1 /* 2 * Perf support for the Statistical Profiling Extension, introduced as 3 * part of ARMv8.2. 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 * 14 * You should have received a copy of the GNU General Public License 15 * along with this program. If not, see <http://www.gnu.org/licenses/>. 16 * 17 * Copyright (C) 2016 ARM Limited 18 * 19 * Author: Will Deacon <will.deacon@arm.com> 20 */ 21 22 #define PMUNAME "arm_spe" 23 #define DRVNAME PMUNAME "_pmu" 24 #define pr_fmt(fmt) DRVNAME ": " fmt 25 26 #include <linux/bitops.h> 27 #include <linux/bug.h> 28 #include <linux/capability.h> 29 #include <linux/cpuhotplug.h> 30 #include <linux/cpumask.h> 31 #include <linux/device.h> 32 #include <linux/errno.h> 33 #include <linux/interrupt.h> 34 #include <linux/irq.h> 35 #include <linux/kernel.h> 36 #include <linux/list.h> 37 #include <linux/module.h> 38 #include <linux/of_address.h> 39 #include <linux/of_device.h> 40 #include <linux/perf_event.h> 41 #include <linux/platform_device.h> 42 #include <linux/printk.h> 43 #include <linux/slab.h> 44 #include <linux/smp.h> 45 #include <linux/vmalloc.h> 46 47 #include <asm/barrier.h> 48 #include <asm/cpufeature.h> 49 #include <asm/mmu.h> 50 #include <asm/sysreg.h> 51 52 #define ARM_SPE_BUF_PAD_BYTE 0 53 54 struct arm_spe_pmu_buf { 55 int nr_pages; 56 bool snapshot; 57 void *base; 58 }; 59 60 struct arm_spe_pmu { 61 struct pmu pmu; 62 struct platform_device *pdev; 63 cpumask_t supported_cpus; 64 struct hlist_node hotplug_node; 65 66 int irq; /* PPI */ 67 68 u16 min_period; 69 u16 counter_sz; 70 71 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 72 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 73 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 74 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 75 #define SPE_PMU_FEAT_LDS (1UL << 4) 76 #define SPE_PMU_FEAT_ERND (1UL << 5) 77 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 78 u64 features; 79 80 u16 max_record_sz; 81 u16 align; 82 struct perf_output_handle __percpu *handle; 83 }; 84 85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 86 87 /* Convert a free-running index from perf into an SPE buffer offset */ 88 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 89 90 /* Keep track of our dynamic hotplug state */ 91 static enum cpuhp_state arm_spe_pmu_online; 92 93 enum arm_spe_pmu_buf_fault_action { 94 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 95 SPE_PMU_BUF_FAULT_ACT_FATAL, 96 SPE_PMU_BUF_FAULT_ACT_OK, 97 }; 98 99 /* This sysfs gunk was really good fun to write. */ 100 enum arm_spe_pmu_capabilities { 101 SPE_PMU_CAP_ARCH_INST = 0, 102 SPE_PMU_CAP_ERND, 103 SPE_PMU_CAP_FEAT_MAX, 104 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 105 SPE_PMU_CAP_MIN_IVAL, 106 }; 107 108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 109 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 110 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 111 }; 112 113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 114 { 115 if (cap < SPE_PMU_CAP_FEAT_MAX) 116 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 117 118 switch (cap) { 119 case SPE_PMU_CAP_CNT_SZ: 120 return spe_pmu->counter_sz; 121 case SPE_PMU_CAP_MIN_IVAL: 122 return spe_pmu->min_period; 123 default: 124 WARN(1, "unknown cap %d\n", cap); 125 } 126 127 return 0; 128 } 129 130 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 131 struct device_attribute *attr, 132 char *buf) 133 { 134 struct platform_device *pdev = to_platform_device(dev); 135 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 136 struct dev_ext_attribute *ea = 137 container_of(attr, struct dev_ext_attribute, attr); 138 int cap = (long)ea->var; 139 140 return snprintf(buf, PAGE_SIZE, "%u\n", 141 arm_spe_pmu_cap_get(spe_pmu, cap)); 142 } 143 144 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 145 &((struct dev_ext_attribute[]) { \ 146 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 147 })[0].attr.attr 148 149 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 150 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 151 152 static struct attribute *arm_spe_pmu_cap_attr[] = { 153 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 154 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 155 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 156 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 157 NULL, 158 }; 159 160 static struct attribute_group arm_spe_pmu_cap_group = { 161 .name = "caps", 162 .attrs = arm_spe_pmu_cap_attr, 163 }; 164 165 /* User ABI */ 166 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 167 #define ATTR_CFG_FLD_ts_enable_LO 0 168 #define ATTR_CFG_FLD_ts_enable_HI 0 169 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 170 #define ATTR_CFG_FLD_pa_enable_LO 1 171 #define ATTR_CFG_FLD_pa_enable_HI 1 172 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 173 #define ATTR_CFG_FLD_pct_enable_LO 2 174 #define ATTR_CFG_FLD_pct_enable_HI 2 175 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 176 #define ATTR_CFG_FLD_jitter_LO 16 177 #define ATTR_CFG_FLD_jitter_HI 16 178 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 179 #define ATTR_CFG_FLD_branch_filter_LO 32 180 #define ATTR_CFG_FLD_branch_filter_HI 32 181 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 182 #define ATTR_CFG_FLD_load_filter_LO 33 183 #define ATTR_CFG_FLD_load_filter_HI 33 184 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 185 #define ATTR_CFG_FLD_store_filter_LO 34 186 #define ATTR_CFG_FLD_store_filter_HI 34 187 188 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 189 #define ATTR_CFG_FLD_event_filter_LO 0 190 #define ATTR_CFG_FLD_event_filter_HI 63 191 192 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 193 #define ATTR_CFG_FLD_min_latency_LO 0 194 #define ATTR_CFG_FLD_min_latency_HI 11 195 196 /* Why does everything I do descend into this? */ 197 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 198 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 199 200 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 201 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 202 203 #define GEN_PMU_FORMAT_ATTR(name) \ 204 PMU_FORMAT_ATTR(name, \ 205 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 206 ATTR_CFG_FLD_##name##_LO, \ 207 ATTR_CFG_FLD_##name##_HI)) 208 209 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 210 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 211 212 #define ATTR_CFG_GET_FLD(attr, name) \ 213 _ATTR_CFG_GET_FLD(attr, \ 214 ATTR_CFG_FLD_##name##_CFG, \ 215 ATTR_CFG_FLD_##name##_LO, \ 216 ATTR_CFG_FLD_##name##_HI) 217 218 GEN_PMU_FORMAT_ATTR(ts_enable); 219 GEN_PMU_FORMAT_ATTR(pa_enable); 220 GEN_PMU_FORMAT_ATTR(pct_enable); 221 GEN_PMU_FORMAT_ATTR(jitter); 222 GEN_PMU_FORMAT_ATTR(branch_filter); 223 GEN_PMU_FORMAT_ATTR(load_filter); 224 GEN_PMU_FORMAT_ATTR(store_filter); 225 GEN_PMU_FORMAT_ATTR(event_filter); 226 GEN_PMU_FORMAT_ATTR(min_latency); 227 228 static struct attribute *arm_spe_pmu_formats_attr[] = { 229 &format_attr_ts_enable.attr, 230 &format_attr_pa_enable.attr, 231 &format_attr_pct_enable.attr, 232 &format_attr_jitter.attr, 233 &format_attr_branch_filter.attr, 234 &format_attr_load_filter.attr, 235 &format_attr_store_filter.attr, 236 &format_attr_event_filter.attr, 237 &format_attr_min_latency.attr, 238 NULL, 239 }; 240 241 static struct attribute_group arm_spe_pmu_format_group = { 242 .name = "format", 243 .attrs = arm_spe_pmu_formats_attr, 244 }; 245 246 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev, 247 struct device_attribute *attr, 248 char *buf) 249 { 250 struct platform_device *pdev = to_platform_device(dev); 251 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 252 253 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 254 } 255 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL); 256 257 static struct attribute *arm_spe_pmu_attrs[] = { 258 &dev_attr_cpumask.attr, 259 NULL, 260 }; 261 262 static struct attribute_group arm_spe_pmu_group = { 263 .attrs = arm_spe_pmu_attrs, 264 }; 265 266 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 267 &arm_spe_pmu_group, 268 &arm_spe_pmu_cap_group, 269 &arm_spe_pmu_format_group, 270 NULL, 271 }; 272 273 /* Convert between user ABI and register values */ 274 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 275 { 276 struct perf_event_attr *attr = &event->attr; 277 u64 reg = 0; 278 279 reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT; 280 reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT; 281 reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT; 282 283 if (!attr->exclude_user) 284 reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT); 285 286 if (!attr->exclude_kernel) 287 reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT); 288 289 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN)) 290 reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT); 291 292 return reg; 293 } 294 295 static void arm_spe_event_sanitise_period(struct perf_event *event) 296 { 297 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 298 u64 period = event->hw.sample_period; 299 u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK 300 << SYS_PMSIRR_EL1_INTERVAL_SHIFT; 301 302 if (period < spe_pmu->min_period) 303 period = spe_pmu->min_period; 304 else if (period > max_period) 305 period = max_period; 306 else 307 period &= max_period; 308 309 event->hw.sample_period = period; 310 } 311 312 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 313 { 314 struct perf_event_attr *attr = &event->attr; 315 u64 reg = 0; 316 317 arm_spe_event_sanitise_period(event); 318 319 reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT; 320 reg |= event->hw.sample_period; 321 322 return reg; 323 } 324 325 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 326 { 327 struct perf_event_attr *attr = &event->attr; 328 u64 reg = 0; 329 330 reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT; 331 reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT; 332 reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT; 333 334 if (reg) 335 reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT); 336 337 if (ATTR_CFG_GET_FLD(attr, event_filter)) 338 reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT); 339 340 if (ATTR_CFG_GET_FLD(attr, min_latency)) 341 reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT); 342 343 return reg; 344 } 345 346 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 347 { 348 struct perf_event_attr *attr = &event->attr; 349 return ATTR_CFG_GET_FLD(attr, event_filter); 350 } 351 352 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 353 { 354 struct perf_event_attr *attr = &event->attr; 355 return ATTR_CFG_GET_FLD(attr, min_latency) 356 << SYS_PMSLATFR_EL1_MINLAT_SHIFT; 357 } 358 359 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 360 { 361 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 362 u64 head = PERF_IDX2OFF(handle->head, buf); 363 364 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 365 if (!buf->snapshot) 366 perf_aux_output_skip(handle, len); 367 } 368 369 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 370 { 371 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 372 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 373 u64 head = PERF_IDX2OFF(handle->head, buf); 374 u64 limit = buf->nr_pages * PAGE_SIZE; 375 376 /* 377 * The trace format isn't parseable in reverse, so clamp 378 * the limit to half of the buffer size in snapshot mode 379 * so that the worst case is half a buffer of records, as 380 * opposed to a single record. 381 */ 382 if (head < limit >> 1) 383 limit >>= 1; 384 385 /* 386 * If we're within max_record_sz of the limit, we must 387 * pad, move the head index and recompute the limit. 388 */ 389 if (limit - head < spe_pmu->max_record_sz) { 390 arm_spe_pmu_pad_buf(handle, limit - head); 391 handle->head = PERF_IDX2OFF(limit, buf); 392 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 393 } 394 395 return limit; 396 } 397 398 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 399 { 400 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 401 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 402 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 403 u64 limit = bufsize; 404 u64 head, tail, wakeup; 405 406 /* 407 * The head can be misaligned for two reasons: 408 * 409 * 1. The hardware left PMBPTR pointing to the first byte after 410 * a record when generating a buffer management event. 411 * 412 * 2. We used perf_aux_output_skip to consume handle->size bytes 413 * and CIRC_SPACE was used to compute the size, which always 414 * leaves one entry free. 415 * 416 * Deal with this by padding to the next alignment boundary and 417 * moving the head index. If we run out of buffer space, we'll 418 * reduce handle->size to zero and end up reporting truncation. 419 */ 420 head = PERF_IDX2OFF(handle->head, buf); 421 if (!IS_ALIGNED(head, spe_pmu->align)) { 422 unsigned long delta = roundup(head, spe_pmu->align) - head; 423 424 delta = min(delta, handle->size); 425 arm_spe_pmu_pad_buf(handle, delta); 426 head = PERF_IDX2OFF(handle->head, buf); 427 } 428 429 /* If we've run out of free space, then nothing more to do */ 430 if (!handle->size) 431 goto no_space; 432 433 /* Compute the tail and wakeup indices now that we've aligned head */ 434 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 435 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 436 437 /* 438 * Avoid clobbering unconsumed data. We know we have space, so 439 * if we see head == tail we know that the buffer is empty. If 440 * head > tail, then there's nothing to clobber prior to 441 * wrapping. 442 */ 443 if (head < tail) 444 limit = round_down(tail, PAGE_SIZE); 445 446 /* 447 * Wakeup may be arbitrarily far into the future. If it's not in 448 * the current generation, either we'll wrap before hitting it, 449 * or it's in the past and has been handled already. 450 * 451 * If there's a wakeup before we wrap, arrange to be woken up by 452 * the page boundary following it. Keep the tail boundary if 453 * that's lower. 454 */ 455 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 456 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 457 458 if (limit > head) 459 return limit; 460 461 arm_spe_pmu_pad_buf(handle, handle->size); 462 no_space: 463 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 464 perf_aux_output_end(handle, 0); 465 return 0; 466 } 467 468 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 469 { 470 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 471 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 472 u64 limit = __arm_spe_pmu_next_off(handle); 473 u64 head = PERF_IDX2OFF(handle->head, buf); 474 475 /* 476 * If the head has come too close to the end of the buffer, 477 * then pad to the end and recompute the limit. 478 */ 479 if (limit && (limit - head < spe_pmu->max_record_sz)) { 480 arm_spe_pmu_pad_buf(handle, limit - head); 481 limit = __arm_spe_pmu_next_off(handle); 482 } 483 484 return limit; 485 } 486 487 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 488 struct perf_event *event) 489 { 490 u64 base, limit; 491 struct arm_spe_pmu_buf *buf; 492 493 /* Start a new aux session */ 494 buf = perf_aux_output_begin(handle, event); 495 if (!buf) { 496 event->hw.state |= PERF_HES_STOPPED; 497 /* 498 * We still need to clear the limit pointer, since the 499 * profiler might only be disabled by virtue of a fault. 500 */ 501 limit = 0; 502 goto out_write_limit; 503 } 504 505 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 506 : arm_spe_pmu_next_off(handle); 507 if (limit) 508 limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT); 509 510 limit += (u64)buf->base; 511 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 512 write_sysreg_s(base, SYS_PMBPTR_EL1); 513 514 out_write_limit: 515 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 516 } 517 518 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 519 { 520 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 521 u64 offset, size; 522 523 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 524 size = offset - PERF_IDX2OFF(handle->head, buf); 525 526 if (buf->snapshot) 527 handle->head = offset; 528 529 perf_aux_output_end(handle, size); 530 } 531 532 static void arm_spe_pmu_disable_and_drain_local(void) 533 { 534 /* Disable profiling at EL0 and EL1 */ 535 write_sysreg_s(0, SYS_PMSCR_EL1); 536 isb(); 537 538 /* Drain any buffered data */ 539 psb_csync(); 540 dsb(nsh); 541 542 /* Disable the profiling buffer */ 543 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 544 isb(); 545 } 546 547 /* IRQ handling */ 548 static enum arm_spe_pmu_buf_fault_action 549 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 550 { 551 const char *err_str; 552 u64 pmbsr; 553 enum arm_spe_pmu_buf_fault_action ret; 554 555 /* 556 * Ensure new profiling data is visible to the CPU and any external 557 * aborts have been resolved. 558 */ 559 psb_csync(); 560 dsb(nsh); 561 562 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 563 isb(); 564 565 /* Service required? */ 566 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 567 if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT))) 568 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 569 570 /* 571 * If we've lost data, disable profiling and also set the PARTIAL 572 * flag to indicate that the last record is corrupted. 573 */ 574 if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT)) 575 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 576 PERF_AUX_FLAG_PARTIAL); 577 578 /* Report collisions to userspace so that it can up the period */ 579 if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT)) 580 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 581 582 /* We only expect buffer management events */ 583 switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) { 584 case SYS_PMBSR_EL1_EC_BUF: 585 /* Handled below */ 586 break; 587 case SYS_PMBSR_EL1_EC_FAULT_S1: 588 case SYS_PMBSR_EL1_EC_FAULT_S2: 589 err_str = "Unexpected buffer fault"; 590 goto out_err; 591 default: 592 err_str = "Unknown error code"; 593 goto out_err; 594 } 595 596 /* Buffer management event */ 597 switch (pmbsr & 598 (SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) { 599 case SYS_PMBSR_EL1_BUF_BSC_FULL: 600 ret = SPE_PMU_BUF_FAULT_ACT_OK; 601 goto out_stop; 602 default: 603 err_str = "Unknown buffer status code"; 604 } 605 606 out_err: 607 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 608 err_str, smp_processor_id(), pmbsr, 609 read_sysreg_s(SYS_PMBPTR_EL1), 610 read_sysreg_s(SYS_PMBLIMITR_EL1)); 611 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 612 613 out_stop: 614 arm_spe_perf_aux_output_end(handle); 615 return ret; 616 } 617 618 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 619 { 620 struct perf_output_handle *handle = dev; 621 struct perf_event *event = handle->event; 622 enum arm_spe_pmu_buf_fault_action act; 623 624 if (!perf_get_aux(handle)) 625 return IRQ_NONE; 626 627 act = arm_spe_pmu_buf_get_fault_act(handle); 628 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 629 return IRQ_NONE; 630 631 /* 632 * Ensure perf callbacks have completed, which may disable the 633 * profiling buffer in response to a TRUNCATION flag. 634 */ 635 irq_work_run(); 636 637 switch (act) { 638 case SPE_PMU_BUF_FAULT_ACT_FATAL: 639 /* 640 * If a fatal exception occurred then leaving the profiling 641 * buffer enabled is a recipe waiting to happen. Since 642 * fatal faults don't always imply truncation, make sure 643 * that the profiling buffer is disabled explicitly before 644 * clearing the syndrome register. 645 */ 646 arm_spe_pmu_disable_and_drain_local(); 647 break; 648 case SPE_PMU_BUF_FAULT_ACT_OK: 649 /* 650 * We handled the fault (the buffer was full), so resume 651 * profiling as long as we didn't detect truncation. 652 * PMBPTR might be misaligned, but we'll burn that bridge 653 * when we get to it. 654 */ 655 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 656 arm_spe_perf_aux_output_begin(handle, event); 657 isb(); 658 } 659 break; 660 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 661 /* We've seen you before, but GCC has the memory of a sieve. */ 662 break; 663 } 664 665 /* The buffer pointers are now sane, so resume profiling. */ 666 write_sysreg_s(0, SYS_PMBSR_EL1); 667 return IRQ_HANDLED; 668 } 669 670 /* Perf callbacks */ 671 static int arm_spe_pmu_event_init(struct perf_event *event) 672 { 673 u64 reg; 674 struct perf_event_attr *attr = &event->attr; 675 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 676 677 /* This is, of course, deeply driver-specific */ 678 if (attr->type != event->pmu->type) 679 return -ENOENT; 680 681 if (event->cpu >= 0 && 682 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 683 return -ENOENT; 684 685 if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0) 686 return -EOPNOTSUPP; 687 688 if (attr->exclude_idle) 689 return -EOPNOTSUPP; 690 691 /* 692 * Feedback-directed frequency throttling doesn't work when we 693 * have a buffer of samples. We'd need to manually count the 694 * samples in the buffer when it fills up and adjust the event 695 * count to reflect that. Instead, just force the user to specify 696 * a sample period. 697 */ 698 if (attr->freq) 699 return -EINVAL; 700 701 reg = arm_spe_event_to_pmsfcr(event); 702 if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) && 703 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 704 return -EOPNOTSUPP; 705 706 if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) && 707 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 708 return -EOPNOTSUPP; 709 710 if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) && 711 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 712 return -EOPNOTSUPP; 713 714 reg = arm_spe_event_to_pmscr(event); 715 if (!capable(CAP_SYS_ADMIN) && 716 (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) | 717 BIT(SYS_PMSCR_EL1_CX_SHIFT) | 718 BIT(SYS_PMSCR_EL1_PCT_SHIFT)))) 719 return -EACCES; 720 721 return 0; 722 } 723 724 static void arm_spe_pmu_start(struct perf_event *event, int flags) 725 { 726 u64 reg; 727 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 728 struct hw_perf_event *hwc = &event->hw; 729 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 730 731 hwc->state = 0; 732 arm_spe_perf_aux_output_begin(handle, event); 733 if (hwc->state) 734 return; 735 736 reg = arm_spe_event_to_pmsfcr(event); 737 write_sysreg_s(reg, SYS_PMSFCR_EL1); 738 739 reg = arm_spe_event_to_pmsevfr(event); 740 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 741 742 reg = arm_spe_event_to_pmslatfr(event); 743 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 744 745 if (flags & PERF_EF_RELOAD) { 746 reg = arm_spe_event_to_pmsirr(event); 747 write_sysreg_s(reg, SYS_PMSIRR_EL1); 748 isb(); 749 reg = local64_read(&hwc->period_left); 750 write_sysreg_s(reg, SYS_PMSICR_EL1); 751 } 752 753 reg = arm_spe_event_to_pmscr(event); 754 isb(); 755 write_sysreg_s(reg, SYS_PMSCR_EL1); 756 } 757 758 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 759 { 760 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 761 struct hw_perf_event *hwc = &event->hw; 762 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 763 764 /* If we're already stopped, then nothing to do */ 765 if (hwc->state & PERF_HES_STOPPED) 766 return; 767 768 /* Stop all trace generation */ 769 arm_spe_pmu_disable_and_drain_local(); 770 771 if (flags & PERF_EF_UPDATE) { 772 /* 773 * If there's a fault pending then ensure we contain it 774 * to this buffer, since we might be on the context-switch 775 * path. 776 */ 777 if (perf_get_aux(handle)) { 778 enum arm_spe_pmu_buf_fault_action act; 779 780 act = arm_spe_pmu_buf_get_fault_act(handle); 781 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 782 arm_spe_perf_aux_output_end(handle); 783 else 784 write_sysreg_s(0, SYS_PMBSR_EL1); 785 } 786 787 /* 788 * This may also contain ECOUNT, but nobody else should 789 * be looking at period_left, since we forbid frequency 790 * based sampling. 791 */ 792 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 793 hwc->state |= PERF_HES_UPTODATE; 794 } 795 796 hwc->state |= PERF_HES_STOPPED; 797 } 798 799 static int arm_spe_pmu_add(struct perf_event *event, int flags) 800 { 801 int ret = 0; 802 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 803 struct hw_perf_event *hwc = &event->hw; 804 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 805 806 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 807 return -ENOENT; 808 809 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 810 811 if (flags & PERF_EF_START) { 812 arm_spe_pmu_start(event, PERF_EF_RELOAD); 813 if (hwc->state & PERF_HES_STOPPED) 814 ret = -EINVAL; 815 } 816 817 return ret; 818 } 819 820 static void arm_spe_pmu_del(struct perf_event *event, int flags) 821 { 822 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 823 } 824 825 static void arm_spe_pmu_read(struct perf_event *event) 826 { 827 } 828 829 static void *arm_spe_pmu_setup_aux(int cpu, void **pages, int nr_pages, 830 bool snapshot) 831 { 832 int i; 833 struct page **pglist; 834 struct arm_spe_pmu_buf *buf; 835 836 /* We need at least two pages for this to work. */ 837 if (nr_pages < 2) 838 return NULL; 839 840 /* 841 * We require an even number of pages for snapshot mode, so that 842 * we can effectively treat the buffer as consisting of two equal 843 * parts and give userspace a fighting chance of getting some 844 * useful data out of it. 845 */ 846 if (!nr_pages || (snapshot && (nr_pages & 1))) 847 return NULL; 848 849 if (cpu == -1) 850 cpu = raw_smp_processor_id(); 851 852 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 853 if (!buf) 854 return NULL; 855 856 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 857 if (!pglist) 858 goto out_free_buf; 859 860 for (i = 0; i < nr_pages; ++i) { 861 struct page *page = virt_to_page(pages[i]); 862 863 if (PagePrivate(page)) { 864 pr_warn("unexpected high-order page for auxbuf!"); 865 goto out_free_pglist; 866 } 867 868 pglist[i] = virt_to_page(pages[i]); 869 } 870 871 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 872 if (!buf->base) 873 goto out_free_pglist; 874 875 buf->nr_pages = nr_pages; 876 buf->snapshot = snapshot; 877 878 kfree(pglist); 879 return buf; 880 881 out_free_pglist: 882 kfree(pglist); 883 out_free_buf: 884 kfree(buf); 885 return NULL; 886 } 887 888 static void arm_spe_pmu_free_aux(void *aux) 889 { 890 struct arm_spe_pmu_buf *buf = aux; 891 892 vunmap(buf->base); 893 kfree(buf); 894 } 895 896 /* Initialisation and teardown functions */ 897 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 898 { 899 static atomic_t pmu_idx = ATOMIC_INIT(-1); 900 901 int idx; 902 char *name; 903 struct device *dev = &spe_pmu->pdev->dev; 904 905 spe_pmu->pmu = (struct pmu) { 906 .module = THIS_MODULE, 907 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 908 .attr_groups = arm_spe_pmu_attr_groups, 909 /* 910 * We hitch a ride on the software context here, so that 911 * we can support per-task profiling (which is not possible 912 * with the invalid context as it doesn't get sched callbacks). 913 * This requires that userspace either uses a dummy event for 914 * perf_event_open, since the aux buffer is not setup until 915 * a subsequent mmap, or creates the profiling event in a 916 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 917 * once the buffer has been created. 918 */ 919 .task_ctx_nr = perf_sw_context, 920 .event_init = arm_spe_pmu_event_init, 921 .add = arm_spe_pmu_add, 922 .del = arm_spe_pmu_del, 923 .start = arm_spe_pmu_start, 924 .stop = arm_spe_pmu_stop, 925 .read = arm_spe_pmu_read, 926 .setup_aux = arm_spe_pmu_setup_aux, 927 .free_aux = arm_spe_pmu_free_aux, 928 }; 929 930 idx = atomic_inc_return(&pmu_idx); 931 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 932 return perf_pmu_register(&spe_pmu->pmu, name, -1); 933 } 934 935 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 936 { 937 perf_pmu_unregister(&spe_pmu->pmu); 938 } 939 940 static void __arm_spe_pmu_dev_probe(void *info) 941 { 942 int fld; 943 u64 reg; 944 struct arm_spe_pmu *spe_pmu = info; 945 struct device *dev = &spe_pmu->pdev->dev; 946 947 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 948 ID_AA64DFR0_PMSVER_SHIFT); 949 if (!fld) { 950 dev_err(dev, 951 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 952 fld, smp_processor_id()); 953 return; 954 } 955 956 /* Read PMBIDR first to determine whether or not we have access */ 957 reg = read_sysreg_s(SYS_PMBIDR_EL1); 958 if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) { 959 dev_err(dev, 960 "profiling buffer owned by higher exception level\n"); 961 return; 962 } 963 964 /* Minimum alignment. If it's out-of-range, then fail the probe */ 965 fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK; 966 spe_pmu->align = 1 << fld; 967 if (spe_pmu->align > SZ_2K) { 968 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 969 fld, smp_processor_id()); 970 return; 971 } 972 973 /* It's now safe to read PMSIDR and figure out what we've got */ 974 reg = read_sysreg_s(SYS_PMSIDR_EL1); 975 if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT)) 976 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 977 978 if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT)) 979 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 980 981 if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT)) 982 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 983 984 if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT)) 985 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 986 987 if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT)) 988 spe_pmu->features |= SPE_PMU_FEAT_LDS; 989 990 if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT)) 991 spe_pmu->features |= SPE_PMU_FEAT_ERND; 992 993 /* This field has a spaced out encoding, so just use a look-up */ 994 fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK; 995 switch (fld) { 996 case 0: 997 spe_pmu->min_period = 256; 998 break; 999 case 2: 1000 spe_pmu->min_period = 512; 1001 break; 1002 case 3: 1003 spe_pmu->min_period = 768; 1004 break; 1005 case 4: 1006 spe_pmu->min_period = 1024; 1007 break; 1008 case 5: 1009 spe_pmu->min_period = 1536; 1010 break; 1011 case 6: 1012 spe_pmu->min_period = 2048; 1013 break; 1014 case 7: 1015 spe_pmu->min_period = 3072; 1016 break; 1017 default: 1018 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1019 fld); 1020 /* Fallthrough */ 1021 case 8: 1022 spe_pmu->min_period = 4096; 1023 } 1024 1025 /* Maximum record size. If it's out-of-range, then fail the probe */ 1026 fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK; 1027 spe_pmu->max_record_sz = 1 << fld; 1028 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1029 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1030 fld, smp_processor_id()); 1031 return; 1032 } 1033 1034 fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK; 1035 switch (fld) { 1036 default: 1037 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1038 fld); 1039 /* Fallthrough */ 1040 case 2: 1041 spe_pmu->counter_sz = 12; 1042 } 1043 1044 dev_info(dev, 1045 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1046 cpumask_pr_args(&spe_pmu->supported_cpus), 1047 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1048 1049 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1050 return; 1051 } 1052 1053 static void __arm_spe_pmu_reset_local(void) 1054 { 1055 /* 1056 * This is probably overkill, as we have no idea where we're 1057 * draining any buffered data to... 1058 */ 1059 arm_spe_pmu_disable_and_drain_local(); 1060 1061 /* Reset the buffer base pointer */ 1062 write_sysreg_s(0, SYS_PMBPTR_EL1); 1063 isb(); 1064 1065 /* Clear any pending management interrupts */ 1066 write_sysreg_s(0, SYS_PMBSR_EL1); 1067 isb(); 1068 } 1069 1070 static void __arm_spe_pmu_setup_one(void *info) 1071 { 1072 struct arm_spe_pmu *spe_pmu = info; 1073 1074 __arm_spe_pmu_reset_local(); 1075 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1076 } 1077 1078 static void __arm_spe_pmu_stop_one(void *info) 1079 { 1080 struct arm_spe_pmu *spe_pmu = info; 1081 1082 disable_percpu_irq(spe_pmu->irq); 1083 __arm_spe_pmu_reset_local(); 1084 } 1085 1086 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1087 { 1088 struct arm_spe_pmu *spe_pmu; 1089 1090 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1091 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1092 return 0; 1093 1094 __arm_spe_pmu_setup_one(spe_pmu); 1095 return 0; 1096 } 1097 1098 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1099 { 1100 struct arm_spe_pmu *spe_pmu; 1101 1102 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1103 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1104 return 0; 1105 1106 __arm_spe_pmu_stop_one(spe_pmu); 1107 return 0; 1108 } 1109 1110 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1111 { 1112 int ret; 1113 cpumask_t *mask = &spe_pmu->supported_cpus; 1114 1115 /* Make sure we probe the hardware on a relevant CPU */ 1116 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1117 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1118 return -ENXIO; 1119 1120 /* Request our PPIs (note that the IRQ is still disabled) */ 1121 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1122 spe_pmu->handle); 1123 if (ret) 1124 return ret; 1125 1126 /* 1127 * Register our hotplug notifier now so we don't miss any events. 1128 * This will enable the IRQ for any supported CPUs that are already 1129 * up. 1130 */ 1131 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1132 &spe_pmu->hotplug_node); 1133 if (ret) 1134 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1135 1136 return ret; 1137 } 1138 1139 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1140 { 1141 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1142 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1143 } 1144 1145 /* Driver and device probing */ 1146 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1147 { 1148 struct platform_device *pdev = spe_pmu->pdev; 1149 int irq = platform_get_irq(pdev, 0); 1150 1151 if (irq < 0) { 1152 dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq); 1153 return -ENXIO; 1154 } 1155 1156 if (!irq_is_percpu(irq)) { 1157 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1158 return -EINVAL; 1159 } 1160 1161 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1162 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1163 return -EINVAL; 1164 } 1165 1166 spe_pmu->irq = irq; 1167 return 0; 1168 } 1169 1170 static const struct of_device_id arm_spe_pmu_of_match[] = { 1171 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1172 { /* Sentinel */ }, 1173 }; 1174 1175 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev) 1176 { 1177 int ret; 1178 struct arm_spe_pmu *spe_pmu; 1179 struct device *dev = &pdev->dev; 1180 1181 /* 1182 * If kernelspace is unmapped when running at EL0, then the SPE 1183 * buffer will fault and prematurely terminate the AUX session. 1184 */ 1185 if (arm64_kernel_unmapped_at_el0()) { 1186 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1187 return -EPERM; 1188 } 1189 1190 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1191 if (!spe_pmu) { 1192 dev_err(dev, "failed to allocate spe_pmu\n"); 1193 return -ENOMEM; 1194 } 1195 1196 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1197 if (!spe_pmu->handle) 1198 return -ENOMEM; 1199 1200 spe_pmu->pdev = pdev; 1201 platform_set_drvdata(pdev, spe_pmu); 1202 1203 ret = arm_spe_pmu_irq_probe(spe_pmu); 1204 if (ret) 1205 goto out_free_handle; 1206 1207 ret = arm_spe_pmu_dev_init(spe_pmu); 1208 if (ret) 1209 goto out_free_handle; 1210 1211 ret = arm_spe_pmu_perf_init(spe_pmu); 1212 if (ret) 1213 goto out_teardown_dev; 1214 1215 return 0; 1216 1217 out_teardown_dev: 1218 arm_spe_pmu_dev_teardown(spe_pmu); 1219 out_free_handle: 1220 free_percpu(spe_pmu->handle); 1221 return ret; 1222 } 1223 1224 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1225 { 1226 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1227 1228 arm_spe_pmu_perf_destroy(spe_pmu); 1229 arm_spe_pmu_dev_teardown(spe_pmu); 1230 free_percpu(spe_pmu->handle); 1231 return 0; 1232 } 1233 1234 static struct platform_driver arm_spe_pmu_driver = { 1235 .driver = { 1236 .name = DRVNAME, 1237 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1238 }, 1239 .probe = arm_spe_pmu_device_dt_probe, 1240 .remove = arm_spe_pmu_device_remove, 1241 }; 1242 1243 static int __init arm_spe_pmu_init(void) 1244 { 1245 int ret; 1246 1247 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1248 arm_spe_pmu_cpu_startup, 1249 arm_spe_pmu_cpu_teardown); 1250 if (ret < 0) 1251 return ret; 1252 arm_spe_pmu_online = ret; 1253 1254 ret = platform_driver_register(&arm_spe_pmu_driver); 1255 if (ret) 1256 cpuhp_remove_multi_state(arm_spe_pmu_online); 1257 1258 return ret; 1259 } 1260 1261 static void __exit arm_spe_pmu_exit(void) 1262 { 1263 platform_driver_unregister(&arm_spe_pmu_driver); 1264 cpuhp_remove_multi_state(arm_spe_pmu_online); 1265 } 1266 1267 module_init(arm_spe_pmu_init); 1268 module_exit(arm_spe_pmu_exit); 1269 1270 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1271 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1272 MODULE_LICENSE("GPL v2"); 1273