xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision 9fa996c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitops.h>
16 #include <linux/bug.h>
17 #include <linux/capability.h>
18 #include <linux/cpuhotplug.h>
19 #include <linux/cpumask.h>
20 #include <linux/device.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/irq.h>
24 #include <linux/kernel.h>
25 #include <linux/list.h>
26 #include <linux/module.h>
27 #include <linux/of_address.h>
28 #include <linux/of_device.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 #define ARM_SPE_BUF_PAD_BYTE			0
43 
44 struct arm_spe_pmu_buf {
45 	int					nr_pages;
46 	bool					snapshot;
47 	void					*base;
48 };
49 
50 struct arm_spe_pmu {
51 	struct pmu				pmu;
52 	struct platform_device			*pdev;
53 	cpumask_t				supported_cpus;
54 	struct hlist_node			hotplug_node;
55 
56 	int					irq; /* PPI */
57 	u16					pmsver;
58 	u16					min_period;
59 	u16					counter_sz;
60 
61 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
62 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
63 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
64 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
65 #define SPE_PMU_FEAT_LDS			(1UL << 4)
66 #define SPE_PMU_FEAT_ERND			(1UL << 5)
67 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
68 	u64					features;
69 
70 	u16					max_record_sz;
71 	u16					align;
72 	struct perf_output_handle __percpu	*handle;
73 };
74 
75 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
76 
77 /* Convert a free-running index from perf into an SPE buffer offset */
78 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
79 
80 /* Keep track of our dynamic hotplug state */
81 static enum cpuhp_state arm_spe_pmu_online;
82 
83 enum arm_spe_pmu_buf_fault_action {
84 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
85 	SPE_PMU_BUF_FAULT_ACT_FATAL,
86 	SPE_PMU_BUF_FAULT_ACT_OK,
87 };
88 
89 /* This sysfs gunk was really good fun to write. */
90 enum arm_spe_pmu_capabilities {
91 	SPE_PMU_CAP_ARCH_INST = 0,
92 	SPE_PMU_CAP_ERND,
93 	SPE_PMU_CAP_FEAT_MAX,
94 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
95 	SPE_PMU_CAP_MIN_IVAL,
96 };
97 
98 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
99 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
100 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
101 };
102 
103 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
104 {
105 	if (cap < SPE_PMU_CAP_FEAT_MAX)
106 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
107 
108 	switch (cap) {
109 	case SPE_PMU_CAP_CNT_SZ:
110 		return spe_pmu->counter_sz;
111 	case SPE_PMU_CAP_MIN_IVAL:
112 		return spe_pmu->min_period;
113 	default:
114 		WARN(1, "unknown cap %d\n", cap);
115 	}
116 
117 	return 0;
118 }
119 
120 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
121 				    struct device_attribute *attr,
122 				    char *buf)
123 {
124 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
125 	struct dev_ext_attribute *ea =
126 		container_of(attr, struct dev_ext_attribute, attr);
127 	int cap = (long)ea->var;
128 
129 	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
130 }
131 
132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
133 	&((struct dev_ext_attribute[]) {				\
134 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
135 	})[0].attr.attr
136 
137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
138 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
139 
140 static struct attribute *arm_spe_pmu_cap_attr[] = {
141 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
142 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
143 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
144 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
145 	NULL,
146 };
147 
148 static const struct attribute_group arm_spe_pmu_cap_group = {
149 	.name	= "caps",
150 	.attrs	= arm_spe_pmu_cap_attr,
151 };
152 
153 /* User ABI */
154 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
155 #define ATTR_CFG_FLD_ts_enable_LO		0
156 #define ATTR_CFG_FLD_ts_enable_HI		0
157 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
158 #define ATTR_CFG_FLD_pa_enable_LO		1
159 #define ATTR_CFG_FLD_pa_enable_HI		1
160 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
161 #define ATTR_CFG_FLD_pct_enable_LO		2
162 #define ATTR_CFG_FLD_pct_enable_HI		2
163 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
164 #define ATTR_CFG_FLD_jitter_LO			16
165 #define ATTR_CFG_FLD_jitter_HI			16
166 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
167 #define ATTR_CFG_FLD_branch_filter_LO		32
168 #define ATTR_CFG_FLD_branch_filter_HI		32
169 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
170 #define ATTR_CFG_FLD_load_filter_LO		33
171 #define ATTR_CFG_FLD_load_filter_HI		33
172 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
173 #define ATTR_CFG_FLD_store_filter_LO		34
174 #define ATTR_CFG_FLD_store_filter_HI		34
175 
176 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
177 #define ATTR_CFG_FLD_event_filter_LO		0
178 #define ATTR_CFG_FLD_event_filter_HI		63
179 
180 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
181 #define ATTR_CFG_FLD_min_latency_LO		0
182 #define ATTR_CFG_FLD_min_latency_HI		11
183 
184 /* Why does everything I do descend into this? */
185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
186 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
187 
188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
189 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
190 
191 #define GEN_PMU_FORMAT_ATTR(name)					\
192 	PMU_FORMAT_ATTR(name,						\
193 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
194 			     ATTR_CFG_FLD_##name##_LO,			\
195 			     ATTR_CFG_FLD_##name##_HI))
196 
197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
198 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
199 
200 #define ATTR_CFG_GET_FLD(attr, name)					\
201 	_ATTR_CFG_GET_FLD(attr,						\
202 			  ATTR_CFG_FLD_##name##_CFG,			\
203 			  ATTR_CFG_FLD_##name##_LO,			\
204 			  ATTR_CFG_FLD_##name##_HI)
205 
206 GEN_PMU_FORMAT_ATTR(ts_enable);
207 GEN_PMU_FORMAT_ATTR(pa_enable);
208 GEN_PMU_FORMAT_ATTR(pct_enable);
209 GEN_PMU_FORMAT_ATTR(jitter);
210 GEN_PMU_FORMAT_ATTR(branch_filter);
211 GEN_PMU_FORMAT_ATTR(load_filter);
212 GEN_PMU_FORMAT_ATTR(store_filter);
213 GEN_PMU_FORMAT_ATTR(event_filter);
214 GEN_PMU_FORMAT_ATTR(min_latency);
215 
216 static struct attribute *arm_spe_pmu_formats_attr[] = {
217 	&format_attr_ts_enable.attr,
218 	&format_attr_pa_enable.attr,
219 	&format_attr_pct_enable.attr,
220 	&format_attr_jitter.attr,
221 	&format_attr_branch_filter.attr,
222 	&format_attr_load_filter.attr,
223 	&format_attr_store_filter.attr,
224 	&format_attr_event_filter.attr,
225 	&format_attr_min_latency.attr,
226 	NULL,
227 };
228 
229 static const struct attribute_group arm_spe_pmu_format_group = {
230 	.name	= "format",
231 	.attrs	= arm_spe_pmu_formats_attr,
232 };
233 
234 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
235 					    struct device_attribute *attr,
236 					    char *buf)
237 {
238 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
239 
240 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
241 }
242 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
243 
244 static struct attribute *arm_spe_pmu_attrs[] = {
245 	&dev_attr_cpumask.attr,
246 	NULL,
247 };
248 
249 static const struct attribute_group arm_spe_pmu_group = {
250 	.attrs	= arm_spe_pmu_attrs,
251 };
252 
253 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
254 	&arm_spe_pmu_group,
255 	&arm_spe_pmu_cap_group,
256 	&arm_spe_pmu_format_group,
257 	NULL,
258 };
259 
260 /* Convert between user ABI and register values */
261 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
262 {
263 	struct perf_event_attr *attr = &event->attr;
264 	u64 reg = 0;
265 
266 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
267 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
268 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
269 
270 	if (!attr->exclude_user)
271 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
272 
273 	if (!attr->exclude_kernel)
274 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
275 
276 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
277 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
278 
279 	return reg;
280 }
281 
282 static void arm_spe_event_sanitise_period(struct perf_event *event)
283 {
284 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
285 	u64 period = event->hw.sample_period;
286 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
287 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
288 
289 	if (period < spe_pmu->min_period)
290 		period = spe_pmu->min_period;
291 	else if (period > max_period)
292 		period = max_period;
293 	else
294 		period &= max_period;
295 
296 	event->hw.sample_period = period;
297 }
298 
299 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
300 {
301 	struct perf_event_attr *attr = &event->attr;
302 	u64 reg = 0;
303 
304 	arm_spe_event_sanitise_period(event);
305 
306 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
307 	reg |= event->hw.sample_period;
308 
309 	return reg;
310 }
311 
312 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
313 {
314 	struct perf_event_attr *attr = &event->attr;
315 	u64 reg = 0;
316 
317 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
318 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
319 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
320 
321 	if (reg)
322 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
323 
324 	if (ATTR_CFG_GET_FLD(attr, event_filter))
325 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
326 
327 	if (ATTR_CFG_GET_FLD(attr, min_latency))
328 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
329 
330 	return reg;
331 }
332 
333 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
334 {
335 	struct perf_event_attr *attr = &event->attr;
336 	return ATTR_CFG_GET_FLD(attr, event_filter);
337 }
338 
339 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
340 {
341 	struct perf_event_attr *attr = &event->attr;
342 	return ATTR_CFG_GET_FLD(attr, min_latency)
343 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
344 }
345 
346 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
347 {
348 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
349 	u64 head = PERF_IDX2OFF(handle->head, buf);
350 
351 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
352 	if (!buf->snapshot)
353 		perf_aux_output_skip(handle, len);
354 }
355 
356 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
357 {
358 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
359 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
360 	u64 head = PERF_IDX2OFF(handle->head, buf);
361 	u64 limit = buf->nr_pages * PAGE_SIZE;
362 
363 	/*
364 	 * The trace format isn't parseable in reverse, so clamp
365 	 * the limit to half of the buffer size in snapshot mode
366 	 * so that the worst case is half a buffer of records, as
367 	 * opposed to a single record.
368 	 */
369 	if (head < limit >> 1)
370 		limit >>= 1;
371 
372 	/*
373 	 * If we're within max_record_sz of the limit, we must
374 	 * pad, move the head index and recompute the limit.
375 	 */
376 	if (limit - head < spe_pmu->max_record_sz) {
377 		arm_spe_pmu_pad_buf(handle, limit - head);
378 		handle->head = PERF_IDX2OFF(limit, buf);
379 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
380 	}
381 
382 	return limit;
383 }
384 
385 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
386 {
387 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
388 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
389 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
390 	u64 limit = bufsize;
391 	u64 head, tail, wakeup;
392 
393 	/*
394 	 * The head can be misaligned for two reasons:
395 	 *
396 	 * 1. The hardware left PMBPTR pointing to the first byte after
397 	 *    a record when generating a buffer management event.
398 	 *
399 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
400 	 *    and CIRC_SPACE was used to compute the size, which always
401 	 *    leaves one entry free.
402 	 *
403 	 * Deal with this by padding to the next alignment boundary and
404 	 * moving the head index. If we run out of buffer space, we'll
405 	 * reduce handle->size to zero and end up reporting truncation.
406 	 */
407 	head = PERF_IDX2OFF(handle->head, buf);
408 	if (!IS_ALIGNED(head, spe_pmu->align)) {
409 		unsigned long delta = roundup(head, spe_pmu->align) - head;
410 
411 		delta = min(delta, handle->size);
412 		arm_spe_pmu_pad_buf(handle, delta);
413 		head = PERF_IDX2OFF(handle->head, buf);
414 	}
415 
416 	/* If we've run out of free space, then nothing more to do */
417 	if (!handle->size)
418 		goto no_space;
419 
420 	/* Compute the tail and wakeup indices now that we've aligned head */
421 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
422 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
423 
424 	/*
425 	 * Avoid clobbering unconsumed data. We know we have space, so
426 	 * if we see head == tail we know that the buffer is empty. If
427 	 * head > tail, then there's nothing to clobber prior to
428 	 * wrapping.
429 	 */
430 	if (head < tail)
431 		limit = round_down(tail, PAGE_SIZE);
432 
433 	/*
434 	 * Wakeup may be arbitrarily far into the future. If it's not in
435 	 * the current generation, either we'll wrap before hitting it,
436 	 * or it's in the past and has been handled already.
437 	 *
438 	 * If there's a wakeup before we wrap, arrange to be woken up by
439 	 * the page boundary following it. Keep the tail boundary if
440 	 * that's lower.
441 	 */
442 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
443 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
444 
445 	if (limit > head)
446 		return limit;
447 
448 	arm_spe_pmu_pad_buf(handle, handle->size);
449 no_space:
450 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
451 	perf_aux_output_end(handle, 0);
452 	return 0;
453 }
454 
455 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
456 {
457 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
458 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
459 	u64 limit = __arm_spe_pmu_next_off(handle);
460 	u64 head = PERF_IDX2OFF(handle->head, buf);
461 
462 	/*
463 	 * If the head has come too close to the end of the buffer,
464 	 * then pad to the end and recompute the limit.
465 	 */
466 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
467 		arm_spe_pmu_pad_buf(handle, limit - head);
468 		limit = __arm_spe_pmu_next_off(handle);
469 	}
470 
471 	return limit;
472 }
473 
474 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
475 					  struct perf_event *event)
476 {
477 	u64 base, limit;
478 	struct arm_spe_pmu_buf *buf;
479 
480 	/* Start a new aux session */
481 	buf = perf_aux_output_begin(handle, event);
482 	if (!buf) {
483 		event->hw.state |= PERF_HES_STOPPED;
484 		/*
485 		 * We still need to clear the limit pointer, since the
486 		 * profiler might only be disabled by virtue of a fault.
487 		 */
488 		limit = 0;
489 		goto out_write_limit;
490 	}
491 
492 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
493 			      : arm_spe_pmu_next_off(handle);
494 	if (limit)
495 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
496 
497 	limit += (u64)buf->base;
498 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
499 	write_sysreg_s(base, SYS_PMBPTR_EL1);
500 
501 out_write_limit:
502 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
503 }
504 
505 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
506 {
507 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
508 	u64 offset, size;
509 
510 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
511 	size = offset - PERF_IDX2OFF(handle->head, buf);
512 
513 	if (buf->snapshot)
514 		handle->head = offset;
515 
516 	perf_aux_output_end(handle, size);
517 }
518 
519 static void arm_spe_pmu_disable_and_drain_local(void)
520 {
521 	/* Disable profiling at EL0 and EL1 */
522 	write_sysreg_s(0, SYS_PMSCR_EL1);
523 	isb();
524 
525 	/* Drain any buffered data */
526 	psb_csync();
527 	dsb(nsh);
528 
529 	/* Disable the profiling buffer */
530 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
531 	isb();
532 }
533 
534 /* IRQ handling */
535 static enum arm_spe_pmu_buf_fault_action
536 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
537 {
538 	const char *err_str;
539 	u64 pmbsr;
540 	enum arm_spe_pmu_buf_fault_action ret;
541 
542 	/*
543 	 * Ensure new profiling data is visible to the CPU and any external
544 	 * aborts have been resolved.
545 	 */
546 	psb_csync();
547 	dsb(nsh);
548 
549 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
550 	isb();
551 
552 	/* Service required? */
553 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
554 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
555 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
556 
557 	/*
558 	 * If we've lost data, disable profiling and also set the PARTIAL
559 	 * flag to indicate that the last record is corrupted.
560 	 */
561 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
562 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
563 					     PERF_AUX_FLAG_PARTIAL);
564 
565 	/* Report collisions to userspace so that it can up the period */
566 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
567 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
568 
569 	/* We only expect buffer management events */
570 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
571 	case SYS_PMBSR_EL1_EC_BUF:
572 		/* Handled below */
573 		break;
574 	case SYS_PMBSR_EL1_EC_FAULT_S1:
575 	case SYS_PMBSR_EL1_EC_FAULT_S2:
576 		err_str = "Unexpected buffer fault";
577 		goto out_err;
578 	default:
579 		err_str = "Unknown error code";
580 		goto out_err;
581 	}
582 
583 	/* Buffer management event */
584 	switch (pmbsr &
585 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
586 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
587 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
588 		goto out_stop;
589 	default:
590 		err_str = "Unknown buffer status code";
591 	}
592 
593 out_err:
594 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
595 			   err_str, smp_processor_id(), pmbsr,
596 			   read_sysreg_s(SYS_PMBPTR_EL1),
597 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
598 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
599 
600 out_stop:
601 	arm_spe_perf_aux_output_end(handle);
602 	return ret;
603 }
604 
605 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
606 {
607 	struct perf_output_handle *handle = dev;
608 	struct perf_event *event = handle->event;
609 	enum arm_spe_pmu_buf_fault_action act;
610 
611 	if (!perf_get_aux(handle))
612 		return IRQ_NONE;
613 
614 	act = arm_spe_pmu_buf_get_fault_act(handle);
615 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
616 		return IRQ_NONE;
617 
618 	/*
619 	 * Ensure perf callbacks have completed, which may disable the
620 	 * profiling buffer in response to a TRUNCATION flag.
621 	 */
622 	irq_work_run();
623 
624 	switch (act) {
625 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
626 		/*
627 		 * If a fatal exception occurred then leaving the profiling
628 		 * buffer enabled is a recipe waiting to happen. Since
629 		 * fatal faults don't always imply truncation, make sure
630 		 * that the profiling buffer is disabled explicitly before
631 		 * clearing the syndrome register.
632 		 */
633 		arm_spe_pmu_disable_and_drain_local();
634 		break;
635 	case SPE_PMU_BUF_FAULT_ACT_OK:
636 		/*
637 		 * We handled the fault (the buffer was full), so resume
638 		 * profiling as long as we didn't detect truncation.
639 		 * PMBPTR might be misaligned, but we'll burn that bridge
640 		 * when we get to it.
641 		 */
642 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
643 			arm_spe_perf_aux_output_begin(handle, event);
644 			isb();
645 		}
646 		break;
647 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
648 		/* We've seen you before, but GCC has the memory of a sieve. */
649 		break;
650 	}
651 
652 	/* The buffer pointers are now sane, so resume profiling. */
653 	write_sysreg_s(0, SYS_PMBSR_EL1);
654 	return IRQ_HANDLED;
655 }
656 
657 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
658 {
659 	switch (pmsver) {
660 	case ID_AA64DFR0_PMSVER_8_2:
661 		return SYS_PMSEVFR_EL1_RES0_8_2;
662 	case ID_AA64DFR0_PMSVER_8_3:
663 	/* Return the highest version we support in default */
664 	default:
665 		return SYS_PMSEVFR_EL1_RES0_8_3;
666 	}
667 }
668 
669 /* Perf callbacks */
670 static int arm_spe_pmu_event_init(struct perf_event *event)
671 {
672 	u64 reg;
673 	struct perf_event_attr *attr = &event->attr;
674 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
675 
676 	/* This is, of course, deeply driver-specific */
677 	if (attr->type != event->pmu->type)
678 		return -ENOENT;
679 
680 	if (event->cpu >= 0 &&
681 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
682 		return -ENOENT;
683 
684 	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
685 		return -EOPNOTSUPP;
686 
687 	if (attr->exclude_idle)
688 		return -EOPNOTSUPP;
689 
690 	/*
691 	 * Feedback-directed frequency throttling doesn't work when we
692 	 * have a buffer of samples. We'd need to manually count the
693 	 * samples in the buffer when it fills up and adjust the event
694 	 * count to reflect that. Instead, just force the user to specify
695 	 * a sample period.
696 	 */
697 	if (attr->freq)
698 		return -EINVAL;
699 
700 	reg = arm_spe_event_to_pmsfcr(event);
701 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
702 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
703 		return -EOPNOTSUPP;
704 
705 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
706 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
707 		return -EOPNOTSUPP;
708 
709 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
710 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
711 		return -EOPNOTSUPP;
712 
713 	reg = arm_spe_event_to_pmscr(event);
714 	if (!perfmon_capable() &&
715 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
716 		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
717 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
718 		return -EACCES;
719 
720 	return 0;
721 }
722 
723 static void arm_spe_pmu_start(struct perf_event *event, int flags)
724 {
725 	u64 reg;
726 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
727 	struct hw_perf_event *hwc = &event->hw;
728 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
729 
730 	hwc->state = 0;
731 	arm_spe_perf_aux_output_begin(handle, event);
732 	if (hwc->state)
733 		return;
734 
735 	reg = arm_spe_event_to_pmsfcr(event);
736 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
737 
738 	reg = arm_spe_event_to_pmsevfr(event);
739 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
740 
741 	reg = arm_spe_event_to_pmslatfr(event);
742 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
743 
744 	if (flags & PERF_EF_RELOAD) {
745 		reg = arm_spe_event_to_pmsirr(event);
746 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
747 		isb();
748 		reg = local64_read(&hwc->period_left);
749 		write_sysreg_s(reg, SYS_PMSICR_EL1);
750 	}
751 
752 	reg = arm_spe_event_to_pmscr(event);
753 	isb();
754 	write_sysreg_s(reg, SYS_PMSCR_EL1);
755 }
756 
757 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
758 {
759 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
760 	struct hw_perf_event *hwc = &event->hw;
761 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
762 
763 	/* If we're already stopped, then nothing to do */
764 	if (hwc->state & PERF_HES_STOPPED)
765 		return;
766 
767 	/* Stop all trace generation */
768 	arm_spe_pmu_disable_and_drain_local();
769 
770 	if (flags & PERF_EF_UPDATE) {
771 		/*
772 		 * If there's a fault pending then ensure we contain it
773 		 * to this buffer, since we might be on the context-switch
774 		 * path.
775 		 */
776 		if (perf_get_aux(handle)) {
777 			enum arm_spe_pmu_buf_fault_action act;
778 
779 			act = arm_spe_pmu_buf_get_fault_act(handle);
780 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
781 				arm_spe_perf_aux_output_end(handle);
782 			else
783 				write_sysreg_s(0, SYS_PMBSR_EL1);
784 		}
785 
786 		/*
787 		 * This may also contain ECOUNT, but nobody else should
788 		 * be looking at period_left, since we forbid frequency
789 		 * based sampling.
790 		 */
791 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
792 		hwc->state |= PERF_HES_UPTODATE;
793 	}
794 
795 	hwc->state |= PERF_HES_STOPPED;
796 }
797 
798 static int arm_spe_pmu_add(struct perf_event *event, int flags)
799 {
800 	int ret = 0;
801 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
802 	struct hw_perf_event *hwc = &event->hw;
803 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
804 
805 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
806 		return -ENOENT;
807 
808 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
809 
810 	if (flags & PERF_EF_START) {
811 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
812 		if (hwc->state & PERF_HES_STOPPED)
813 			ret = -EINVAL;
814 	}
815 
816 	return ret;
817 }
818 
819 static void arm_spe_pmu_del(struct perf_event *event, int flags)
820 {
821 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
822 }
823 
824 static void arm_spe_pmu_read(struct perf_event *event)
825 {
826 }
827 
828 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
829 				   int nr_pages, bool snapshot)
830 {
831 	int i, cpu = event->cpu;
832 	struct page **pglist;
833 	struct arm_spe_pmu_buf *buf;
834 
835 	/* We need at least two pages for this to work. */
836 	if (nr_pages < 2)
837 		return NULL;
838 
839 	/*
840 	 * We require an even number of pages for snapshot mode, so that
841 	 * we can effectively treat the buffer as consisting of two equal
842 	 * parts and give userspace a fighting chance of getting some
843 	 * useful data out of it.
844 	 */
845 	if (snapshot && (nr_pages & 1))
846 		return NULL;
847 
848 	if (cpu == -1)
849 		cpu = raw_smp_processor_id();
850 
851 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
852 	if (!buf)
853 		return NULL;
854 
855 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
856 	if (!pglist)
857 		goto out_free_buf;
858 
859 	for (i = 0; i < nr_pages; ++i)
860 		pglist[i] = virt_to_page(pages[i]);
861 
862 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
863 	if (!buf->base)
864 		goto out_free_pglist;
865 
866 	buf->nr_pages	= nr_pages;
867 	buf->snapshot	= snapshot;
868 
869 	kfree(pglist);
870 	return buf;
871 
872 out_free_pglist:
873 	kfree(pglist);
874 out_free_buf:
875 	kfree(buf);
876 	return NULL;
877 }
878 
879 static void arm_spe_pmu_free_aux(void *aux)
880 {
881 	struct arm_spe_pmu_buf *buf = aux;
882 
883 	vunmap(buf->base);
884 	kfree(buf);
885 }
886 
887 /* Initialisation and teardown functions */
888 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
889 {
890 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
891 
892 	int idx;
893 	char *name;
894 	struct device *dev = &spe_pmu->pdev->dev;
895 
896 	spe_pmu->pmu = (struct pmu) {
897 		.module = THIS_MODULE,
898 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
899 		.attr_groups	= arm_spe_pmu_attr_groups,
900 		/*
901 		 * We hitch a ride on the software context here, so that
902 		 * we can support per-task profiling (which is not possible
903 		 * with the invalid context as it doesn't get sched callbacks).
904 		 * This requires that userspace either uses a dummy event for
905 		 * perf_event_open, since the aux buffer is not setup until
906 		 * a subsequent mmap, or creates the profiling event in a
907 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
908 		 * once the buffer has been created.
909 		 */
910 		.task_ctx_nr	= perf_sw_context,
911 		.event_init	= arm_spe_pmu_event_init,
912 		.add		= arm_spe_pmu_add,
913 		.del		= arm_spe_pmu_del,
914 		.start		= arm_spe_pmu_start,
915 		.stop		= arm_spe_pmu_stop,
916 		.read		= arm_spe_pmu_read,
917 		.setup_aux	= arm_spe_pmu_setup_aux,
918 		.free_aux	= arm_spe_pmu_free_aux,
919 	};
920 
921 	idx = atomic_inc_return(&pmu_idx);
922 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
923 	if (!name) {
924 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
925 		return -ENOMEM;
926 	}
927 
928 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
929 }
930 
931 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
932 {
933 	perf_pmu_unregister(&spe_pmu->pmu);
934 }
935 
936 static void __arm_spe_pmu_dev_probe(void *info)
937 {
938 	int fld;
939 	u64 reg;
940 	struct arm_spe_pmu *spe_pmu = info;
941 	struct device *dev = &spe_pmu->pdev->dev;
942 
943 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
944 						   ID_AA64DFR0_PMSVER_SHIFT);
945 	if (!fld) {
946 		dev_err(dev,
947 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
948 			fld, smp_processor_id());
949 		return;
950 	}
951 	spe_pmu->pmsver = (u16)fld;
952 
953 	/* Read PMBIDR first to determine whether or not we have access */
954 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
955 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
956 		dev_err(dev,
957 			"profiling buffer owned by higher exception level\n");
958 		return;
959 	}
960 
961 	/* Minimum alignment. If it's out-of-range, then fail the probe */
962 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
963 	spe_pmu->align = 1 << fld;
964 	if (spe_pmu->align > SZ_2K) {
965 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
966 			fld, smp_processor_id());
967 		return;
968 	}
969 
970 	/* It's now safe to read PMSIDR and figure out what we've got */
971 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
972 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
973 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
974 
975 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
976 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
977 
978 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
979 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
980 
981 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
982 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
983 
984 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
985 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
986 
987 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
988 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
989 
990 	/* This field has a spaced out encoding, so just use a look-up */
991 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
992 	switch (fld) {
993 	case 0:
994 		spe_pmu->min_period = 256;
995 		break;
996 	case 2:
997 		spe_pmu->min_period = 512;
998 		break;
999 	case 3:
1000 		spe_pmu->min_period = 768;
1001 		break;
1002 	case 4:
1003 		spe_pmu->min_period = 1024;
1004 		break;
1005 	case 5:
1006 		spe_pmu->min_period = 1536;
1007 		break;
1008 	case 6:
1009 		spe_pmu->min_period = 2048;
1010 		break;
1011 	case 7:
1012 		spe_pmu->min_period = 3072;
1013 		break;
1014 	default:
1015 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1016 			 fld);
1017 		fallthrough;
1018 	case 8:
1019 		spe_pmu->min_period = 4096;
1020 	}
1021 
1022 	/* Maximum record size. If it's out-of-range, then fail the probe */
1023 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1024 	spe_pmu->max_record_sz = 1 << fld;
1025 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1026 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1027 			fld, smp_processor_id());
1028 		return;
1029 	}
1030 
1031 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1032 	switch (fld) {
1033 	default:
1034 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1035 			 fld);
1036 		fallthrough;
1037 	case 2:
1038 		spe_pmu->counter_sz = 12;
1039 	}
1040 
1041 	dev_info(dev,
1042 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1043 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1044 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1045 
1046 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1047 	return;
1048 }
1049 
1050 static void __arm_spe_pmu_reset_local(void)
1051 {
1052 	/*
1053 	 * This is probably overkill, as we have no idea where we're
1054 	 * draining any buffered data to...
1055 	 */
1056 	arm_spe_pmu_disable_and_drain_local();
1057 
1058 	/* Reset the buffer base pointer */
1059 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1060 	isb();
1061 
1062 	/* Clear any pending management interrupts */
1063 	write_sysreg_s(0, SYS_PMBSR_EL1);
1064 	isb();
1065 }
1066 
1067 static void __arm_spe_pmu_setup_one(void *info)
1068 {
1069 	struct arm_spe_pmu *spe_pmu = info;
1070 
1071 	__arm_spe_pmu_reset_local();
1072 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1073 }
1074 
1075 static void __arm_spe_pmu_stop_one(void *info)
1076 {
1077 	struct arm_spe_pmu *spe_pmu = info;
1078 
1079 	disable_percpu_irq(spe_pmu->irq);
1080 	__arm_spe_pmu_reset_local();
1081 }
1082 
1083 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1084 {
1085 	struct arm_spe_pmu *spe_pmu;
1086 
1087 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1088 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1089 		return 0;
1090 
1091 	__arm_spe_pmu_setup_one(spe_pmu);
1092 	return 0;
1093 }
1094 
1095 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1096 {
1097 	struct arm_spe_pmu *spe_pmu;
1098 
1099 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1100 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1101 		return 0;
1102 
1103 	__arm_spe_pmu_stop_one(spe_pmu);
1104 	return 0;
1105 }
1106 
1107 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1108 {
1109 	int ret;
1110 	cpumask_t *mask = &spe_pmu->supported_cpus;
1111 
1112 	/* Make sure we probe the hardware on a relevant CPU */
1113 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1114 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1115 		return -ENXIO;
1116 
1117 	/* Request our PPIs (note that the IRQ is still disabled) */
1118 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1119 				 spe_pmu->handle);
1120 	if (ret)
1121 		return ret;
1122 
1123 	/*
1124 	 * Register our hotplug notifier now so we don't miss any events.
1125 	 * This will enable the IRQ for any supported CPUs that are already
1126 	 * up.
1127 	 */
1128 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1129 				       &spe_pmu->hotplug_node);
1130 	if (ret)
1131 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1132 
1133 	return ret;
1134 }
1135 
1136 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1137 {
1138 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1139 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1140 }
1141 
1142 /* Driver and device probing */
1143 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1144 {
1145 	struct platform_device *pdev = spe_pmu->pdev;
1146 	int irq = platform_get_irq(pdev, 0);
1147 
1148 	if (irq < 0)
1149 		return -ENXIO;
1150 
1151 	if (!irq_is_percpu(irq)) {
1152 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1153 		return -EINVAL;
1154 	}
1155 
1156 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1157 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1158 		return -EINVAL;
1159 	}
1160 
1161 	spe_pmu->irq = irq;
1162 	return 0;
1163 }
1164 
1165 static const struct of_device_id arm_spe_pmu_of_match[] = {
1166 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1167 	{ /* Sentinel */ },
1168 };
1169 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1170 
1171 static const struct platform_device_id arm_spe_match[] = {
1172 	{ ARMV8_SPE_PDEV_NAME, 0},
1173 	{ }
1174 };
1175 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1176 
1177 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1178 {
1179 	int ret;
1180 	struct arm_spe_pmu *spe_pmu;
1181 	struct device *dev = &pdev->dev;
1182 
1183 	/*
1184 	 * If kernelspace is unmapped when running at EL0, then the SPE
1185 	 * buffer will fault and prematurely terminate the AUX session.
1186 	 */
1187 	if (arm64_kernel_unmapped_at_el0()) {
1188 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1189 		return -EPERM;
1190 	}
1191 
1192 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1193 	if (!spe_pmu) {
1194 		dev_err(dev, "failed to allocate spe_pmu\n");
1195 		return -ENOMEM;
1196 	}
1197 
1198 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1199 	if (!spe_pmu->handle)
1200 		return -ENOMEM;
1201 
1202 	spe_pmu->pdev = pdev;
1203 	platform_set_drvdata(pdev, spe_pmu);
1204 
1205 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1206 	if (ret)
1207 		goto out_free_handle;
1208 
1209 	ret = arm_spe_pmu_dev_init(spe_pmu);
1210 	if (ret)
1211 		goto out_free_handle;
1212 
1213 	ret = arm_spe_pmu_perf_init(spe_pmu);
1214 	if (ret)
1215 		goto out_teardown_dev;
1216 
1217 	return 0;
1218 
1219 out_teardown_dev:
1220 	arm_spe_pmu_dev_teardown(spe_pmu);
1221 out_free_handle:
1222 	free_percpu(spe_pmu->handle);
1223 	return ret;
1224 }
1225 
1226 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1227 {
1228 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1229 
1230 	arm_spe_pmu_perf_destroy(spe_pmu);
1231 	arm_spe_pmu_dev_teardown(spe_pmu);
1232 	free_percpu(spe_pmu->handle);
1233 	return 0;
1234 }
1235 
1236 static struct platform_driver arm_spe_pmu_driver = {
1237 	.id_table = arm_spe_match,
1238 	.driver	= {
1239 		.name		= DRVNAME,
1240 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1241 		.suppress_bind_attrs = true,
1242 	},
1243 	.probe	= arm_spe_pmu_device_probe,
1244 	.remove	= arm_spe_pmu_device_remove,
1245 };
1246 
1247 static int __init arm_spe_pmu_init(void)
1248 {
1249 	int ret;
1250 
1251 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1252 				      arm_spe_pmu_cpu_startup,
1253 				      arm_spe_pmu_cpu_teardown);
1254 	if (ret < 0)
1255 		return ret;
1256 	arm_spe_pmu_online = ret;
1257 
1258 	ret = platform_driver_register(&arm_spe_pmu_driver);
1259 	if (ret)
1260 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1261 
1262 	return ret;
1263 }
1264 
1265 static void __exit arm_spe_pmu_exit(void)
1266 {
1267 	platform_driver_unregister(&arm_spe_pmu_driver);
1268 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1269 }
1270 
1271 module_init(arm_spe_pmu_init);
1272 module_exit(arm_spe_pmu_exit);
1273 
1274 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1275 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1276 MODULE_LICENSE("GPL v2");
1277