xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision 6d21fb7d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Perf support for the Statistical Profiling Extension, introduced as
4  * part of ARMv8.2.
5  *
6  * Copyright (C) 2016 ARM Limited
7  *
8  * Author: Will Deacon <will.deacon@arm.com>
9  */
10 
11 #define PMUNAME					"arm_spe"
12 #define DRVNAME					PMUNAME "_pmu"
13 #define pr_fmt(fmt)				DRVNAME ": " fmt
14 
15 #include <linux/bitfield.h>
16 #include <linux/bitops.h>
17 #include <linux/bug.h>
18 #include <linux/capability.h>
19 #include <linux/cpuhotplug.h>
20 #include <linux/cpumask.h>
21 #include <linux/device.h>
22 #include <linux/errno.h>
23 #include <linux/interrupt.h>
24 #include <linux/irq.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/module.h>
28 #include <linux/of.h>
29 #include <linux/perf_event.h>
30 #include <linux/perf/arm_pmu.h>
31 #include <linux/platform_device.h>
32 #include <linux/printk.h>
33 #include <linux/slab.h>
34 #include <linux/smp.h>
35 #include <linux/vmalloc.h>
36 
37 #include <asm/barrier.h>
38 #include <asm/cpufeature.h>
39 #include <asm/mmu.h>
40 #include <asm/sysreg.h>
41 
42 /*
43  * Cache if the event is allowed to trace Context information.
44  * This allows us to perform the check, i.e, perfmon_capable(),
45  * in the context of the event owner, once, during the event_init().
46  */
47 #define SPE_PMU_HW_FLAGS_CX			0x00001
48 
49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX);
50 
51 static void set_spe_event_has_cx(struct perf_event *event)
52 {
53 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable())
54 		event->hw.flags |= SPE_PMU_HW_FLAGS_CX;
55 }
56 
57 static bool get_spe_event_has_cx(struct perf_event *event)
58 {
59 	return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX);
60 }
61 
62 #define ARM_SPE_BUF_PAD_BYTE			0
63 
64 struct arm_spe_pmu_buf {
65 	int					nr_pages;
66 	bool					snapshot;
67 	void					*base;
68 };
69 
70 struct arm_spe_pmu {
71 	struct pmu				pmu;
72 	struct platform_device			*pdev;
73 	cpumask_t				supported_cpus;
74 	struct hlist_node			hotplug_node;
75 
76 	int					irq; /* PPI */
77 	u16					pmsver;
78 	u16					min_period;
79 	u16					counter_sz;
80 
81 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
82 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
83 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
84 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
85 #define SPE_PMU_FEAT_LDS			(1UL << 4)
86 #define SPE_PMU_FEAT_ERND			(1UL << 5)
87 #define SPE_PMU_FEAT_INV_FILT_EVT		(1UL << 6)
88 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
89 	u64					features;
90 
91 	u16					max_record_sz;
92 	u16					align;
93 	struct perf_output_handle __percpu	*handle;
94 };
95 
96 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
97 
98 /* Convert a free-running index from perf into an SPE buffer offset */
99 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
100 
101 /* Keep track of our dynamic hotplug state */
102 static enum cpuhp_state arm_spe_pmu_online;
103 
104 enum arm_spe_pmu_buf_fault_action {
105 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
106 	SPE_PMU_BUF_FAULT_ACT_FATAL,
107 	SPE_PMU_BUF_FAULT_ACT_OK,
108 };
109 
110 /* This sysfs gunk was really good fun to write. */
111 enum arm_spe_pmu_capabilities {
112 	SPE_PMU_CAP_ARCH_INST = 0,
113 	SPE_PMU_CAP_ERND,
114 	SPE_PMU_CAP_FEAT_MAX,
115 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
116 	SPE_PMU_CAP_MIN_IVAL,
117 };
118 
119 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
120 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
121 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
122 };
123 
124 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
125 {
126 	if (cap < SPE_PMU_CAP_FEAT_MAX)
127 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
128 
129 	switch (cap) {
130 	case SPE_PMU_CAP_CNT_SZ:
131 		return spe_pmu->counter_sz;
132 	case SPE_PMU_CAP_MIN_IVAL:
133 		return spe_pmu->min_period;
134 	default:
135 		WARN(1, "unknown cap %d\n", cap);
136 	}
137 
138 	return 0;
139 }
140 
141 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
142 				    struct device_attribute *attr,
143 				    char *buf)
144 {
145 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
146 	struct dev_ext_attribute *ea =
147 		container_of(attr, struct dev_ext_attribute, attr);
148 	int cap = (long)ea->var;
149 
150 	return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap));
151 }
152 
153 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
154 	&((struct dev_ext_attribute[]) {				\
155 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
156 	})[0].attr.attr
157 
158 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
159 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
160 
161 static struct attribute *arm_spe_pmu_cap_attr[] = {
162 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
163 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
164 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
165 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
166 	NULL,
167 };
168 
169 static const struct attribute_group arm_spe_pmu_cap_group = {
170 	.name	= "caps",
171 	.attrs	= arm_spe_pmu_cap_attr,
172 };
173 
174 /* User ABI */
175 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
176 #define ATTR_CFG_FLD_ts_enable_LO		0
177 #define ATTR_CFG_FLD_ts_enable_HI		0
178 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
179 #define ATTR_CFG_FLD_pa_enable_LO		1
180 #define ATTR_CFG_FLD_pa_enable_HI		1
181 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
182 #define ATTR_CFG_FLD_pct_enable_LO		2
183 #define ATTR_CFG_FLD_pct_enable_HI		2
184 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
185 #define ATTR_CFG_FLD_jitter_LO			16
186 #define ATTR_CFG_FLD_jitter_HI			16
187 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
188 #define ATTR_CFG_FLD_branch_filter_LO		32
189 #define ATTR_CFG_FLD_branch_filter_HI		32
190 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
191 #define ATTR_CFG_FLD_load_filter_LO		33
192 #define ATTR_CFG_FLD_load_filter_HI		33
193 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
194 #define ATTR_CFG_FLD_store_filter_LO		34
195 #define ATTR_CFG_FLD_store_filter_HI		34
196 
197 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
198 #define ATTR_CFG_FLD_event_filter_LO		0
199 #define ATTR_CFG_FLD_event_filter_HI		63
200 
201 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
202 #define ATTR_CFG_FLD_min_latency_LO		0
203 #define ATTR_CFG_FLD_min_latency_HI		11
204 
205 #define ATTR_CFG_FLD_inv_event_filter_CFG	config3	/* PMSNEVFR_EL1 */
206 #define ATTR_CFG_FLD_inv_event_filter_LO	0
207 #define ATTR_CFG_FLD_inv_event_filter_HI	63
208 
209 /* Why does everything I do descend into this? */
210 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
211 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
212 
213 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
214 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
215 
216 #define GEN_PMU_FORMAT_ATTR(name)					\
217 	PMU_FORMAT_ATTR(name,						\
218 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
219 			     ATTR_CFG_FLD_##name##_LO,			\
220 			     ATTR_CFG_FLD_##name##_HI))
221 
222 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
223 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
224 
225 #define ATTR_CFG_GET_FLD(attr, name)					\
226 	_ATTR_CFG_GET_FLD(attr,						\
227 			  ATTR_CFG_FLD_##name##_CFG,			\
228 			  ATTR_CFG_FLD_##name##_LO,			\
229 			  ATTR_CFG_FLD_##name##_HI)
230 
231 GEN_PMU_FORMAT_ATTR(ts_enable);
232 GEN_PMU_FORMAT_ATTR(pa_enable);
233 GEN_PMU_FORMAT_ATTR(pct_enable);
234 GEN_PMU_FORMAT_ATTR(jitter);
235 GEN_PMU_FORMAT_ATTR(branch_filter);
236 GEN_PMU_FORMAT_ATTR(load_filter);
237 GEN_PMU_FORMAT_ATTR(store_filter);
238 GEN_PMU_FORMAT_ATTR(event_filter);
239 GEN_PMU_FORMAT_ATTR(inv_event_filter);
240 GEN_PMU_FORMAT_ATTR(min_latency);
241 
242 static struct attribute *arm_spe_pmu_formats_attr[] = {
243 	&format_attr_ts_enable.attr,
244 	&format_attr_pa_enable.attr,
245 	&format_attr_pct_enable.attr,
246 	&format_attr_jitter.attr,
247 	&format_attr_branch_filter.attr,
248 	&format_attr_load_filter.attr,
249 	&format_attr_store_filter.attr,
250 	&format_attr_event_filter.attr,
251 	&format_attr_inv_event_filter.attr,
252 	&format_attr_min_latency.attr,
253 	NULL,
254 };
255 
256 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj,
257 						  struct attribute *attr,
258 						  int unused)
259 	{
260 	struct device *dev = kobj_to_dev(kobj);
261 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
262 
263 	if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
264 		return 0;
265 
266 	return attr->mode;
267 }
268 
269 static const struct attribute_group arm_spe_pmu_format_group = {
270 	.name	= "format",
271 	.is_visible = arm_spe_pmu_format_attr_is_visible,
272 	.attrs	= arm_spe_pmu_formats_attr,
273 };
274 
275 static ssize_t cpumask_show(struct device *dev,
276 			    struct device_attribute *attr, char *buf)
277 {
278 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
279 
280 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
281 }
282 static DEVICE_ATTR_RO(cpumask);
283 
284 static struct attribute *arm_spe_pmu_attrs[] = {
285 	&dev_attr_cpumask.attr,
286 	NULL,
287 };
288 
289 static const struct attribute_group arm_spe_pmu_group = {
290 	.attrs	= arm_spe_pmu_attrs,
291 };
292 
293 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
294 	&arm_spe_pmu_group,
295 	&arm_spe_pmu_cap_group,
296 	&arm_spe_pmu_format_group,
297 	NULL,
298 };
299 
300 /* Convert between user ABI and register values */
301 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
302 {
303 	struct perf_event_attr *attr = &event->attr;
304 	u64 reg = 0;
305 
306 	reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable));
307 	reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable));
308 	reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable));
309 
310 	if (!attr->exclude_user)
311 		reg |= PMSCR_EL1_E0SPE;
312 
313 	if (!attr->exclude_kernel)
314 		reg |= PMSCR_EL1_E1SPE;
315 
316 	if (get_spe_event_has_cx(event))
317 		reg |= PMSCR_EL1_CX;
318 
319 	return reg;
320 }
321 
322 static void arm_spe_event_sanitise_period(struct perf_event *event)
323 {
324 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
325 	u64 period = event->hw.sample_period;
326 	u64 max_period = PMSIRR_EL1_INTERVAL_MASK;
327 
328 	if (period < spe_pmu->min_period)
329 		period = spe_pmu->min_period;
330 	else if (period > max_period)
331 		period = max_period;
332 	else
333 		period &= max_period;
334 
335 	event->hw.sample_period = period;
336 }
337 
338 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
339 {
340 	struct perf_event_attr *attr = &event->attr;
341 	u64 reg = 0;
342 
343 	arm_spe_event_sanitise_period(event);
344 
345 	reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter));
346 	reg |= event->hw.sample_period;
347 
348 	return reg;
349 }
350 
351 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
352 {
353 	struct perf_event_attr *attr = &event->attr;
354 	u64 reg = 0;
355 
356 	reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter));
357 	reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter));
358 	reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter));
359 
360 	if (reg)
361 		reg |= PMSFCR_EL1_FT;
362 
363 	if (ATTR_CFG_GET_FLD(attr, event_filter))
364 		reg |= PMSFCR_EL1_FE;
365 
366 	if (ATTR_CFG_GET_FLD(attr, inv_event_filter))
367 		reg |= PMSFCR_EL1_FnE;
368 
369 	if (ATTR_CFG_GET_FLD(attr, min_latency))
370 		reg |= PMSFCR_EL1_FL;
371 
372 	return reg;
373 }
374 
375 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
376 {
377 	struct perf_event_attr *attr = &event->attr;
378 	return ATTR_CFG_GET_FLD(attr, event_filter);
379 }
380 
381 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event)
382 {
383 	struct perf_event_attr *attr = &event->attr;
384 	return ATTR_CFG_GET_FLD(attr, inv_event_filter);
385 }
386 
387 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
388 {
389 	struct perf_event_attr *attr = &event->attr;
390 	return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency));
391 }
392 
393 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
394 {
395 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
396 	u64 head = PERF_IDX2OFF(handle->head, buf);
397 
398 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
399 	if (!buf->snapshot)
400 		perf_aux_output_skip(handle, len);
401 }
402 
403 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
404 {
405 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
406 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
407 	u64 head = PERF_IDX2OFF(handle->head, buf);
408 	u64 limit = buf->nr_pages * PAGE_SIZE;
409 
410 	/*
411 	 * The trace format isn't parseable in reverse, so clamp
412 	 * the limit to half of the buffer size in snapshot mode
413 	 * so that the worst case is half a buffer of records, as
414 	 * opposed to a single record.
415 	 */
416 	if (head < limit >> 1)
417 		limit >>= 1;
418 
419 	/*
420 	 * If we're within max_record_sz of the limit, we must
421 	 * pad, move the head index and recompute the limit.
422 	 */
423 	if (limit - head < spe_pmu->max_record_sz) {
424 		arm_spe_pmu_pad_buf(handle, limit - head);
425 		handle->head = PERF_IDX2OFF(limit, buf);
426 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
427 	}
428 
429 	return limit;
430 }
431 
432 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
433 {
434 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
435 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
436 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
437 	u64 limit = bufsize;
438 	u64 head, tail, wakeup;
439 
440 	/*
441 	 * The head can be misaligned for two reasons:
442 	 *
443 	 * 1. The hardware left PMBPTR pointing to the first byte after
444 	 *    a record when generating a buffer management event.
445 	 *
446 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
447 	 *    and CIRC_SPACE was used to compute the size, which always
448 	 *    leaves one entry free.
449 	 *
450 	 * Deal with this by padding to the next alignment boundary and
451 	 * moving the head index. If we run out of buffer space, we'll
452 	 * reduce handle->size to zero and end up reporting truncation.
453 	 */
454 	head = PERF_IDX2OFF(handle->head, buf);
455 	if (!IS_ALIGNED(head, spe_pmu->align)) {
456 		unsigned long delta = roundup(head, spe_pmu->align) - head;
457 
458 		delta = min(delta, handle->size);
459 		arm_spe_pmu_pad_buf(handle, delta);
460 		head = PERF_IDX2OFF(handle->head, buf);
461 	}
462 
463 	/* If we've run out of free space, then nothing more to do */
464 	if (!handle->size)
465 		goto no_space;
466 
467 	/* Compute the tail and wakeup indices now that we've aligned head */
468 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
469 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
470 
471 	/*
472 	 * Avoid clobbering unconsumed data. We know we have space, so
473 	 * if we see head == tail we know that the buffer is empty. If
474 	 * head > tail, then there's nothing to clobber prior to
475 	 * wrapping.
476 	 */
477 	if (head < tail)
478 		limit = round_down(tail, PAGE_SIZE);
479 
480 	/*
481 	 * Wakeup may be arbitrarily far into the future. If it's not in
482 	 * the current generation, either we'll wrap before hitting it,
483 	 * or it's in the past and has been handled already.
484 	 *
485 	 * If there's a wakeup before we wrap, arrange to be woken up by
486 	 * the page boundary following it. Keep the tail boundary if
487 	 * that's lower.
488 	 */
489 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
490 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
491 
492 	if (limit > head)
493 		return limit;
494 
495 	arm_spe_pmu_pad_buf(handle, handle->size);
496 no_space:
497 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
498 	perf_aux_output_end(handle, 0);
499 	return 0;
500 }
501 
502 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
503 {
504 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
505 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
506 	u64 limit = __arm_spe_pmu_next_off(handle);
507 	u64 head = PERF_IDX2OFF(handle->head, buf);
508 
509 	/*
510 	 * If the head has come too close to the end of the buffer,
511 	 * then pad to the end and recompute the limit.
512 	 */
513 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
514 		arm_spe_pmu_pad_buf(handle, limit - head);
515 		limit = __arm_spe_pmu_next_off(handle);
516 	}
517 
518 	return limit;
519 }
520 
521 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
522 					  struct perf_event *event)
523 {
524 	u64 base, limit;
525 	struct arm_spe_pmu_buf *buf;
526 
527 	/* Start a new aux session */
528 	buf = perf_aux_output_begin(handle, event);
529 	if (!buf) {
530 		event->hw.state |= PERF_HES_STOPPED;
531 		/*
532 		 * We still need to clear the limit pointer, since the
533 		 * profiler might only be disabled by virtue of a fault.
534 		 */
535 		limit = 0;
536 		goto out_write_limit;
537 	}
538 
539 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
540 			      : arm_spe_pmu_next_off(handle);
541 	if (limit)
542 		limit |= PMBLIMITR_EL1_E;
543 
544 	limit += (u64)buf->base;
545 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
546 	write_sysreg_s(base, SYS_PMBPTR_EL1);
547 
548 out_write_limit:
549 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
550 }
551 
552 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
553 {
554 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
555 	u64 offset, size;
556 
557 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
558 	size = offset - PERF_IDX2OFF(handle->head, buf);
559 
560 	if (buf->snapshot)
561 		handle->head = offset;
562 
563 	perf_aux_output_end(handle, size);
564 }
565 
566 static void arm_spe_pmu_disable_and_drain_local(void)
567 {
568 	/* Disable profiling at EL0 and EL1 */
569 	write_sysreg_s(0, SYS_PMSCR_EL1);
570 	isb();
571 
572 	/* Drain any buffered data */
573 	psb_csync();
574 	dsb(nsh);
575 
576 	/* Disable the profiling buffer */
577 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
578 	isb();
579 }
580 
581 /* IRQ handling */
582 static enum arm_spe_pmu_buf_fault_action
583 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
584 {
585 	const char *err_str;
586 	u64 pmbsr;
587 	enum arm_spe_pmu_buf_fault_action ret;
588 
589 	/*
590 	 * Ensure new profiling data is visible to the CPU and any external
591 	 * aborts have been resolved.
592 	 */
593 	psb_csync();
594 	dsb(nsh);
595 
596 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
597 	isb();
598 
599 	/* Service required? */
600 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
601 	if (!FIELD_GET(PMBSR_EL1_S, pmbsr))
602 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
603 
604 	/*
605 	 * If we've lost data, disable profiling and also set the PARTIAL
606 	 * flag to indicate that the last record is corrupted.
607 	 */
608 	if (FIELD_GET(PMBSR_EL1_DL, pmbsr))
609 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
610 					     PERF_AUX_FLAG_PARTIAL);
611 
612 	/* Report collisions to userspace so that it can up the period */
613 	if (FIELD_GET(PMBSR_EL1_COLL, pmbsr))
614 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
615 
616 	/* We only expect buffer management events */
617 	switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) {
618 	case PMBSR_EL1_EC_BUF:
619 		/* Handled below */
620 		break;
621 	case PMBSR_EL1_EC_FAULT_S1:
622 	case PMBSR_EL1_EC_FAULT_S2:
623 		err_str = "Unexpected buffer fault";
624 		goto out_err;
625 	default:
626 		err_str = "Unknown error code";
627 		goto out_err;
628 	}
629 
630 	/* Buffer management event */
631 	switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) {
632 	case PMBSR_EL1_BUF_BSC_FULL:
633 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
634 		goto out_stop;
635 	default:
636 		err_str = "Unknown buffer status code";
637 	}
638 
639 out_err:
640 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
641 			   err_str, smp_processor_id(), pmbsr,
642 			   read_sysreg_s(SYS_PMBPTR_EL1),
643 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
644 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
645 
646 out_stop:
647 	arm_spe_perf_aux_output_end(handle);
648 	return ret;
649 }
650 
651 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
652 {
653 	struct perf_output_handle *handle = dev;
654 	struct perf_event *event = handle->event;
655 	enum arm_spe_pmu_buf_fault_action act;
656 
657 	if (!perf_get_aux(handle))
658 		return IRQ_NONE;
659 
660 	act = arm_spe_pmu_buf_get_fault_act(handle);
661 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
662 		return IRQ_NONE;
663 
664 	/*
665 	 * Ensure perf callbacks have completed, which may disable the
666 	 * profiling buffer in response to a TRUNCATION flag.
667 	 */
668 	irq_work_run();
669 
670 	switch (act) {
671 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
672 		/*
673 		 * If a fatal exception occurred then leaving the profiling
674 		 * buffer enabled is a recipe waiting to happen. Since
675 		 * fatal faults don't always imply truncation, make sure
676 		 * that the profiling buffer is disabled explicitly before
677 		 * clearing the syndrome register.
678 		 */
679 		arm_spe_pmu_disable_and_drain_local();
680 		break;
681 	case SPE_PMU_BUF_FAULT_ACT_OK:
682 		/*
683 		 * We handled the fault (the buffer was full), so resume
684 		 * profiling as long as we didn't detect truncation.
685 		 * PMBPTR might be misaligned, but we'll burn that bridge
686 		 * when we get to it.
687 		 */
688 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
689 			arm_spe_perf_aux_output_begin(handle, event);
690 			isb();
691 		}
692 		break;
693 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
694 		/* We've seen you before, but GCC has the memory of a sieve. */
695 		break;
696 	}
697 
698 	/* The buffer pointers are now sane, so resume profiling. */
699 	write_sysreg_s(0, SYS_PMBSR_EL1);
700 	return IRQ_HANDLED;
701 }
702 
703 static u64 arm_spe_pmsevfr_res0(u16 pmsver)
704 {
705 	switch (pmsver) {
706 	case ID_AA64DFR0_EL1_PMSVer_IMP:
707 		return PMSEVFR_EL1_RES0_IMP;
708 	case ID_AA64DFR0_EL1_PMSVer_V1P1:
709 		return PMSEVFR_EL1_RES0_V1P1;
710 	case ID_AA64DFR0_EL1_PMSVer_V1P2:
711 	/* Return the highest version we support in default */
712 	default:
713 		return PMSEVFR_EL1_RES0_V1P2;
714 	}
715 }
716 
717 /* Perf callbacks */
718 static int arm_spe_pmu_event_init(struct perf_event *event)
719 {
720 	u64 reg;
721 	struct perf_event_attr *attr = &event->attr;
722 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
723 
724 	/* This is, of course, deeply driver-specific */
725 	if (attr->type != event->pmu->type)
726 		return -ENOENT;
727 
728 	if (event->cpu >= 0 &&
729 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
730 		return -ENOENT;
731 
732 	if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
733 		return -EOPNOTSUPP;
734 
735 	if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver))
736 		return -EOPNOTSUPP;
737 
738 	if (attr->exclude_idle)
739 		return -EOPNOTSUPP;
740 
741 	/*
742 	 * Feedback-directed frequency throttling doesn't work when we
743 	 * have a buffer of samples. We'd need to manually count the
744 	 * samples in the buffer when it fills up and adjust the event
745 	 * count to reflect that. Instead, just force the user to specify
746 	 * a sample period.
747 	 */
748 	if (attr->freq)
749 		return -EINVAL;
750 
751 	reg = arm_spe_event_to_pmsfcr(event);
752 	if ((FIELD_GET(PMSFCR_EL1_FE, reg)) &&
753 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
754 		return -EOPNOTSUPP;
755 
756 	if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) &&
757 	    !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT))
758 		return -EOPNOTSUPP;
759 
760 	if ((FIELD_GET(PMSFCR_EL1_FT, reg)) &&
761 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
762 		return -EOPNOTSUPP;
763 
764 	if ((FIELD_GET(PMSFCR_EL1_FL, reg)) &&
765 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
766 		return -EOPNOTSUPP;
767 
768 	set_spe_event_has_cx(event);
769 	reg = arm_spe_event_to_pmscr(event);
770 	if (!perfmon_capable() &&
771 	    (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT)))
772 		return -EACCES;
773 
774 	return 0;
775 }
776 
777 static void arm_spe_pmu_start(struct perf_event *event, int flags)
778 {
779 	u64 reg;
780 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
781 	struct hw_perf_event *hwc = &event->hw;
782 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
783 
784 	hwc->state = 0;
785 	arm_spe_perf_aux_output_begin(handle, event);
786 	if (hwc->state)
787 		return;
788 
789 	reg = arm_spe_event_to_pmsfcr(event);
790 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
791 
792 	reg = arm_spe_event_to_pmsevfr(event);
793 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
794 
795 	if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) {
796 		reg = arm_spe_event_to_pmsnevfr(event);
797 		write_sysreg_s(reg, SYS_PMSNEVFR_EL1);
798 	}
799 
800 	reg = arm_spe_event_to_pmslatfr(event);
801 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
802 
803 	if (flags & PERF_EF_RELOAD) {
804 		reg = arm_spe_event_to_pmsirr(event);
805 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
806 		isb();
807 		reg = local64_read(&hwc->period_left);
808 		write_sysreg_s(reg, SYS_PMSICR_EL1);
809 	}
810 
811 	reg = arm_spe_event_to_pmscr(event);
812 	isb();
813 	write_sysreg_s(reg, SYS_PMSCR_EL1);
814 }
815 
816 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
817 {
818 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
819 	struct hw_perf_event *hwc = &event->hw;
820 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
821 
822 	/* If we're already stopped, then nothing to do */
823 	if (hwc->state & PERF_HES_STOPPED)
824 		return;
825 
826 	/* Stop all trace generation */
827 	arm_spe_pmu_disable_and_drain_local();
828 
829 	if (flags & PERF_EF_UPDATE) {
830 		/*
831 		 * If there's a fault pending then ensure we contain it
832 		 * to this buffer, since we might be on the context-switch
833 		 * path.
834 		 */
835 		if (perf_get_aux(handle)) {
836 			enum arm_spe_pmu_buf_fault_action act;
837 
838 			act = arm_spe_pmu_buf_get_fault_act(handle);
839 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
840 				arm_spe_perf_aux_output_end(handle);
841 			else
842 				write_sysreg_s(0, SYS_PMBSR_EL1);
843 		}
844 
845 		/*
846 		 * This may also contain ECOUNT, but nobody else should
847 		 * be looking at period_left, since we forbid frequency
848 		 * based sampling.
849 		 */
850 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
851 		hwc->state |= PERF_HES_UPTODATE;
852 	}
853 
854 	hwc->state |= PERF_HES_STOPPED;
855 }
856 
857 static int arm_spe_pmu_add(struct perf_event *event, int flags)
858 {
859 	int ret = 0;
860 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
861 	struct hw_perf_event *hwc = &event->hw;
862 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
863 
864 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
865 		return -ENOENT;
866 
867 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
868 
869 	if (flags & PERF_EF_START) {
870 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
871 		if (hwc->state & PERF_HES_STOPPED)
872 			ret = -EINVAL;
873 	}
874 
875 	return ret;
876 }
877 
878 static void arm_spe_pmu_del(struct perf_event *event, int flags)
879 {
880 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
881 }
882 
883 static void arm_spe_pmu_read(struct perf_event *event)
884 {
885 }
886 
887 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
888 				   int nr_pages, bool snapshot)
889 {
890 	int i, cpu = event->cpu;
891 	struct page **pglist;
892 	struct arm_spe_pmu_buf *buf;
893 
894 	/* We need at least two pages for this to work. */
895 	if (nr_pages < 2)
896 		return NULL;
897 
898 	/*
899 	 * We require an even number of pages for snapshot mode, so that
900 	 * we can effectively treat the buffer as consisting of two equal
901 	 * parts and give userspace a fighting chance of getting some
902 	 * useful data out of it.
903 	 */
904 	if (snapshot && (nr_pages & 1))
905 		return NULL;
906 
907 	if (cpu == -1)
908 		cpu = raw_smp_processor_id();
909 
910 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
911 	if (!buf)
912 		return NULL;
913 
914 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
915 	if (!pglist)
916 		goto out_free_buf;
917 
918 	for (i = 0; i < nr_pages; ++i)
919 		pglist[i] = virt_to_page(pages[i]);
920 
921 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
922 	if (!buf->base)
923 		goto out_free_pglist;
924 
925 	buf->nr_pages	= nr_pages;
926 	buf->snapshot	= snapshot;
927 
928 	kfree(pglist);
929 	return buf;
930 
931 out_free_pglist:
932 	kfree(pglist);
933 out_free_buf:
934 	kfree(buf);
935 	return NULL;
936 }
937 
938 static void arm_spe_pmu_free_aux(void *aux)
939 {
940 	struct arm_spe_pmu_buf *buf = aux;
941 
942 	vunmap(buf->base);
943 	kfree(buf);
944 }
945 
946 /* Initialisation and teardown functions */
947 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
948 {
949 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
950 
951 	int idx;
952 	char *name;
953 	struct device *dev = &spe_pmu->pdev->dev;
954 
955 	spe_pmu->pmu = (struct pmu) {
956 		.module = THIS_MODULE,
957 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
958 		.attr_groups	= arm_spe_pmu_attr_groups,
959 		/*
960 		 * We hitch a ride on the software context here, so that
961 		 * we can support per-task profiling (which is not possible
962 		 * with the invalid context as it doesn't get sched callbacks).
963 		 * This requires that userspace either uses a dummy event for
964 		 * perf_event_open, since the aux buffer is not setup until
965 		 * a subsequent mmap, or creates the profiling event in a
966 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
967 		 * once the buffer has been created.
968 		 */
969 		.task_ctx_nr	= perf_sw_context,
970 		.event_init	= arm_spe_pmu_event_init,
971 		.add		= arm_spe_pmu_add,
972 		.del		= arm_spe_pmu_del,
973 		.start		= arm_spe_pmu_start,
974 		.stop		= arm_spe_pmu_stop,
975 		.read		= arm_spe_pmu_read,
976 		.setup_aux	= arm_spe_pmu_setup_aux,
977 		.free_aux	= arm_spe_pmu_free_aux,
978 	};
979 
980 	idx = atomic_inc_return(&pmu_idx);
981 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
982 	if (!name) {
983 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
984 		return -ENOMEM;
985 	}
986 
987 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
988 }
989 
990 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
991 {
992 	perf_pmu_unregister(&spe_pmu->pmu);
993 }
994 
995 static void __arm_spe_pmu_dev_probe(void *info)
996 {
997 	int fld;
998 	u64 reg;
999 	struct arm_spe_pmu *spe_pmu = info;
1000 	struct device *dev = &spe_pmu->pdev->dev;
1001 
1002 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
1003 						   ID_AA64DFR0_EL1_PMSVer_SHIFT);
1004 	if (!fld) {
1005 		dev_err(dev,
1006 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
1007 			fld, smp_processor_id());
1008 		return;
1009 	}
1010 	spe_pmu->pmsver = (u16)fld;
1011 
1012 	/* Read PMBIDR first to determine whether or not we have access */
1013 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
1014 	if (FIELD_GET(PMBIDR_EL1_P, reg)) {
1015 		dev_err(dev,
1016 			"profiling buffer owned by higher exception level\n");
1017 		return;
1018 	}
1019 
1020 	/* Minimum alignment. If it's out-of-range, then fail the probe */
1021 	fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg);
1022 	spe_pmu->align = 1 << fld;
1023 	if (spe_pmu->align > SZ_2K) {
1024 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
1025 			fld, smp_processor_id());
1026 		return;
1027 	}
1028 
1029 	/* It's now safe to read PMSIDR and figure out what we've got */
1030 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
1031 	if (FIELD_GET(PMSIDR_EL1_FE, reg))
1032 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
1033 
1034 	if (FIELD_GET(PMSIDR_EL1_FnE, reg))
1035 		spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT;
1036 
1037 	if (FIELD_GET(PMSIDR_EL1_FT, reg))
1038 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
1039 
1040 	if (FIELD_GET(PMSIDR_EL1_FL, reg))
1041 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
1042 
1043 	if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg))
1044 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
1045 
1046 	if (FIELD_GET(PMSIDR_EL1_LDS, reg))
1047 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
1048 
1049 	if (FIELD_GET(PMSIDR_EL1_ERND, reg))
1050 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
1051 
1052 	/* This field has a spaced out encoding, so just use a look-up */
1053 	fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg);
1054 	switch (fld) {
1055 	case PMSIDR_EL1_INTERVAL_256:
1056 		spe_pmu->min_period = 256;
1057 		break;
1058 	case PMSIDR_EL1_INTERVAL_512:
1059 		spe_pmu->min_period = 512;
1060 		break;
1061 	case PMSIDR_EL1_INTERVAL_768:
1062 		spe_pmu->min_period = 768;
1063 		break;
1064 	case PMSIDR_EL1_INTERVAL_1024:
1065 		spe_pmu->min_period = 1024;
1066 		break;
1067 	case PMSIDR_EL1_INTERVAL_1536:
1068 		spe_pmu->min_period = 1536;
1069 		break;
1070 	case PMSIDR_EL1_INTERVAL_2048:
1071 		spe_pmu->min_period = 2048;
1072 		break;
1073 	case PMSIDR_EL1_INTERVAL_3072:
1074 		spe_pmu->min_period = 3072;
1075 		break;
1076 	default:
1077 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1078 			 fld);
1079 		fallthrough;
1080 	case PMSIDR_EL1_INTERVAL_4096:
1081 		spe_pmu->min_period = 4096;
1082 	}
1083 
1084 	/* Maximum record size. If it's out-of-range, then fail the probe */
1085 	fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg);
1086 	spe_pmu->max_record_sz = 1 << fld;
1087 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1088 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1089 			fld, smp_processor_id());
1090 		return;
1091 	}
1092 
1093 	fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg);
1094 	switch (fld) {
1095 	default:
1096 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1097 			 fld);
1098 		fallthrough;
1099 	case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT:
1100 		spe_pmu->counter_sz = 12;
1101 		break;
1102 	case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT:
1103 		spe_pmu->counter_sz = 16;
1104 	}
1105 
1106 	dev_info(dev,
1107 		 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1108 		 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus),
1109 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1110 
1111 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1112 }
1113 
1114 static void __arm_spe_pmu_reset_local(void)
1115 {
1116 	/*
1117 	 * This is probably overkill, as we have no idea where we're
1118 	 * draining any buffered data to...
1119 	 */
1120 	arm_spe_pmu_disable_and_drain_local();
1121 
1122 	/* Reset the buffer base pointer */
1123 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1124 	isb();
1125 
1126 	/* Clear any pending management interrupts */
1127 	write_sysreg_s(0, SYS_PMBSR_EL1);
1128 	isb();
1129 }
1130 
1131 static void __arm_spe_pmu_setup_one(void *info)
1132 {
1133 	struct arm_spe_pmu *spe_pmu = info;
1134 
1135 	__arm_spe_pmu_reset_local();
1136 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1137 }
1138 
1139 static void __arm_spe_pmu_stop_one(void *info)
1140 {
1141 	struct arm_spe_pmu *spe_pmu = info;
1142 
1143 	disable_percpu_irq(spe_pmu->irq);
1144 	__arm_spe_pmu_reset_local();
1145 }
1146 
1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1148 {
1149 	struct arm_spe_pmu *spe_pmu;
1150 
1151 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1152 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1153 		return 0;
1154 
1155 	__arm_spe_pmu_setup_one(spe_pmu);
1156 	return 0;
1157 }
1158 
1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1160 {
1161 	struct arm_spe_pmu *spe_pmu;
1162 
1163 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1164 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1165 		return 0;
1166 
1167 	__arm_spe_pmu_stop_one(spe_pmu);
1168 	return 0;
1169 }
1170 
1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1172 {
1173 	int ret;
1174 	cpumask_t *mask = &spe_pmu->supported_cpus;
1175 
1176 	/* Make sure we probe the hardware on a relevant CPU */
1177 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1178 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1179 		return -ENXIO;
1180 
1181 	/* Request our PPIs (note that the IRQ is still disabled) */
1182 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1183 				 spe_pmu->handle);
1184 	if (ret)
1185 		return ret;
1186 
1187 	/*
1188 	 * Register our hotplug notifier now so we don't miss any events.
1189 	 * This will enable the IRQ for any supported CPUs that are already
1190 	 * up.
1191 	 */
1192 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1193 				       &spe_pmu->hotplug_node);
1194 	if (ret)
1195 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1196 
1197 	return ret;
1198 }
1199 
1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1201 {
1202 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1203 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1204 }
1205 
1206 /* Driver and device probing */
1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1208 {
1209 	struct platform_device *pdev = spe_pmu->pdev;
1210 	int irq = platform_get_irq(pdev, 0);
1211 
1212 	if (irq < 0)
1213 		return -ENXIO;
1214 
1215 	if (!irq_is_percpu(irq)) {
1216 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1217 		return -EINVAL;
1218 	}
1219 
1220 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1221 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1222 		return -EINVAL;
1223 	}
1224 
1225 	spe_pmu->irq = irq;
1226 	return 0;
1227 }
1228 
1229 static const struct of_device_id arm_spe_pmu_of_match[] = {
1230 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1231 	{ /* Sentinel */ },
1232 };
1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1234 
1235 static const struct platform_device_id arm_spe_match[] = {
1236 	{ ARMV8_SPE_PDEV_NAME, 0},
1237 	{ }
1238 };
1239 MODULE_DEVICE_TABLE(platform, arm_spe_match);
1240 
1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev)
1242 {
1243 	int ret;
1244 	struct arm_spe_pmu *spe_pmu;
1245 	struct device *dev = &pdev->dev;
1246 
1247 	/*
1248 	 * If kernelspace is unmapped when running at EL0, then the SPE
1249 	 * buffer will fault and prematurely terminate the AUX session.
1250 	 */
1251 	if (arm64_kernel_unmapped_at_el0()) {
1252 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1253 		return -EPERM;
1254 	}
1255 
1256 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1257 	if (!spe_pmu)
1258 		return -ENOMEM;
1259 
1260 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1261 	if (!spe_pmu->handle)
1262 		return -ENOMEM;
1263 
1264 	spe_pmu->pdev = pdev;
1265 	platform_set_drvdata(pdev, spe_pmu);
1266 
1267 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1268 	if (ret)
1269 		goto out_free_handle;
1270 
1271 	ret = arm_spe_pmu_dev_init(spe_pmu);
1272 	if (ret)
1273 		goto out_free_handle;
1274 
1275 	ret = arm_spe_pmu_perf_init(spe_pmu);
1276 	if (ret)
1277 		goto out_teardown_dev;
1278 
1279 	return 0;
1280 
1281 out_teardown_dev:
1282 	arm_spe_pmu_dev_teardown(spe_pmu);
1283 out_free_handle:
1284 	free_percpu(spe_pmu->handle);
1285 	return ret;
1286 }
1287 
1288 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1289 {
1290 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1291 
1292 	arm_spe_pmu_perf_destroy(spe_pmu);
1293 	arm_spe_pmu_dev_teardown(spe_pmu);
1294 	free_percpu(spe_pmu->handle);
1295 	return 0;
1296 }
1297 
1298 static struct platform_driver arm_spe_pmu_driver = {
1299 	.id_table = arm_spe_match,
1300 	.driver	= {
1301 		.name		= DRVNAME,
1302 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1303 		.suppress_bind_attrs = true,
1304 	},
1305 	.probe	= arm_spe_pmu_device_probe,
1306 	.remove	= arm_spe_pmu_device_remove,
1307 };
1308 
1309 static int __init arm_spe_pmu_init(void)
1310 {
1311 	int ret;
1312 
1313 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1314 				      arm_spe_pmu_cpu_startup,
1315 				      arm_spe_pmu_cpu_teardown);
1316 	if (ret < 0)
1317 		return ret;
1318 	arm_spe_pmu_online = ret;
1319 
1320 	ret = platform_driver_register(&arm_spe_pmu_driver);
1321 	if (ret)
1322 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1323 
1324 	return ret;
1325 }
1326 
1327 static void __exit arm_spe_pmu_exit(void)
1328 {
1329 	platform_driver_unregister(&arm_spe_pmu_driver);
1330 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1331 }
1332 
1333 module_init(arm_spe_pmu_init);
1334 module_exit(arm_spe_pmu_exit);
1335 
1336 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1337 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1338 MODULE_LICENSE("GPL v2");
1339