a dummy event for
906 		 * perf_event_open, since the aux buffer is not setup until
907 		 * a subsequent mmap, or creates the profiling event in a
908 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
909 		 * once the buffer has been created.
910 		 */
911 		.task_ctx_nr	= perf_sw_context,
912 		.event_init	= arm_spe_pmu_event_init,
913 		.add		= arm_spe_pmu_add,
914 		.del		= arm_spe_pmu_del,
915 		.start		= arm_spe_pmu_start,
916 		.stop		= arm_spe_pmu_stop,
917 		.read		= arm_spe_pmu_read,
918 		.setup_aux	= arm_spe_pmu_setup_aux,
919 		.free_aux	= arm_spe_pmu_free_aux,
920 	};
921 
922 	idx = atomic_inc_return(&pmu_idx);
923 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
924 	if (!name) {
925 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
926 		return -ENOMEM;
927 	}
928 
929 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
930 }
931 
932 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
933 {
934 	perf_pmu_unregister(&spe_pmu->pmu);
935 }
936 
937 static void __arm_spe_pmu_dev_probe(void *info)
938 {
939 	int fld;
940 	u64 reg;
941 	struct arm_spe_pmu *spe_pmu = info;
942 	struct device *dev = &spe_pmu->pdev->dev;
943 
944 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
945 						   ID_AA64DFR0_PMSVER_SHIFT);
946 	if (!fld) {
947 		dev_err(dev,
948 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
949 			fld, smp_processor_id());
950 		return;
951 	}
952 	spe_pmu->pmsver = (u16)fld;
953 
954 	/* Read PMBIDR first to determine whether or not we have access */
955 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
956 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
957 		dev_err(dev,
958 			"profiling buffer owned by higher exception level\n");
959 		return;
960 	}
961 
962 	/* Minimum alignment. If it's out-of-range, then fail the probe */
963 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
964 	spe_pmu->align = 1 << fld;
965 	if (spe_pmu->align > SZ_2K) {
966 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
967 			fld, smp_processor_id());
968 		return;
969 	}
970 
971 	/* It's now safe to read PMSIDR and figure out what we've got */
972 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
973 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
974 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
975 
976 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
977 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
978 
979 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
980 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
981 
982 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
983 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
984 
985 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
986 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
987 
988 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
989 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
990 
991 	/* This field has a spaced out encoding, so just use a look-up */
992 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
993 	switch (fld) {
994 	case 0:
995 		spe_pmu->min_period = 256;
996 		break;
997 	case 2:
998 		spe_pmu->min_period = 512;
999 		break;
1000 	case 3:
1001 		spe_pmu->min_period = 768;
1002 		break;
1003 	case 4:
1004 		spe_pmu->min_period = 1024;
1005 		break;
1006 	case 5:
1007 		spe_pmu->min_period = 1536;
1008 		break;
1009 	case 6:
1010 		spe_pmu->min_period = 2048;
1011 		break;
1012 	case 7:
1013 		spe_pmu->min_period = 3072;
1014 		break;
1015 	default:
1016 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1017 			 fld);
1018 		fallthrough;
1019 	case 8:
1020 		spe_pmu->min_period = 4096;
1021 	}
1022 
1023 	/* Maximum record size. If it's out-of-range, then fail the probe */
1024 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1025 	spe_pmu->max_record_sz = 1 << fld;
1026 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1027 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1028 			fld, smp_processor_id());
1029 		return;
1030 	}
1031 
1032 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1033 	switch (fld) {
1034 	default:
1035 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1036 			 fld);
1037 		fallthrough;
1038 	case 2:
1039 		spe_pmu->counter_sz = 12;
1040 	}
1041 
1042 	dev_info(dev,
1043 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1044 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1045 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1046 
1047 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1048 	return;
1049 }
1050 
1051 static void __arm_spe_pmu_reset_local(void)
1052 {
1053 	/*
1054 	 * This is probably overkill, as we have no idea where we're
1055 	 * draining any buffered data to...
1056 	 */
1057 	arm_spe_pmu_disable_and_drain_local();
1058 
1059 	/* Reset the buffer base pointer */
1060 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1061 	isb();
1062 
1063 	/* Clear any pending management interrupts */
1064 	write_sysreg_s(0, SYS_PMBSR_EL1);
1065 	isb();
1066 }
1067 
1068 static void __arm_spe_pmu_setup_one(void *info)
1069 {
1070 	struct arm_spe_pmu *spe_pmu = info;
1071 
1072 	__arm_spe_pmu_reset_local();
1073 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1074 }
1075 
1076 static void __arm_spe_pmu_stop_one(void *info)
1077 {
1078 	struct arm_spe_pmu *spe_pmu = info;
1079 
1080 	disable_percpu_irq(spe_pmu->irq);
1081 	__arm_spe_pmu_reset_local();
1082 }
1083 
1084 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1085 {
1086 	struct arm_spe_pmu *spe_pmu;
1087 
1088 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1089 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1090 		return 0;
1091 
1092 	__arm_spe_pmu_setup_one(spe_pmu);
1093 	return 0;
1094 }
1095 
1096 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1097 {
1098 	struct arm_spe_pmu *spe_pmu;
1099 
1100 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1101 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1102 		return 0;
1103 
1104 	__arm_spe_pmu_stop_one(spe_pmu);
1105 	return 0;
1106 }
1107 
1108 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1109 {
1110 	int ret;
1111 	cpumask_t *mask = &spe_pmu->supported_cpus;
1112 
1113 	/* Make sure we probe the hardware on a relevant CPU */
1114 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1115 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1116 		return -ENXIO;
1117 
1118 	/* Request our PPIs (note that the IRQ is still disabled) */
1119 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1120 				 spe_pmu->handle);
1121 	if (ret)
1122 		return ret;
1123 
1124 	/*
1125 	 * Register our hotplug notifier now so we don't miss any events.
1126 	 * This will enable the IRQ for any supported CPUs that are already
1127 	 * up.
1128 	 */
1129 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1130 				       &spe_pmu->hotplug_node);
1131 	if (ret)
1132 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1133 
1134 	return ret;
1135 }
1136 
1137 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1138 {
1139 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1140 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1141 }
1142 
1143 /* Driver and device probing */
1144 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1145 {
1146 	struct platform_device *pdev = spe_pmu->pdev;
1147 	int irq = platform_get_irq(pdev, 0);
1148 
1149 	if (irq < 0)
1150 		return -ENXIO;
1151 
1152 	if (!irq_is_percpu(irq)) {
1153 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1154 		return -EINVAL;
1155 	}
1156 
1157 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1158 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1159 		return -EINVAL;
1160 	}
1161 
1162 	spe_pmu->irq = irq;
1163 	return 0;
1164 }
1165 
1166 static const struct of_device_id arm_spe_pmu_of_match[] = {
1167 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1168 	{ /* Sentinel */ },
1169 };
1170 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1171 
1172 static const struct platform_device_id arm_spe_match[] = {
1173 	{ ARMV8_SPE_PDEV_NAME, 0},
1174 	{ }
1175 };
1176 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1177 
1178 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1179 {
1180 	int ret;
1181 	struct arm_spe_pmu *spe_pmu;
1182 	struct device *dev = &pdev->dev;
1183 
1184 	/*
1185 	 * If kernelspace is unmapped when running at EL0, then the SPE
1186 	 * buffer will fault and prematurely terminate the AUX session.
1187 	 */
1188 	if (arm64_kernel_unmapped_at_el0()) {
1189 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1190 		return -EPERM;
1191 	}
1192 
1193 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1194 	if (!spe_pmu) {
1195 		dev_err(dev, "failed to allocate spe_pmu\n");
1196 		return -ENOMEM;
1197 	}
1198 
1199 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1200 	if (!spe_pmu->handle)
1201 		return -ENOMEM;
1202 
1203 	spe_pmu->pdev = pdev;
1204 	platform_set_drvdata(pdev, spe_pmu);
1205 
1206 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1207 	if (ret)
1208 		goto out_free_handle;
1209 
1210 	ret = arm_spe_pmu_dev_init(spe_pmu);
1211 	if (ret)
1212 		goto out_free_handle;
1213 
1214 	ret = arm_spe_pmu_perf_init(spe_pmu);
1215 	if (ret)
1216 		goto out_teardown_dev;
1217 
1218 	return 0;
1219 
1220 out_teardown_dev:
1221 	arm_spe_pmu_dev_teardown(spe_pmu);
1222 out_free_handle:
1223 	free_percpu(spe_pmu->handle);
1224 	return ret;
1225 }
1226 
1227 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1228 {
1229 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1230 
1231 	arm_spe_pmu_perf_destroy(spe_pmu);
1232 	arm_spe_pmu_dev_teardown(spe_pmu);
1233 	free_percpu(spe_pmu->handle);
1234 	return 0;
1235 }
1236 
1237 static struct platform_driver arm_spe_pmu_driver = {
1238 	.id_table = arm_spe_match,
1239 	.driver	= {
1240 		.name		= DRVNAME,
1241 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1242 		.suppress_bind_attrs = true,
1243 	},
1244 	.probe	= arm_spe_pmu_device_probe,
1245 	.remove	= arm_spe_pmu_device_remove,
1246 };
1247 
1248 static int __init arm_spe_pmu_init(void)
1249 {
1250 	int ret;
1251 
1252 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1253 				      arm_spe_pmu_cpu_startup,
1254 				      arm_spe_pmu_cpu_teardown);
1255 	if (ret < 0)
1256 		return ret;
1257 	arm_spe_pmu_online = ret;
1258 
1259 	ret = platform_driver_register(&arm_spe_pmu_driver);
1260 	if (ret)
1261 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1262 
1263 	return ret;
1264 }
1265 
1266 static void __exit arm_spe_pmu_exit(void)
1267 {
1268 	platform_driver_unregister(&arm_spe_pmu_driver);
1269 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1270 }
1271 
1272 module_init(arm_spe_pmu_init);
1273 module_exit(arm_spe_pmu_exit);
1274 
1275 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1276 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1277 MODULE_LICENSE("GPL v2");
1278