1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitfield.h> 16 #include <linux/bitops.h> 17 #include <linux/bug.h> 18 #include <linux/capability.h> 19 #include <linux/cpuhotplug.h> 20 #include <linux/cpumask.h> 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/interrupt.h> 24 #include <linux/irq.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of_address.h> 29 #include <linux/of_device.h> 30 #include <linux/perf_event.h> 31 #include <linux/perf/arm_pmu.h> 32 #include <linux/platform_device.h> 33 #include <linux/printk.h> 34 #include <linux/slab.h> 35 #include <linux/smp.h> 36 #include <linux/vmalloc.h> 37 38 #include <asm/barrier.h> 39 #include <asm/cpufeature.h> 40 #include <asm/mmu.h> 41 #include <asm/sysreg.h> 42 43 /* 44 * Cache if the event is allowed to trace Context information. 45 * This allows us to perform the check, i.e, perfmon_capable(), 46 * in the context of the event owner, once, during the event_init(). 47 */ 48 #define SPE_PMU_HW_FLAGS_CX 0x00001 49 50 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX); 51 52 static void set_spe_event_has_cx(struct perf_event *event) 53 { 54 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable()) 55 event->hw.flags |= SPE_PMU_HW_FLAGS_CX; 56 } 57 58 static bool get_spe_event_has_cx(struct perf_event *event) 59 { 60 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX); 61 } 62 63 #define ARM_SPE_BUF_PAD_BYTE 0 64 65 struct arm_spe_pmu_buf { 66 int nr_pages; 67 bool snapshot; 68 void *base; 69 }; 70 71 struct arm_spe_pmu { 72 struct pmu pmu; 73 struct platform_device *pdev; 74 cpumask_t supported_cpus; 75 struct hlist_node hotplug_node; 76 77 int irq; /* PPI */ 78 u16 pmsver; 79 u16 min_period; 80 u16 counter_sz; 81 82 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 83 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 84 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 85 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 86 #define SPE_PMU_FEAT_LDS (1UL << 4) 87 #define SPE_PMU_FEAT_ERND (1UL << 5) 88 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6) 89 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 90 u64 features; 91 92 u16 max_record_sz; 93 u16 align; 94 struct perf_output_handle __percpu *handle; 95 }; 96 97 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 98 99 /* Convert a free-running index from perf into an SPE buffer offset */ 100 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 101 102 /* Keep track of our dynamic hotplug state */ 103 static enum cpuhp_state arm_spe_pmu_online; 104 105 enum arm_spe_pmu_buf_fault_action { 106 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 107 SPE_PMU_BUF_FAULT_ACT_FATAL, 108 SPE_PMU_BUF_FAULT_ACT_OK, 109 }; 110 111 /* This sysfs gunk was really good fun to write. */ 112 enum arm_spe_pmu_capabilities { 113 SPE_PMU_CAP_ARCH_INST = 0, 114 SPE_PMU_CAP_ERND, 115 SPE_PMU_CAP_FEAT_MAX, 116 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 117 SPE_PMU_CAP_MIN_IVAL, 118 }; 119 120 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 121 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 122 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 123 }; 124 125 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 126 { 127 if (cap < SPE_PMU_CAP_FEAT_MAX) 128 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 129 130 switch (cap) { 131 case SPE_PMU_CAP_CNT_SZ: 132 return spe_pmu->counter_sz; 133 case SPE_PMU_CAP_MIN_IVAL: 134 return spe_pmu->min_period; 135 default: 136 WARN(1, "unknown cap %d\n", cap); 137 } 138 139 return 0; 140 } 141 142 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 143 struct device_attribute *attr, 144 char *buf) 145 { 146 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 147 struct dev_ext_attribute *ea = 148 container_of(attr, struct dev_ext_attribute, attr); 149 int cap = (long)ea->var; 150 151 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap)); 152 } 153 154 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 155 &((struct dev_ext_attribute[]) { \ 156 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 157 })[0].attr.attr 158 159 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 160 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 161 162 static struct attribute *arm_spe_pmu_cap_attr[] = { 163 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 164 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 165 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 166 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 167 NULL, 168 }; 169 170 static const struct attribute_group arm_spe_pmu_cap_group = { 171 .name = "caps", 172 .attrs = arm_spe_pmu_cap_attr, 173 }; 174 175 /* User ABI */ 176 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 177 #define ATTR_CFG_FLD_ts_enable_LO 0 178 #define ATTR_CFG_FLD_ts_enable_HI 0 179 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 180 #define ATTR_CFG_FLD_pa_enable_LO 1 181 #define ATTR_CFG_FLD_pa_enable_HI 1 182 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 183 #define ATTR_CFG_FLD_pct_enable_LO 2 184 #define ATTR_CFG_FLD_pct_enable_HI 2 185 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 186 #define ATTR_CFG_FLD_jitter_LO 16 187 #define ATTR_CFG_FLD_jitter_HI 16 188 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 189 #define ATTR_CFG_FLD_branch_filter_LO 32 190 #define ATTR_CFG_FLD_branch_filter_HI 32 191 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 192 #define ATTR_CFG_FLD_load_filter_LO 33 193 #define ATTR_CFG_FLD_load_filter_HI 33 194 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 195 #define ATTR_CFG_FLD_store_filter_LO 34 196 #define ATTR_CFG_FLD_store_filter_HI 34 197 198 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 199 #define ATTR_CFG_FLD_event_filter_LO 0 200 #define ATTR_CFG_FLD_event_filter_HI 63 201 202 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 203 #define ATTR_CFG_FLD_min_latency_LO 0 204 #define ATTR_CFG_FLD_min_latency_HI 11 205 206 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */ 207 #define ATTR_CFG_FLD_inv_event_filter_LO 0 208 #define ATTR_CFG_FLD_inv_event_filter_HI 63 209 210 /* Why does everything I do descend into this? */ 211 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 212 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 213 214 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 215 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 216 217 #define GEN_PMU_FORMAT_ATTR(name) \ 218 PMU_FORMAT_ATTR(name, \ 219 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 220 ATTR_CFG_FLD_##name##_LO, \ 221 ATTR_CFG_FLD_##name##_HI)) 222 223 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 224 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 225 226 #define ATTR_CFG_GET_FLD(attr, name) \ 227 _ATTR_CFG_GET_FLD(attr, \ 228 ATTR_CFG_FLD_##name##_CFG, \ 229 ATTR_CFG_FLD_##name##_LO, \ 230 ATTR_CFG_FLD_##name##_HI) 231 232 GEN_PMU_FORMAT_ATTR(ts_enable); 233 GEN_PMU_FORMAT_ATTR(pa_enable); 234 GEN_PMU_FORMAT_ATTR(pct_enable); 235 GEN_PMU_FORMAT_ATTR(jitter); 236 GEN_PMU_FORMAT_ATTR(branch_filter); 237 GEN_PMU_FORMAT_ATTR(load_filter); 238 GEN_PMU_FORMAT_ATTR(store_filter); 239 GEN_PMU_FORMAT_ATTR(event_filter); 240 GEN_PMU_FORMAT_ATTR(inv_event_filter); 241 GEN_PMU_FORMAT_ATTR(min_latency); 242 243 static struct attribute *arm_spe_pmu_formats_attr[] = { 244 &format_attr_ts_enable.attr, 245 &format_attr_pa_enable.attr, 246 &format_attr_pct_enable.attr, 247 &format_attr_jitter.attr, 248 &format_attr_branch_filter.attr, 249 &format_attr_load_filter.attr, 250 &format_attr_store_filter.attr, 251 &format_attr_event_filter.attr, 252 &format_attr_inv_event_filter.attr, 253 &format_attr_min_latency.attr, 254 NULL, 255 }; 256 257 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj, 258 struct attribute *attr, 259 int unused) 260 { 261 struct device *dev = kobj_to_dev(kobj); 262 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 263 264 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 265 return 0; 266 267 return attr->mode; 268 } 269 270 static const struct attribute_group arm_spe_pmu_format_group = { 271 .name = "format", 272 .is_visible = arm_spe_pmu_format_attr_is_visible, 273 .attrs = arm_spe_pmu_formats_attr, 274 }; 275 276 static ssize_t cpumask_show(struct device *dev, 277 struct device_attribute *attr, char *buf) 278 { 279 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 280 281 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 282 } 283 static DEVICE_ATTR_RO(cpumask); 284 285 static struct attribute *arm_spe_pmu_attrs[] = { 286 &dev_attr_cpumask.attr, 287 NULL, 288 }; 289 290 static const struct attribute_group arm_spe_pmu_group = { 291 .attrs = arm_spe_pmu_attrs, 292 }; 293 294 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 295 &arm_spe_pmu_group, 296 &arm_spe_pmu_cap_group, 297 &arm_spe_pmu_format_group, 298 NULL, 299 }; 300 301 /* Convert between user ABI and register values */ 302 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 303 { 304 struct perf_event_attr *attr = &event->attr; 305 u64 reg = 0; 306 307 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable)); 308 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable)); 309 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable)); 310 311 if (!attr->exclude_user) 312 reg |= PMSCR_EL1_E0SPE; 313 314 if (!attr->exclude_kernel) 315 reg |= PMSCR_EL1_E1SPE; 316 317 if (get_spe_event_has_cx(event)) 318 reg |= PMSCR_EL1_CX; 319 320 return reg; 321 } 322 323 static void arm_spe_event_sanitise_period(struct perf_event *event) 324 { 325 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 326 u64 period = event->hw.sample_period; 327 u64 max_period = PMSIRR_EL1_INTERVAL_MASK; 328 329 if (period < spe_pmu->min_period) 330 period = spe_pmu->min_period; 331 else if (period > max_period) 332 period = max_period; 333 else 334 period &= max_period; 335 336 event->hw.sample_period = period; 337 } 338 339 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 340 { 341 struct perf_event_attr *attr = &event->attr; 342 u64 reg = 0; 343 344 arm_spe_event_sanitise_period(event); 345 346 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter)); 347 reg |= event->hw.sample_period; 348 349 return reg; 350 } 351 352 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 353 { 354 struct perf_event_attr *attr = &event->attr; 355 u64 reg = 0; 356 357 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter)); 358 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter)); 359 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter)); 360 361 if (reg) 362 reg |= PMSFCR_EL1_FT; 363 364 if (ATTR_CFG_GET_FLD(attr, event_filter)) 365 reg |= PMSFCR_EL1_FE; 366 367 if (ATTR_CFG_GET_FLD(attr, inv_event_filter)) 368 reg |= PMSFCR_EL1_FnE; 369 370 if (ATTR_CFG_GET_FLD(attr, min_latency)) 371 reg |= PMSFCR_EL1_FL; 372 373 return reg; 374 } 375 376 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 377 { 378 struct perf_event_attr *attr = &event->attr; 379 return ATTR_CFG_GET_FLD(attr, event_filter); 380 } 381 382 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event) 383 { 384 struct perf_event_attr *attr = &event->attr; 385 return ATTR_CFG_GET_FLD(attr, inv_event_filter); 386 } 387 388 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 389 { 390 struct perf_event_attr *attr = &event->attr; 391 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency)); 392 } 393 394 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 395 { 396 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 397 u64 head = PERF_IDX2OFF(handle->head, buf); 398 399 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 400 if (!buf->snapshot) 401 perf_aux_output_skip(handle, len); 402 } 403 404 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 405 { 406 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 407 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 408 u64 head = PERF_IDX2OFF(handle->head, buf); 409 u64 limit = buf->nr_pages * PAGE_SIZE; 410 411 /* 412 * The trace format isn't parseable in reverse, so clamp 413 * the limit to half of the buffer size in snapshot mode 414 * so that the worst case is half a buffer of records, as 415 * opposed to a single record. 416 */ 417 if (head < limit >> 1) 418 limit >>= 1; 419 420 /* 421 * If we're within max_record_sz of the limit, we must 422 * pad, move the head index and recompute the limit. 423 */ 424 if (limit - head < spe_pmu->max_record_sz) { 425 arm_spe_pmu_pad_buf(handle, limit - head); 426 handle->head = PERF_IDX2OFF(limit, buf); 427 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 428 } 429 430 return limit; 431 } 432 433 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 434 { 435 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 436 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 437 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 438 u64 limit = bufsize; 439 u64 head, tail, wakeup; 440 441 /* 442 * The head can be misaligned for two reasons: 443 * 444 * 1. The hardware left PMBPTR pointing to the first byte after 445 * a record when generating a buffer management event. 446 * 447 * 2. We used perf_aux_output_skip to consume handle->size bytes 448 * and CIRC_SPACE was used to compute the size, which always 449 * leaves one entry free. 450 * 451 * Deal with this by padding to the next alignment boundary and 452 * moving the head index. If we run out of buffer space, we'll 453 * reduce handle->size to zero and end up reporting truncation. 454 */ 455 head = PERF_IDX2OFF(handle->head, buf); 456 if (!IS_ALIGNED(head, spe_pmu->align)) { 457 unsigned long delta = roundup(head, spe_pmu->align) - head; 458 459 delta = min(delta, handle->size); 460 arm_spe_pmu_pad_buf(handle, delta); 461 head = PERF_IDX2OFF(handle->head, buf); 462 } 463 464 /* If we've run out of free space, then nothing more to do */ 465 if (!handle->size) 466 goto no_space; 467 468 /* Compute the tail and wakeup indices now that we've aligned head */ 469 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 470 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 471 472 /* 473 * Avoid clobbering unconsumed data. We know we have space, so 474 * if we see head == tail we know that the buffer is empty. If 475 * head > tail, then there's nothing to clobber prior to 476 * wrapping. 477 */ 478 if (head < tail) 479 limit = round_down(tail, PAGE_SIZE); 480 481 /* 482 * Wakeup may be arbitrarily far into the future. If it's not in 483 * the current generation, either we'll wrap before hitting it, 484 * or it's in the past and has been handled already. 485 * 486 * If there's a wakeup before we wrap, arrange to be woken up by 487 * the page boundary following it. Keep the tail boundary if 488 * that's lower. 489 */ 490 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 491 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 492 493 if (limit > head) 494 return limit; 495 496 arm_spe_pmu_pad_buf(handle, handle->size); 497 no_space: 498 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 499 perf_aux_output_end(handle, 0); 500 return 0; 501 } 502 503 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 504 { 505 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 506 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 507 u64 limit = __arm_spe_pmu_next_off(handle); 508 u64 head = PERF_IDX2OFF(handle->head, buf); 509 510 /* 511 * If the head has come too close to the end of the buffer, 512 * then pad to the end and recompute the limit. 513 */ 514 if (limit && (limit - head < spe_pmu->max_record_sz)) { 515 arm_spe_pmu_pad_buf(handle, limit - head); 516 limit = __arm_spe_pmu_next_off(handle); 517 } 518 519 return limit; 520 } 521 522 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 523 struct perf_event *event) 524 { 525 u64 base, limit; 526 struct arm_spe_pmu_buf *buf; 527 528 /* Start a new aux session */ 529 buf = perf_aux_output_begin(handle, event); 530 if (!buf) { 531 event->hw.state |= PERF_HES_STOPPED; 532 /* 533 * We still need to clear the limit pointer, since the 534 * profiler might only be disabled by virtue of a fault. 535 */ 536 limit = 0; 537 goto out_write_limit; 538 } 539 540 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 541 : arm_spe_pmu_next_off(handle); 542 if (limit) 543 limit |= PMBLIMITR_EL1_E; 544 545 limit += (u64)buf->base; 546 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 547 write_sysreg_s(base, SYS_PMBPTR_EL1); 548 549 out_write_limit: 550 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 551 } 552 553 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 554 { 555 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 556 u64 offset, size; 557 558 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 559 size = offset - PERF_IDX2OFF(handle->head, buf); 560 561 if (buf->snapshot) 562 handle->head = offset; 563 564 perf_aux_output_end(handle, size); 565 } 566 567 static void arm_spe_pmu_disable_and_drain_local(void) 568 { 569 /* Disable profiling at EL0 and EL1 */ 570 write_sysreg_s(0, SYS_PMSCR_EL1); 571 isb(); 572 573 /* Drain any buffered data */ 574 psb_csync(); 575 dsb(nsh); 576 577 /* Disable the profiling buffer */ 578 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 579 isb(); 580 } 581 582 /* IRQ handling */ 583 static enum arm_spe_pmu_buf_fault_action 584 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 585 { 586 const char *err_str; 587 u64 pmbsr; 588 enum arm_spe_pmu_buf_fault_action ret; 589 590 /* 591 * Ensure new profiling data is visible to the CPU and any external 592 * aborts have been resolved. 593 */ 594 psb_csync(); 595 dsb(nsh); 596 597 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 598 isb(); 599 600 /* Service required? */ 601 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 602 if (!FIELD_GET(PMBSR_EL1_S, pmbsr)) 603 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 604 605 /* 606 * If we've lost data, disable profiling and also set the PARTIAL 607 * flag to indicate that the last record is corrupted. 608 */ 609 if (FIELD_GET(PMBSR_EL1_DL, pmbsr)) 610 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 611 PERF_AUX_FLAG_PARTIAL); 612 613 /* Report collisions to userspace so that it can up the period */ 614 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr)) 615 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 616 617 /* We only expect buffer management events */ 618 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) { 619 case PMBSR_EL1_EC_BUF: 620 /* Handled below */ 621 break; 622 case PMBSR_EL1_EC_FAULT_S1: 623 case PMBSR_EL1_EC_FAULT_S2: 624 err_str = "Unexpected buffer fault"; 625 goto out_err; 626 default: 627 err_str = "Unknown error code"; 628 goto out_err; 629 } 630 631 /* Buffer management event */ 632 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) { 633 case PMBSR_EL1_BUF_BSC_FULL: 634 ret = SPE_PMU_BUF_FAULT_ACT_OK; 635 goto out_stop; 636 default: 637 err_str = "Unknown buffer status code"; 638 } 639 640 out_err: 641 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 642 err_str, smp_processor_id(), pmbsr, 643 read_sysreg_s(SYS_PMBPTR_EL1), 644 read_sysreg_s(SYS_PMBLIMITR_EL1)); 645 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 646 647 out_stop: 648 arm_spe_perf_aux_output_end(handle); 649 return ret; 650 } 651 652 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 653 { 654 struct perf_output_handle *handle = dev; 655 struct perf_event *event = handle->event; 656 enum arm_spe_pmu_buf_fault_action act; 657 658 if (!perf_get_aux(handle)) 659 return IRQ_NONE; 660 661 act = arm_spe_pmu_buf_get_fault_act(handle); 662 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 663 return IRQ_NONE; 664 665 /* 666 * Ensure perf callbacks have completed, which may disable the 667 * profiling buffer in response to a TRUNCATION flag. 668 */ 669 irq_work_run(); 670 671 switch (act) { 672 case SPE_PMU_BUF_FAULT_ACT_FATAL: 673 /* 674 * If a fatal exception occurred then leaving the profiling 675 * buffer enabled is a recipe waiting to happen. Since 676 * fatal faults don't always imply truncation, make sure 677 * that the profiling buffer is disabled explicitly before 678 * clearing the syndrome register. 679 */ 680 arm_spe_pmu_disable_and_drain_local(); 681 break; 682 case SPE_PMU_BUF_FAULT_ACT_OK: 683 /* 684 * We handled the fault (the buffer was full), so resume 685 * profiling as long as we didn't detect truncation. 686 * PMBPTR might be misaligned, but we'll burn that bridge 687 * when we get to it. 688 */ 689 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 690 arm_spe_perf_aux_output_begin(handle, event); 691 isb(); 692 } 693 break; 694 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 695 /* We've seen you before, but GCC has the memory of a sieve. */ 696 break; 697 } 698 699 /* The buffer pointers are now sane, so resume profiling. */ 700 write_sysreg_s(0, SYS_PMBSR_EL1); 701 return IRQ_HANDLED; 702 } 703 704 static u64 arm_spe_pmsevfr_res0(u16 pmsver) 705 { 706 switch (pmsver) { 707 case ID_AA64DFR0_EL1_PMSVer_IMP: 708 return PMSEVFR_EL1_RES0_IMP; 709 case ID_AA64DFR0_EL1_PMSVer_V1P1: 710 return PMSEVFR_EL1_RES0_V1P1; 711 case ID_AA64DFR0_EL1_PMSVer_V1P2: 712 /* Return the highest version we support in default */ 713 default: 714 return PMSEVFR_EL1_RES0_V1P2; 715 } 716 } 717 718 /* Perf callbacks */ 719 static int arm_spe_pmu_event_init(struct perf_event *event) 720 { 721 u64 reg; 722 struct perf_event_attr *attr = &event->attr; 723 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 724 725 /* This is, of course, deeply driver-specific */ 726 if (attr->type != event->pmu->type) 727 return -ENOENT; 728 729 if (event->cpu >= 0 && 730 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 731 return -ENOENT; 732 733 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 734 return -EOPNOTSUPP; 735 736 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 737 return -EOPNOTSUPP; 738 739 if (attr->exclude_idle) 740 return -EOPNOTSUPP; 741 742 /* 743 * Feedback-directed frequency throttling doesn't work when we 744 * have a buffer of samples. We'd need to manually count the 745 * samples in the buffer when it fills up and adjust the event 746 * count to reflect that. Instead, just force the user to specify 747 * a sample period. 748 */ 749 if (attr->freq) 750 return -EINVAL; 751 752 reg = arm_spe_event_to_pmsfcr(event); 753 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) && 754 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 755 return -EOPNOTSUPP; 756 757 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) && 758 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 759 return -EOPNOTSUPP; 760 761 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) && 762 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 763 return -EOPNOTSUPP; 764 765 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) && 766 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 767 return -EOPNOTSUPP; 768 769 set_spe_event_has_cx(event); 770 reg = arm_spe_event_to_pmscr(event); 771 if (!perfmon_capable() && 772 (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))) 773 return -EACCES; 774 775 return 0; 776 } 777 778 static void arm_spe_pmu_start(struct perf_event *event, int flags) 779 { 780 u64 reg; 781 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 782 struct hw_perf_event *hwc = &event->hw; 783 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 784 785 hwc->state = 0; 786 arm_spe_perf_aux_output_begin(handle, event); 787 if (hwc->state) 788 return; 789 790 reg = arm_spe_event_to_pmsfcr(event); 791 write_sysreg_s(reg, SYS_PMSFCR_EL1); 792 793 reg = arm_spe_event_to_pmsevfr(event); 794 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 795 796 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) { 797 reg = arm_spe_event_to_pmsnevfr(event); 798 write_sysreg_s(reg, SYS_PMSNEVFR_EL1); 799 } 800 801 reg = arm_spe_event_to_pmslatfr(event); 802 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 803 804 if (flags & PERF_EF_RELOAD) { 805 reg = arm_spe_event_to_pmsirr(event); 806 write_sysreg_s(reg, SYS_PMSIRR_EL1); 807 isb(); 808 reg = local64_read(&hwc->period_left); 809 write_sysreg_s(reg, SYS_PMSICR_EL1); 810 } 811 812 reg = arm_spe_event_to_pmscr(event); 813 isb(); 814 write_sysreg_s(reg, SYS_PMSCR_EL1); 815 } 816 817 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 818 { 819 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 820 struct hw_perf_event *hwc = &event->hw; 821 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 822 823 /* If we're already stopped, then nothing to do */ 824 if (hwc->state & PERF_HES_STOPPED) 825 return; 826 827 /* Stop all trace generation */ 828 arm_spe_pmu_disable_and_drain_local(); 829 830 if (flags & PERF_EF_UPDATE) { 831 /* 832 * If there's a fault pending then ensure we contain it 833 * to this buffer, since we might be on the context-switch 834 * path. 835 */ 836 if (perf_get_aux(handle)) { 837 enum arm_spe_pmu_buf_fault_action act; 838 839 act = arm_spe_pmu_buf_get_fault_act(handle); 840 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 841 arm_spe_perf_aux_output_end(handle); 842 else 843 write_sysreg_s(0, SYS_PMBSR_EL1); 844 } 845 846 /* 847 * This may also contain ECOUNT, but nobody else should 848 * be looking at period_left, since we forbid frequency 849 * based sampling. 850 */ 851 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 852 hwc->state |= PERF_HES_UPTODATE; 853 } 854 855 hwc->state |= PERF_HES_STOPPED; 856 } 857 858 static int arm_spe_pmu_add(struct perf_event *event, int flags) 859 { 860 int ret = 0; 861 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 862 struct hw_perf_event *hwc = &event->hw; 863 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 864 865 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 866 return -ENOENT; 867 868 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 869 870 if (flags & PERF_EF_START) { 871 arm_spe_pmu_start(event, PERF_EF_RELOAD); 872 if (hwc->state & PERF_HES_STOPPED) 873 ret = -EINVAL; 874 } 875 876 return ret; 877 } 878 879 static void arm_spe_pmu_del(struct perf_event *event, int flags) 880 { 881 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 882 } 883 884 static void arm_spe_pmu_read(struct perf_event *event) 885 { 886 } 887 888 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 889 int nr_pages, bool snapshot) 890 { 891 int i, cpu = event->cpu; 892 struct page **pglist; 893 struct arm_spe_pmu_buf *buf; 894 895 /* We need at least two pages for this to work. */ 896 if (nr_pages < 2) 897 return NULL; 898 899 /* 900 * We require an even number of pages for snapshot mode, so that 901 * we can effectively treat the buffer as consisting of two equal 902 * parts and give userspace a fighting chance of getting some 903 * useful data out of it. 904 */ 905 if (snapshot && (nr_pages & 1)) 906 return NULL; 907 908 if (cpu == -1) 909 cpu = raw_smp_processor_id(); 910 911 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 912 if (!buf) 913 return NULL; 914 915 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 916 if (!pglist) 917 goto out_free_buf; 918 919 for (i = 0; i < nr_pages; ++i) 920 pglist[i] = virt_to_page(pages[i]); 921 922 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 923 if (!buf->base) 924 goto out_free_pglist; 925 926 buf->nr_pages = nr_pages; 927 buf->snapshot = snapshot; 928 929 kfree(pglist); 930 return buf; 931 932 out_free_pglist: 933 kfree(pglist); 934 out_free_buf: 935 kfree(buf); 936 return NULL; 937 } 938 939 static void arm_spe_pmu_free_aux(void *aux) 940 { 941 struct arm_spe_pmu_buf *buf = aux; 942 943 vunmap(buf->base); 944 kfree(buf); 945 } 946 947 /* Initialisation and teardown functions */ 948 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 949 { 950 static atomic_t pmu_idx = ATOMIC_INIT(-1); 951 952 int idx; 953 char *name; 954 struct device *dev = &spe_pmu->pdev->dev; 955 956 spe_pmu->pmu = (struct pmu) { 957 .module = THIS_MODULE, 958 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 959 .attr_groups = arm_spe_pmu_attr_groups, 960 /* 961 * We hitch a ride on the software context here, so that 962 * we can support per-task profiling (which is not possible 963 * with the invalid context as it doesn't get sched callbacks). 964 * This requires that userspace either uses a dummy event for 965 * perf_event_open, since the aux buffer is not setup until 966 * a subsequent mmap, or creates the profiling event in a 967 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 968 * once the buffer has been created. 969 */ 970 .task_ctx_nr = perf_sw_context, 971 .event_init = arm_spe_pmu_event_init, 972 .add = arm_spe_pmu_add, 973 .del = arm_spe_pmu_del, 974 .start = arm_spe_pmu_start, 975 .stop = arm_spe_pmu_stop, 976 .read = arm_spe_pmu_read, 977 .setup_aux = arm_spe_pmu_setup_aux, 978 .free_aux = arm_spe_pmu_free_aux, 979 }; 980 981 idx = atomic_inc_return(&pmu_idx); 982 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 983 if (!name) { 984 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 985 return -ENOMEM; 986 } 987 988 return perf_pmu_register(&spe_pmu->pmu, name, -1); 989 } 990 991 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 992 { 993 perf_pmu_unregister(&spe_pmu->pmu); 994 } 995 996 static void __arm_spe_pmu_dev_probe(void *info) 997 { 998 int fld; 999 u64 reg; 1000 struct arm_spe_pmu *spe_pmu = info; 1001 struct device *dev = &spe_pmu->pdev->dev; 1002 1003 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 1004 ID_AA64DFR0_EL1_PMSVer_SHIFT); 1005 if (!fld) { 1006 dev_err(dev, 1007 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 1008 fld, smp_processor_id()); 1009 return; 1010 } 1011 spe_pmu->pmsver = (u16)fld; 1012 1013 /* Read PMBIDR first to determine whether or not we have access */ 1014 reg = read_sysreg_s(SYS_PMBIDR_EL1); 1015 if (FIELD_GET(PMBIDR_EL1_P, reg)) { 1016 dev_err(dev, 1017 "profiling buffer owned by higher exception level\n"); 1018 return; 1019 } 1020 1021 /* Minimum alignment. If it's out-of-range, then fail the probe */ 1022 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg); 1023 spe_pmu->align = 1 << fld; 1024 if (spe_pmu->align > SZ_2K) { 1025 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 1026 fld, smp_processor_id()); 1027 return; 1028 } 1029 1030 /* It's now safe to read PMSIDR and figure out what we've got */ 1031 reg = read_sysreg_s(SYS_PMSIDR_EL1); 1032 if (FIELD_GET(PMSIDR_EL1_FE, reg)) 1033 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 1034 1035 if (FIELD_GET(PMSIDR_EL1_FnE, reg)) 1036 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT; 1037 1038 if (FIELD_GET(PMSIDR_EL1_FT, reg)) 1039 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 1040 1041 if (FIELD_GET(PMSIDR_EL1_FL, reg)) 1042 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 1043 1044 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg)) 1045 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 1046 1047 if (FIELD_GET(PMSIDR_EL1_LDS, reg)) 1048 spe_pmu->features |= SPE_PMU_FEAT_LDS; 1049 1050 if (FIELD_GET(PMSIDR_EL1_ERND, reg)) 1051 spe_pmu->features |= SPE_PMU_FEAT_ERND; 1052 1053 /* This field has a spaced out encoding, so just use a look-up */ 1054 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg); 1055 switch (fld) { 1056 case PMSIDR_EL1_INTERVAL_256: 1057 spe_pmu->min_period = 256; 1058 break; 1059 case PMSIDR_EL1_INTERVAL_512: 1060 spe_pmu->min_period = 512; 1061 break; 1062 case PMSIDR_EL1_INTERVAL_768: 1063 spe_pmu->min_period = 768; 1064 break; 1065 case PMSIDR_EL1_INTERVAL_1024: 1066 spe_pmu->min_period = 1024; 1067 break; 1068 case PMSIDR_EL1_INTERVAL_1536: 1069 spe_pmu->min_period = 1536; 1070 break; 1071 case PMSIDR_EL1_INTERVAL_2048: 1072 spe_pmu->min_period = 2048; 1073 break; 1074 case PMSIDR_EL1_INTERVAL_3072: 1075 spe_pmu->min_period = 3072; 1076 break; 1077 default: 1078 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1079 fld); 1080 fallthrough; 1081 case PMSIDR_EL1_INTERVAL_4096: 1082 spe_pmu->min_period = 4096; 1083 } 1084 1085 /* Maximum record size. If it's out-of-range, then fail the probe */ 1086 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg); 1087 spe_pmu->max_record_sz = 1 << fld; 1088 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1089 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1090 fld, smp_processor_id()); 1091 return; 1092 } 1093 1094 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg); 1095 switch (fld) { 1096 default: 1097 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1098 fld); 1099 fallthrough; 1100 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT: 1101 spe_pmu->counter_sz = 12; 1102 break; 1103 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT: 1104 spe_pmu->counter_sz = 16; 1105 } 1106 1107 dev_info(dev, 1108 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1109 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus), 1110 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1111 1112 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1113 } 1114 1115 static void __arm_spe_pmu_reset_local(void) 1116 { 1117 /* 1118 * This is probably overkill, as we have no idea where we're 1119 * draining any buffered data to... 1120 */ 1121 arm_spe_pmu_disable_and_drain_local(); 1122 1123 /* Reset the buffer base pointer */ 1124 write_sysreg_s(0, SYS_PMBPTR_EL1); 1125 isb(); 1126 1127 /* Clear any pending management interrupts */ 1128 write_sysreg_s(0, SYS_PMBSR_EL1); 1129 isb(); 1130 } 1131 1132 static void __arm_spe_pmu_setup_one(void *info) 1133 { 1134 struct arm_spe_pmu *spe_pmu = info; 1135 1136 __arm_spe_pmu_reset_local(); 1137 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1138 } 1139 1140 static void __arm_spe_pmu_stop_one(void *info) 1141 { 1142 struct arm_spe_pmu *spe_pmu = info; 1143 1144 disable_percpu_irq(spe_pmu->irq); 1145 __arm_spe_pmu_reset_local(); 1146 } 1147 1148 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1149 { 1150 struct arm_spe_pmu *spe_pmu; 1151 1152 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1153 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1154 return 0; 1155 1156 __arm_spe_pmu_setup_one(spe_pmu); 1157 return 0; 1158 } 1159 1160 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1161 { 1162 struct arm_spe_pmu *spe_pmu; 1163 1164 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1165 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1166 return 0; 1167 1168 __arm_spe_pmu_stop_one(spe_pmu); 1169 return 0; 1170 } 1171 1172 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1173 { 1174 int ret; 1175 cpumask_t *mask = &spe_pmu->supported_cpus; 1176 1177 /* Make sure we probe the hardware on a relevant CPU */ 1178 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1179 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1180 return -ENXIO; 1181 1182 /* Request our PPIs (note that the IRQ is still disabled) */ 1183 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1184 spe_pmu->handle); 1185 if (ret) 1186 return ret; 1187 1188 /* 1189 * Register our hotplug notifier now so we don't miss any events. 1190 * This will enable the IRQ for any supported CPUs that are already 1191 * up. 1192 */ 1193 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1194 &spe_pmu->hotplug_node); 1195 if (ret) 1196 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1197 1198 return ret; 1199 } 1200 1201 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1202 { 1203 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1204 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1205 } 1206 1207 /* Driver and device probing */ 1208 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1209 { 1210 struct platform_device *pdev = spe_pmu->pdev; 1211 int irq = platform_get_irq(pdev, 0); 1212 1213 if (irq < 0) 1214 return -ENXIO; 1215 1216 if (!irq_is_percpu(irq)) { 1217 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1218 return -EINVAL; 1219 } 1220 1221 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1222 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1223 return -EINVAL; 1224 } 1225 1226 spe_pmu->irq = irq; 1227 return 0; 1228 } 1229 1230 static const struct of_device_id arm_spe_pmu_of_match[] = { 1231 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1232 { /* Sentinel */ }, 1233 }; 1234 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1235 1236 static const struct platform_device_id arm_spe_match[] = { 1237 { ARMV8_SPE_PDEV_NAME, 0}, 1238 { } 1239 }; 1240 MODULE_DEVICE_TABLE(platform, arm_spe_match); 1241 1242 static int arm_spe_pmu_device_probe(struct platform_device *pdev) 1243 { 1244 int ret; 1245 struct arm_spe_pmu *spe_pmu; 1246 struct device *dev = &pdev->dev; 1247 1248 /* 1249 * If kernelspace is unmapped when running at EL0, then the SPE 1250 * buffer will fault and prematurely terminate the AUX session. 1251 */ 1252 if (arm64_kernel_unmapped_at_el0()) { 1253 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1254 return -EPERM; 1255 } 1256 1257 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1258 if (!spe_pmu) 1259 return -ENOMEM; 1260 1261 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1262 if (!spe_pmu->handle) 1263 return -ENOMEM; 1264 1265 spe_pmu->pdev = pdev; 1266 platform_set_drvdata(pdev, spe_pmu); 1267 1268 ret = arm_spe_pmu_irq_probe(spe_pmu); 1269 if (ret) 1270 goto out_free_handle; 1271 1272 ret = arm_spe_pmu_dev_init(spe_pmu); 1273 if (ret) 1274 goto out_free_handle; 1275 1276 ret = arm_spe_pmu_perf_init(spe_pmu); 1277 if (ret) 1278 goto out_teardown_dev; 1279 1280 return 0; 1281 1282 out_teardown_dev: 1283 arm_spe_pmu_dev_teardown(spe_pmu); 1284 out_free_handle: 1285 free_percpu(spe_pmu->handle); 1286 return ret; 1287 } 1288 1289 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1290 { 1291 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1292 1293 arm_spe_pmu_perf_destroy(spe_pmu); 1294 arm_spe_pmu_dev_teardown(spe_pmu); 1295 free_percpu(spe_pmu->handle); 1296 return 0; 1297 } 1298 1299 static struct platform_driver arm_spe_pmu_driver = { 1300 .id_table = arm_spe_match, 1301 .driver = { 1302 .name = DRVNAME, 1303 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1304 .suppress_bind_attrs = true, 1305 }, 1306 .probe = arm_spe_pmu_device_probe, 1307 .remove = arm_spe_pmu_device_remove, 1308 }; 1309 1310 static int __init arm_spe_pmu_init(void) 1311 { 1312 int ret; 1313 1314 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1315 arm_spe_pmu_cpu_startup, 1316 arm_spe_pmu_cpu_teardown); 1317 if (ret < 0) 1318 return ret; 1319 arm_spe_pmu_online = ret; 1320 1321 ret = platform_driver_register(&arm_spe_pmu_driver); 1322 if (ret) 1323 cpuhp_remove_multi_state(arm_spe_pmu_online); 1324 1325 return ret; 1326 } 1327 1328 static void __exit arm_spe_pmu_exit(void) 1329 { 1330 platform_driver_unregister(&arm_spe_pmu_driver); 1331 cpuhp_remove_multi_state(arm_spe_pmu_online); 1332 } 1333 1334 module_init(arm_spe_pmu_init); 1335 module_exit(arm_spe_pmu_exit); 1336 1337 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1338 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1339 MODULE_LICENSE("GPL v2"); 1340