1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitops.h> 16 #include <linux/bug.h> 17 #include <linux/capability.h> 18 #include <linux/cpuhotplug.h> 19 #include <linux/cpumask.h> 20 #include <linux/device.h> 21 #include <linux/errno.h> 22 #include <linux/interrupt.h> 23 #include <linux/irq.h> 24 #include <linux/kernel.h> 25 #include <linux/list.h> 26 #include <linux/module.h> 27 #include <linux/of_address.h> 28 #include <linux/of_device.h> 29 #include <linux/perf_event.h> 30 #include <linux/platform_device.h> 31 #include <linux/printk.h> 32 #include <linux/slab.h> 33 #include <linux/smp.h> 34 #include <linux/vmalloc.h> 35 36 #include <asm/barrier.h> 37 #include <asm/cpufeature.h> 38 #include <asm/mmu.h> 39 #include <asm/sysreg.h> 40 41 #define ARM_SPE_BUF_PAD_BYTE 0 42 43 struct arm_spe_pmu_buf { 44 int nr_pages; 45 bool snapshot; 46 void *base; 47 }; 48 49 struct arm_spe_pmu { 50 struct pmu pmu; 51 struct platform_device *pdev; 52 cpumask_t supported_cpus; 53 struct hlist_node hotplug_node; 54 55 int irq; /* PPI */ 56 57 u16 min_period; 58 u16 counter_sz; 59 60 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 61 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 62 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 63 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 64 #define SPE_PMU_FEAT_LDS (1UL << 4) 65 #define SPE_PMU_FEAT_ERND (1UL << 5) 66 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 67 u64 features; 68 69 u16 max_record_sz; 70 u16 align; 71 struct perf_output_handle __percpu *handle; 72 }; 73 74 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 75 76 /* Convert a free-running index from perf into an SPE buffer offset */ 77 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 78 79 /* Keep track of our dynamic hotplug state */ 80 static enum cpuhp_state arm_spe_pmu_online; 81 82 enum arm_spe_pmu_buf_fault_action { 83 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 84 SPE_PMU_BUF_FAULT_ACT_FATAL, 85 SPE_PMU_BUF_FAULT_ACT_OK, 86 }; 87 88 /* This sysfs gunk was really good fun to write. */ 89 enum arm_spe_pmu_capabilities { 90 SPE_PMU_CAP_ARCH_INST = 0, 91 SPE_PMU_CAP_ERND, 92 SPE_PMU_CAP_FEAT_MAX, 93 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 94 SPE_PMU_CAP_MIN_IVAL, 95 }; 96 97 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 98 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 99 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 100 }; 101 102 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 103 { 104 if (cap < SPE_PMU_CAP_FEAT_MAX) 105 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 106 107 switch (cap) { 108 case SPE_PMU_CAP_CNT_SZ: 109 return spe_pmu->counter_sz; 110 case SPE_PMU_CAP_MIN_IVAL: 111 return spe_pmu->min_period; 112 default: 113 WARN(1, "unknown cap %d\n", cap); 114 } 115 116 return 0; 117 } 118 119 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 120 struct device_attribute *attr, 121 char *buf) 122 { 123 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 124 struct dev_ext_attribute *ea = 125 container_of(attr, struct dev_ext_attribute, attr); 126 int cap = (long)ea->var; 127 128 return snprintf(buf, PAGE_SIZE, "%u\n", 129 arm_spe_pmu_cap_get(spe_pmu, cap)); 130 } 131 132 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 133 &((struct dev_ext_attribute[]) { \ 134 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 135 })[0].attr.attr 136 137 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 138 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 139 140 static struct attribute *arm_spe_pmu_cap_attr[] = { 141 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 142 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 143 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 144 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 145 NULL, 146 }; 147 148 static struct attribute_group arm_spe_pmu_cap_group = { 149 .name = "caps", 150 .attrs = arm_spe_pmu_cap_attr, 151 }; 152 153 /* User ABI */ 154 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 155 #define ATTR_CFG_FLD_ts_enable_LO 0 156 #define ATTR_CFG_FLD_ts_enable_HI 0 157 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 158 #define ATTR_CFG_FLD_pa_enable_LO 1 159 #define ATTR_CFG_FLD_pa_enable_HI 1 160 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 161 #define ATTR_CFG_FLD_pct_enable_LO 2 162 #define ATTR_CFG_FLD_pct_enable_HI 2 163 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 164 #define ATTR_CFG_FLD_jitter_LO 16 165 #define ATTR_CFG_FLD_jitter_HI 16 166 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 167 #define ATTR_CFG_FLD_branch_filter_LO 32 168 #define ATTR_CFG_FLD_branch_filter_HI 32 169 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 170 #define ATTR_CFG_FLD_load_filter_LO 33 171 #define ATTR_CFG_FLD_load_filter_HI 33 172 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 173 #define ATTR_CFG_FLD_store_filter_LO 34 174 #define ATTR_CFG_FLD_store_filter_HI 34 175 176 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 177 #define ATTR_CFG_FLD_event_filter_LO 0 178 #define ATTR_CFG_FLD_event_filter_HI 63 179 180 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 181 #define ATTR_CFG_FLD_min_latency_LO 0 182 #define ATTR_CFG_FLD_min_latency_HI 11 183 184 /* Why does everything I do descend into this? */ 185 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 186 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 187 188 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 189 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 190 191 #define GEN_PMU_FORMAT_ATTR(name) \ 192 PMU_FORMAT_ATTR(name, \ 193 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 194 ATTR_CFG_FLD_##name##_LO, \ 195 ATTR_CFG_FLD_##name##_HI)) 196 197 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 198 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 199 200 #define ATTR_CFG_GET_FLD(attr, name) \ 201 _ATTR_CFG_GET_FLD(attr, \ 202 ATTR_CFG_FLD_##name##_CFG, \ 203 ATTR_CFG_FLD_##name##_LO, \ 204 ATTR_CFG_FLD_##name##_HI) 205 206 GEN_PMU_FORMAT_ATTR(ts_enable); 207 GEN_PMU_FORMAT_ATTR(pa_enable); 208 GEN_PMU_FORMAT_ATTR(pct_enable); 209 GEN_PMU_FORMAT_ATTR(jitter); 210 GEN_PMU_FORMAT_ATTR(branch_filter); 211 GEN_PMU_FORMAT_ATTR(load_filter); 212 GEN_PMU_FORMAT_ATTR(store_filter); 213 GEN_PMU_FORMAT_ATTR(event_filter); 214 GEN_PMU_FORMAT_ATTR(min_latency); 215 216 static struct attribute *arm_spe_pmu_formats_attr[] = { 217 &format_attr_ts_enable.attr, 218 &format_attr_pa_enable.attr, 219 &format_attr_pct_enable.attr, 220 &format_attr_jitter.attr, 221 &format_attr_branch_filter.attr, 222 &format_attr_load_filter.attr, 223 &format_attr_store_filter.attr, 224 &format_attr_event_filter.attr, 225 &format_attr_min_latency.attr, 226 NULL, 227 }; 228 229 static struct attribute_group arm_spe_pmu_format_group = { 230 .name = "format", 231 .attrs = arm_spe_pmu_formats_attr, 232 }; 233 234 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, 235 struct device_attribute *attr, 236 char *buf) 237 { 238 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 239 240 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 241 } 242 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); 243 244 static struct attribute *arm_spe_pmu_attrs[] = { 245 &dev_attr_cpumask.attr, 246 NULL, 247 }; 248 249 static struct attribute_group arm_spe_pmu_group = { 250 .attrs = arm_spe_pmu_attrs, 251 }; 252 253 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 254 &arm_spe_pmu_group, 255 &arm_spe_pmu_cap_group, 256 &arm_spe_pmu_format_group, 257 NULL, 258 }; 259 260 /* Convert between user ABI and register values */ 261 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 262 { 263 struct perf_event_attr *attr = &event->attr; 264 u64 reg = 0; 265 266 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; 267 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; 268 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; 269 270 if (!attr->exclude_user) 271 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); 272 273 if (!attr->exclude_kernel) 274 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); 275 276 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) 277 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); 278 279 return reg; 280 } 281 282 static void arm_spe_event_sanitise_period(struct perf_event *event) 283 { 284 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 285 u64 period = event->hw.sample_period; 286 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK 287 << SYS_PMSIRR_EL1_INTERVAL_SHIFT; 288 289 if (period < spe_pmu->min_period) 290 period = spe_pmu->min_period; 291 else if (period > max_period) 292 period = max_period; 293 else 294 period &= max_period; 295 296 event->hw.sample_period = period; 297 } 298 299 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 300 { 301 struct perf_event_attr *attr = &event->attr; 302 u64 reg = 0; 303 304 arm_spe_event_sanitise_period(event); 305 306 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; 307 reg |= event->hw.sample_period; 308 309 return reg; 310 } 311 312 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 313 { 314 struct perf_event_attr *attr = &event->attr; 315 u64 reg = 0; 316 317 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; 318 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; 319 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; 320 321 if (reg) 322 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); 323 324 if (ATTR_CFG_GET_FLD(attr, event_filter)) 325 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); 326 327 if (ATTR_CFG_GET_FLD(attr, min_latency)) 328 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); 329 330 return reg; 331 } 332 333 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 334 { 335 struct perf_event_attr *attr = &event->attr; 336 return ATTR_CFG_GET_FLD(attr, event_filter); 337 } 338 339 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 340 { 341 struct perf_event_attr *attr = &event->attr; 342 return ATTR_CFG_GET_FLD(attr, min_latency) 343 << SYS_PMSLATFR_EL1_MINLAT_SHIFT; 344 } 345 346 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 347 { 348 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 349 u64 head = PERF_IDX2OFF(handle->head, buf); 350 351 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 352 if (!buf->snapshot) 353 perf_aux_output_skip(handle, len); 354 } 355 356 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 357 { 358 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 359 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 360 u64 head = PERF_IDX2OFF(handle->head, buf); 361 u64 limit = buf->nr_pages * PAGE_SIZE; 362 363 /* 364 * The trace format isn't parseable in reverse, so clamp 365 * the limit to half of the buffer size in snapshot mode 366 * so that the worst case is half a buffer of records, as 367 * opposed to a single record. 368 */ 369 if (head < limit >> 1) 370 limit >>= 1; 371 372 /* 373 * If we're within max_record_sz of the limit, we must 374 * pad, move the head index and recompute the limit. 375 */ 376 if (limit - head < spe_pmu->max_record_sz) { 377 arm_spe_pmu_pad_buf(handle, limit - head); 378 handle->head = PERF_IDX2OFF(limit, buf); 379 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 380 } 381 382 return limit; 383 } 384 385 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 386 { 387 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 388 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 389 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 390 u64 limit = bufsize; 391 u64 head, tail, wakeup; 392 393 /* 394 * The head can be misaligned for two reasons: 395 * 396 * 1. The hardware left PMBPTR pointing to the first byte after 397 * a record when generating a buffer management event. 398 * 399 * 2. We used perf_aux_output_skip to consume handle->size bytes 400 * and CIRC_SPACE was used to compute the size, which always 401 * leaves one entry free. 402 * 403 * Deal with this by padding to the next alignment boundary and 404 * moving the head index. If we run out of buffer space, we'll 405 * reduce handle->size to zero and end up reporting truncation. 406 */ 407 head = PERF_IDX2OFF(handle->head, buf); 408 if (!IS_ALIGNED(head, spe_pmu->align)) { 409 unsigned long delta = roundup(head, spe_pmu->align) - head; 410 411 delta = min(delta, handle->size); 412 arm_spe_pmu_pad_buf(handle, delta); 413 head = PERF_IDX2OFF(handle->head, buf); 414 } 415 416 /* If we've run out of free space, then nothing more to do */ 417 if (!handle->size) 418 goto no_space; 419 420 /* Compute the tail and wakeup indices now that we've aligned head */ 421 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 422 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 423 424 /* 425 * Avoid clobbering unconsumed data. We know we have space, so 426 * if we see head == tail we know that the buffer is empty. If 427 * head > tail, then there's nothing to clobber prior to 428 * wrapping. 429 */ 430 if (head < tail) 431 limit = round_down(tail, PAGE_SIZE); 432 433 /* 434 * Wakeup may be arbitrarily far into the future. If it's not in 435 * the current generation, either we'll wrap before hitting it, 436 * or it's in the past and has been handled already. 437 * 438 * If there's a wakeup before we wrap, arrange to be woken up by 439 * the page boundary following it. Keep the tail boundary if 440 * that's lower. 441 */ 442 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 443 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 444 445 if (limit > head) 446 return limit; 447 448 arm_spe_pmu_pad_buf(handle, handle->size); 449 no_space: 450 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 451 perf_aux_output_end(handle, 0); 452 return 0; 453 } 454 455 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 456 { 457 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 458 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 459 u64 limit = __arm_spe_pmu_next_off(handle); 460 u64 head = PERF_IDX2OFF(handle->head, buf); 461 462 /* 463 * If the head has come too close to the end of the buffer, 464 * then pad to the end and recompute the limit. 465 */ 466 if (limit && (limit - head < spe_pmu->max_record_sz)) { 467 arm_spe_pmu_pad_buf(handle, limit - head); 468 limit = __arm_spe_pmu_next_off(handle); 469 } 470 471 return limit; 472 } 473 474 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 475 struct perf_event *event) 476 { 477 u64 base, limit; 478 struct arm_spe_pmu_buf *buf; 479 480 /* Start a new aux session */ 481 buf = perf_aux_output_begin(handle, event); 482 if (!buf) { 483 event->hw.state |= PERF_HES_STOPPED; 484 /* 485 * We still need to clear the limit pointer, since the 486 * profiler might only be disabled by virtue of a fault. 487 */ 488 limit = 0; 489 goto out_write_limit; 490 } 491 492 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 493 : arm_spe_pmu_next_off(handle); 494 if (limit) 495 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); 496 497 limit += (u64)buf->base; 498 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 499 write_sysreg_s(base, SYS_PMBPTR_EL1); 500 501 out_write_limit: 502 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 503 } 504 505 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 506 { 507 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 508 u64 offset, size; 509 510 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 511 size = offset - PERF_IDX2OFF(handle->head, buf); 512 513 if (buf->snapshot) 514 handle->head = offset; 515 516 perf_aux_output_end(handle, size); 517 } 518 519 static void arm_spe_pmu_disable_and_drain_local(void) 520 { 521 /* Disable profiling at EL0 and EL1 */ 522 write_sysreg_s(0, SYS_PMSCR_EL1); 523 isb(); 524 525 /* Drain any buffered data */ 526 psb_csync(); 527 dsb(nsh); 528 529 /* Disable the profiling buffer */ 530 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 531 isb(); 532 } 533 534 /* IRQ handling */ 535 static enum arm_spe_pmu_buf_fault_action 536 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 537 { 538 const char *err_str; 539 u64 pmbsr; 540 enum arm_spe_pmu_buf_fault_action ret; 541 542 /* 543 * Ensure new profiling data is visible to the CPU and any external 544 * aborts have been resolved. 545 */ 546 psb_csync(); 547 dsb(nsh); 548 549 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 550 isb(); 551 552 /* Service required? */ 553 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 554 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) 555 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 556 557 /* 558 * If we've lost data, disable profiling and also set the PARTIAL 559 * flag to indicate that the last record is corrupted. 560 */ 561 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) 562 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 563 PERF_AUX_FLAG_PARTIAL); 564 565 /* Report collisions to userspace so that it can up the period */ 566 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) 567 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 568 569 /* We only expect buffer management events */ 570 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { 571 case SYS_PMBSR_EL1_EC_BUF: 572 /* Handled below */ 573 break; 574 case SYS_PMBSR_EL1_EC_FAULT_S1: 575 case SYS_PMBSR_EL1_EC_FAULT_S2: 576 err_str = "Unexpected buffer fault"; 577 goto out_err; 578 default: 579 err_str = "Unknown error code"; 580 goto out_err; 581 } 582 583 /* Buffer management event */ 584 switch (pmbsr & 585 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { 586 case SYS_PMBSR_EL1_BUF_BSC_FULL: 587 ret = SPE_PMU_BUF_FAULT_ACT_OK; 588 goto out_stop; 589 default: 590 err_str = "Unknown buffer status code"; 591 } 592 593 out_err: 594 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 595 err_str, smp_processor_id(), pmbsr, 596 read_sysreg_s(SYS_PMBPTR_EL1), 597 read_sysreg_s(SYS_PMBLIMITR_EL1)); 598 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 599 600 out_stop: 601 arm_spe_perf_aux_output_end(handle); 602 return ret; 603 } 604 605 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 606 { 607 struct perf_output_handle *handle = dev; 608 struct perf_event *event = handle->event; 609 enum arm_spe_pmu_buf_fault_action act; 610 611 if (!perf_get_aux(handle)) 612 return IRQ_NONE; 613 614 act = arm_spe_pmu_buf_get_fault_act(handle); 615 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 616 return IRQ_NONE; 617 618 /* 619 * Ensure perf callbacks have completed, which may disable the 620 * profiling buffer in response to a TRUNCATION flag. 621 */ 622 irq_work_run(); 623 624 switch (act) { 625 case SPE_PMU_BUF_FAULT_ACT_FATAL: 626 /* 627 * If a fatal exception occurred then leaving the profiling 628 * buffer enabled is a recipe waiting to happen. Since 629 * fatal faults don't always imply truncation, make sure 630 * that the profiling buffer is disabled explicitly before 631 * clearing the syndrome register. 632 */ 633 arm_spe_pmu_disable_and_drain_local(); 634 break; 635 case SPE_PMU_BUF_FAULT_ACT_OK: 636 /* 637 * We handled the fault (the buffer was full), so resume 638 * profiling as long as we didn't detect truncation. 639 * PMBPTR might be misaligned, but we'll burn that bridge 640 * when we get to it. 641 */ 642 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 643 arm_spe_perf_aux_output_begin(handle, event); 644 isb(); 645 } 646 break; 647 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 648 /* We've seen you before, but GCC has the memory of a sieve. */ 649 break; 650 } 651 652 /* The buffer pointers are now sane, so resume profiling. */ 653 write_sysreg_s(0, SYS_PMBSR_EL1); 654 return IRQ_HANDLED; 655 } 656 657 /* Perf callbacks */ 658 static int arm_spe_pmu_event_init(struct perf_event *event) 659 { 660 u64 reg; 661 struct perf_event_attr *attr = &event->attr; 662 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 663 664 /* This is, of course, deeply driver-specific */ 665 if (attr->type != event->pmu->type) 666 return -ENOENT; 667 668 if (event->cpu >= 0 && 669 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 670 return -ENOENT; 671 672 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) 673 return -EOPNOTSUPP; 674 675 if (attr->exclude_idle) 676 return -EOPNOTSUPP; 677 678 /* 679 * Feedback-directed frequency throttling doesn't work when we 680 * have a buffer of samples. We'd need to manually count the 681 * samples in the buffer when it fills up and adjust the event 682 * count to reflect that. Instead, just force the user to specify 683 * a sample period. 684 */ 685 if (attr->freq) 686 return -EINVAL; 687 688 reg = arm_spe_event_to_pmsfcr(event); 689 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && 690 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 691 return -EOPNOTSUPP; 692 693 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && 694 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 695 return -EOPNOTSUPP; 696 697 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && 698 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 699 return -EOPNOTSUPP; 700 701 reg = arm_spe_event_to_pmscr(event); 702 if (!capable(CAP_SYS_ADMIN) && 703 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | 704 BIT(SYS_PMSCR_EL1_CX_SHIFT) | 705 BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) 706 return -EACCES; 707 708 return 0; 709 } 710 711 static void arm_spe_pmu_start(struct perf_event *event, int flags) 712 { 713 u64 reg; 714 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 715 struct hw_perf_event *hwc = &event->hw; 716 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 717 718 hwc->state = 0; 719 arm_spe_perf_aux_output_begin(handle, event); 720 if (hwc->state) 721 return; 722 723 reg = arm_spe_event_to_pmsfcr(event); 724 write_sysreg_s(reg, SYS_PMSFCR_EL1); 725 726 reg = arm_spe_event_to_pmsevfr(event); 727 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 728 729 reg = arm_spe_event_to_pmslatfr(event); 730 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 731 732 if (flags & PERF_EF_RELOAD) { 733 reg = arm_spe_event_to_pmsirr(event); 734 write_sysreg_s(reg, SYS_PMSIRR_EL1); 735 isb(); 736 reg = local64_read(&hwc->period_left); 737 write_sysreg_s(reg, SYS_PMSICR_EL1); 738 } 739 740 reg = arm_spe_event_to_pmscr(event); 741 isb(); 742 write_sysreg_s(reg, SYS_PMSCR_EL1); 743 } 744 745 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 746 { 747 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 748 struct hw_perf_event *hwc = &event->hw; 749 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 750 751 /* If we're already stopped, then nothing to do */ 752 if (hwc->state & PERF_HES_STOPPED) 753 return; 754 755 /* Stop all trace generation */ 756 arm_spe_pmu_disable_and_drain_local(); 757 758 if (flags & PERF_EF_UPDATE) { 759 /* 760 * If there's a fault pending then ensure we contain it 761 * to this buffer, since we might be on the context-switch 762 * path. 763 */ 764 if (perf_get_aux(handle)) { 765 enum arm_spe_pmu_buf_fault_action act; 766 767 act = arm_spe_pmu_buf_get_fault_act(handle); 768 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 769 arm_spe_perf_aux_output_end(handle); 770 else 771 write_sysreg_s(0, SYS_PMBSR_EL1); 772 } 773 774 /* 775 * This may also contain ECOUNT, but nobody else should 776 * be looking at period_left, since we forbid frequency 777 * based sampling. 778 */ 779 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 780 hwc->state |= PERF_HES_UPTODATE; 781 } 782 783 hwc->state |= PERF_HES_STOPPED; 784 } 785 786 static int arm_spe_pmu_add(struct perf_event *event, int flags) 787 { 788 int ret = 0; 789 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 790 struct hw_perf_event *hwc = &event->hw; 791 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 792 793 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 794 return -ENOENT; 795 796 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 797 798 if (flags & PERF_EF_START) { 799 arm_spe_pmu_start(event, PERF_EF_RELOAD); 800 if (hwc->state & PERF_HES_STOPPED) 801 ret = -EINVAL; 802 } 803 804 return ret; 805 } 806 807 static void arm_spe_pmu_del(struct perf_event *event, int flags) 808 { 809 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 810 } 811 812 static void arm_spe_pmu_read(struct perf_event *event) 813 { 814 } 815 816 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 817 int nr_pages, bool snapshot) 818 { 819 int i, cpu = event->cpu; 820 struct page **pglist; 821 struct arm_spe_pmu_buf *buf; 822 823 /* We need at least two pages for this to work. */ 824 if (nr_pages < 2) 825 return NULL; 826 827 /* 828 * We require an even number of pages for snapshot mode, so that 829 * we can effectively treat the buffer as consisting of two equal 830 * parts and give userspace a fighting chance of getting some 831 * useful data out of it. 832 */ 833 if (!nr_pages || (snapshot && (nr_pages & 1))) 834 return NULL; 835 836 if (cpu == -1) 837 cpu = raw_smp_processor_id(); 838 839 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 840 if (!buf) 841 return NULL; 842 843 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 844 if (!pglist) 845 goto out_free_buf; 846 847 for (i = 0; i < nr_pages; ++i) 848 pglist[i] = virt_to_page(pages[i]); 849 850 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 851 if (!buf->base) 852 goto out_free_pglist; 853 854 buf->nr_pages = nr_pages; 855 buf->snapshot = snapshot; 856 857 kfree(pglist); 858 return buf; 859 860 out_free_pglist: 861 kfree(pglist); 862 out_free_buf: 863 kfree(buf); 864 return NULL; 865 } 866 867 static void arm_spe_pmu_free_aux(void *aux) 868 { 869 struct arm_spe_pmu_buf *buf = aux; 870 871 vunmap(buf->base); 872 kfree(buf); 873 } 874 875 /* Initialisation and teardown functions */ 876 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 877 { 878 static atomic_t pmu_idx = ATOMIC_INIT(-1); 879 880 int idx; 881 char *name; 882 struct device *dev = &spe_pmu->pdev->dev; 883 884 spe_pmu->pmu = (struct pmu) { 885 .module = THIS_MODULE, 886 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 887 .attr_groups = arm_spe_pmu_attr_groups, 888 /* 889 * We hitch a ride on the software context here, so that 890 * we can support per-task profiling (which is not possible 891 * with the invalid context as it doesn't get sched callbacks). 892 * This requires that userspace either uses a dummy event for 893 * perf_event_open, since the aux buffer is not setup until 894 * a subsequent mmap, or creates the profiling event in a 895 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 896 * once the buffer has been created. 897 */ 898 .task_ctx_nr = perf_sw_context, 899 .event_init = arm_spe_pmu_event_init, 900 .add = arm_spe_pmu_add, 901 .del = arm_spe_pmu_del, 902 .start = arm_spe_pmu_start, 903 .stop = arm_spe_pmu_stop, 904 .read = arm_spe_pmu_read, 905 .setup_aux = arm_spe_pmu_setup_aux, 906 .free_aux = arm_spe_pmu_free_aux, 907 }; 908 909 idx = atomic_inc_return(&pmu_idx); 910 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 911 if (!name) { 912 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 913 return -ENOMEM; 914 } 915 916 return perf_pmu_register(&spe_pmu->pmu, name, -1); 917 } 918 919 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 920 { 921 perf_pmu_unregister(&spe_pmu->pmu); 922 } 923 924 static void __arm_spe_pmu_dev_probe(void *info) 925 { 926 int fld; 927 u64 reg; 928 struct arm_spe_pmu *spe_pmu = info; 929 struct device *dev = &spe_pmu->pdev->dev; 930 931 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 932 ID_AA64DFR0_PMSVER_SHIFT); 933 if (!fld) { 934 dev_err(dev, 935 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 936 fld, smp_processor_id()); 937 return; 938 } 939 940 /* Read PMBIDR first to determine whether or not we have access */ 941 reg = read_sysreg_s(SYS_PMBIDR_EL1); 942 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { 943 dev_err(dev, 944 "profiling buffer owned by higher exception level\n"); 945 return; 946 } 947 948 /* Minimum alignment. If it's out-of-range, then fail the probe */ 949 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; 950 spe_pmu->align = 1 << fld; 951 if (spe_pmu->align > SZ_2K) { 952 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 953 fld, smp_processor_id()); 954 return; 955 } 956 957 /* It's now safe to read PMSIDR and figure out what we've got */ 958 reg = read_sysreg_s(SYS_PMSIDR_EL1); 959 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) 960 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 961 962 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) 963 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 964 965 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) 966 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 967 968 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) 969 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 970 971 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) 972 spe_pmu->features |= SPE_PMU_FEAT_LDS; 973 974 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) 975 spe_pmu->features |= SPE_PMU_FEAT_ERND; 976 977 /* This field has a spaced out encoding, so just use a look-up */ 978 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; 979 switch (fld) { 980 case 0: 981 spe_pmu->min_period = 256; 982 break; 983 case 2: 984 spe_pmu->min_period = 512; 985 break; 986 case 3: 987 spe_pmu->min_period = 768; 988 break; 989 case 4: 990 spe_pmu->min_period = 1024; 991 break; 992 case 5: 993 spe_pmu->min_period = 1536; 994 break; 995 case 6: 996 spe_pmu->min_period = 2048; 997 break; 998 case 7: 999 spe_pmu->min_period = 3072; 1000 break; 1001 default: 1002 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1003 fld); 1004 /* Fallthrough */ 1005 case 8: 1006 spe_pmu->min_period = 4096; 1007 } 1008 1009 /* Maximum record size. If it's out-of-range, then fail the probe */ 1010 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; 1011 spe_pmu->max_record_sz = 1 << fld; 1012 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1013 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1014 fld, smp_processor_id()); 1015 return; 1016 } 1017 1018 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; 1019 switch (fld) { 1020 default: 1021 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1022 fld); 1023 /* Fallthrough */ 1024 case 2: 1025 spe_pmu->counter_sz = 12; 1026 } 1027 1028 dev_info(dev, 1029 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1030 cpumask_pr_args(&spe_pmu->supported_cpus), 1031 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1032 1033 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1034 return; 1035 } 1036 1037 static void __arm_spe_pmu_reset_local(void) 1038 { 1039 /* 1040 * This is probably overkill, as we have no idea where we're 1041 * draining any buffered data to... 1042 */ 1043 arm_spe_pmu_disable_and_drain_local(); 1044 1045 /* Reset the buffer base pointer */ 1046 write_sysreg_s(0, SYS_PMBPTR_EL1); 1047 isb(); 1048 1049 /* Clear any pending management interrupts */ 1050 write_sysreg_s(0, SYS_PMBSR_EL1); 1051 isb(); 1052 } 1053 1054 static void __arm_spe_pmu_setup_one(void *info) 1055 { 1056 struct arm_spe_pmu *spe_pmu = info; 1057 1058 __arm_spe_pmu_reset_local(); 1059 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1060 } 1061 1062 static void __arm_spe_pmu_stop_one(void *info) 1063 { 1064 struct arm_spe_pmu *spe_pmu = info; 1065 1066 disable_percpu_irq(spe_pmu->irq); 1067 __arm_spe_pmu_reset_local(); 1068 } 1069 1070 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1071 { 1072 struct arm_spe_pmu *spe_pmu; 1073 1074 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1075 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1076 return 0; 1077 1078 __arm_spe_pmu_setup_one(spe_pmu); 1079 return 0; 1080 } 1081 1082 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1083 { 1084 struct arm_spe_pmu *spe_pmu; 1085 1086 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1087 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1088 return 0; 1089 1090 __arm_spe_pmu_stop_one(spe_pmu); 1091 return 0; 1092 } 1093 1094 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1095 { 1096 int ret; 1097 cpumask_t *mask = &spe_pmu->supported_cpus; 1098 1099 /* Make sure we probe the hardware on a relevant CPU */ 1100 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1101 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1102 return -ENXIO; 1103 1104 /* Request our PPIs (note that the IRQ is still disabled) */ 1105 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1106 spe_pmu->handle); 1107 if (ret) 1108 return ret; 1109 1110 /* 1111 * Register our hotplug notifier now so we don't miss any events. 1112 * This will enable the IRQ for any supported CPUs that are already 1113 * up. 1114 */ 1115 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1116 &spe_pmu->hotplug_node); 1117 if (ret) 1118 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1119 1120 return ret; 1121 } 1122 1123 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1124 { 1125 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1126 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1127 } 1128 1129 /* Driver and device probing */ 1130 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1131 { 1132 struct platform_device *pdev = spe_pmu->pdev; 1133 int irq = platform_get_irq(pdev, 0); 1134 1135 if (irq < 0) { 1136 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); 1137 return -ENXIO; 1138 } 1139 1140 if (!irq_is_percpu(irq)) { 1141 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1142 return -EINVAL; 1143 } 1144 1145 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1146 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1147 return -EINVAL; 1148 } 1149 1150 spe_pmu->irq = irq; 1151 return 0; 1152 } 1153 1154 static const struct of_device_id arm_spe_pmu_of_match[] = { 1155 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1156 { /* Sentinel */ }, 1157 }; 1158 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1159 1160 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) 1161 { 1162 int ret; 1163 struct arm_spe_pmu *spe_pmu; 1164 struct device *dev = &pdev->dev; 1165 1166 /* 1167 * If kernelspace is unmapped when running at EL0, then the SPE 1168 * buffer will fault and prematurely terminate the AUX session. 1169 */ 1170 if (arm64_kernel_unmapped_at_el0()) { 1171 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1172 return -EPERM; 1173 } 1174 1175 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1176 if (!spe_pmu) { 1177 dev_err(dev, "failed to allocate spe_pmu\n"); 1178 return -ENOMEM; 1179 } 1180 1181 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1182 if (!spe_pmu->handle) 1183 return -ENOMEM; 1184 1185 spe_pmu->pdev = pdev; 1186 platform_set_drvdata(pdev, spe_pmu); 1187 1188 ret = arm_spe_pmu_irq_probe(spe_pmu); 1189 if (ret) 1190 goto out_free_handle; 1191 1192 ret = arm_spe_pmu_dev_init(spe_pmu); 1193 if (ret) 1194 goto out_free_handle; 1195 1196 ret = arm_spe_pmu_perf_init(spe_pmu); 1197 if (ret) 1198 goto out_teardown_dev; 1199 1200 return 0; 1201 1202 out_teardown_dev: 1203 arm_spe_pmu_dev_teardown(spe_pmu); 1204 out_free_handle: 1205 free_percpu(spe_pmu->handle); 1206 return ret; 1207 } 1208 1209 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1210 { 1211 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1212 1213 arm_spe_pmu_perf_destroy(spe_pmu); 1214 arm_spe_pmu_dev_teardown(spe_pmu); 1215 free_percpu(spe_pmu->handle); 1216 return 0; 1217 } 1218 1219 static struct platform_driver arm_spe_pmu_driver = { 1220 .driver = { 1221 .name = DRVNAME, 1222 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1223 }, 1224 .probe = arm_spe_pmu_device_dt_probe, 1225 .remove = arm_spe_pmu_device_remove, 1226 }; 1227 1228 static int __init arm_spe_pmu_init(void) 1229 { 1230 int ret; 1231 1232 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1233 arm_spe_pmu_cpu_startup, 1234 arm_spe_pmu_cpu_teardown); 1235 if (ret < 0) 1236 return ret; 1237 arm_spe_pmu_online = ret; 1238 1239 ret = platform_driver_register(&arm_spe_pmu_driver); 1240 if (ret) 1241 cpuhp_remove_multi_state(arm_spe_pmu_online); 1242 1243 return ret; 1244 } 1245 1246 static void __exit arm_spe_pmu_exit(void) 1247 { 1248 platform_driver_unregister(&arm_spe_pmu_driver); 1249 cpuhp_remove_multi_state(arm_spe_pmu_online); 1250 } 1251 1252 module_init(arm_spe_pmu_init); 1253 module_exit(arm_spe_pmu_exit); 1254 1255 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1256 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1257 MODULE_LICENSE("GPL v2"); 1258