xref: /openbmc/linux/drivers/perf/arm_spe_pmu.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2  * Perf support for the Statistical Profiling Extension, introduced as
3  * part of ARMv8.2.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
16  *
17  * Copyright (C) 2016 ARM Limited
18  *
19  * Author: Will Deacon <will.deacon@arm.com>
20  */
21 
22 #define PMUNAME					"arm_spe"
23 #define DRVNAME					PMUNAME "_pmu"
24 #define pr_fmt(fmt)				DRVNAME ": " fmt
25 
26 #include <linux/bitops.h>
27 #include <linux/bug.h>
28 #include <linux/capability.h>
29 #include <linux/cpuhotplug.h>
30 #include <linux/cpumask.h>
31 #include <linux/device.h>
32 #include <linux/errno.h>
33 #include <linux/interrupt.h>
34 #include <linux/irq.h>
35 #include <linux/kernel.h>
36 #include <linux/list.h>
37 #include <linux/module.h>
38 #include <linux/of_address.h>
39 #include <linux/of_device.h>
40 #include <linux/perf_event.h>
41 #include <linux/platform_device.h>
42 #include <linux/printk.h>
43 #include <linux/slab.h>
44 #include <linux/smp.h>
45 #include <linux/vmalloc.h>
46 
47 #include <asm/barrier.h>
48 #include <asm/cpufeature.h>
49 #include <asm/mmu.h>
50 #include <asm/sysreg.h>
51 
52 #define ARM_SPE_BUF_PAD_BYTE			0
53 
54 struct arm_spe_pmu_buf {
55 	int					nr_pages;
56 	bool					snapshot;
57 	void					*base;
58 };
59 
60 struct arm_spe_pmu {
61 	struct pmu				pmu;
62 	struct platform_device			*pdev;
63 	cpumask_t				supported_cpus;
64 	struct hlist_node			hotplug_node;
65 
66 	int					irq; /* PPI */
67 
68 	u16					min_period;
69 	u16					counter_sz;
70 
71 #define SPE_PMU_FEAT_FILT_EVT			(1UL << 0)
72 #define SPE_PMU_FEAT_FILT_TYP			(1UL << 1)
73 #define SPE_PMU_FEAT_FILT_LAT			(1UL << 2)
74 #define SPE_PMU_FEAT_ARCH_INST			(1UL << 3)
75 #define SPE_PMU_FEAT_LDS			(1UL << 4)
76 #define SPE_PMU_FEAT_ERND			(1UL << 5)
77 #define SPE_PMU_FEAT_DEV_PROBED			(1UL << 63)
78 	u64					features;
79 
80 	u16					max_record_sz;
81 	u16					align;
82 	struct perf_output_handle __percpu	*handle;
83 };
84 
85 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu))
86 
87 /* Convert a free-running index from perf into an SPE buffer offset */
88 #define PERF_IDX2OFF(idx, buf)	((idx) % ((buf)->nr_pages << PAGE_SHIFT))
89 
90 /* Keep track of our dynamic hotplug state */
91 static enum cpuhp_state arm_spe_pmu_online;
92 
93 enum arm_spe_pmu_buf_fault_action {
94 	SPE_PMU_BUF_FAULT_ACT_SPURIOUS,
95 	SPE_PMU_BUF_FAULT_ACT_FATAL,
96 	SPE_PMU_BUF_FAULT_ACT_OK,
97 };
98 
99 /* This sysfs gunk was really good fun to write. */
100 enum arm_spe_pmu_capabilities {
101 	SPE_PMU_CAP_ARCH_INST = 0,
102 	SPE_PMU_CAP_ERND,
103 	SPE_PMU_CAP_FEAT_MAX,
104 	SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX,
105 	SPE_PMU_CAP_MIN_IVAL,
106 };
107 
108 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = {
109 	[SPE_PMU_CAP_ARCH_INST]	= SPE_PMU_FEAT_ARCH_INST,
110 	[SPE_PMU_CAP_ERND]	= SPE_PMU_FEAT_ERND,
111 };
112 
113 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap)
114 {
115 	if (cap < SPE_PMU_CAP_FEAT_MAX)
116 		return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]);
117 
118 	switch (cap) {
119 	case SPE_PMU_CAP_CNT_SZ:
120 		return spe_pmu->counter_sz;
121 	case SPE_PMU_CAP_MIN_IVAL:
122 		return spe_pmu->min_period;
123 	default:
124 		WARN(1, "unknown cap %d\n", cap);
125 	}
126 
127 	return 0;
128 }
129 
130 static ssize_t arm_spe_pmu_cap_show(struct device *dev,
131 				    struct device_attribute *attr,
132 				    char *buf)
133 {
134 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
135 	struct dev_ext_attribute *ea =
136 		container_of(attr, struct dev_ext_attribute, attr);
137 	int cap = (long)ea->var;
138 
139 	return snprintf(buf, PAGE_SIZE, "%u\n",
140 		arm_spe_pmu_cap_get(spe_pmu, cap));
141 }
142 
143 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var)				\
144 	&((struct dev_ext_attribute[]) {				\
145 		{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var }	\
146 	})[0].attr.attr
147 
148 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var)				\
149 	SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var)
150 
151 static struct attribute *arm_spe_pmu_cap_attr[] = {
152 	SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST),
153 	SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND),
154 	SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ),
155 	SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL),
156 	NULL,
157 };
158 
159 static struct attribute_group arm_spe_pmu_cap_group = {
160 	.name	= "caps",
161 	.attrs	= arm_spe_pmu_cap_attr,
162 };
163 
164 /* User ABI */
165 #define ATTR_CFG_FLD_ts_enable_CFG		config	/* PMSCR_EL1.TS */
166 #define ATTR_CFG_FLD_ts_enable_LO		0
167 #define ATTR_CFG_FLD_ts_enable_HI		0
168 #define ATTR_CFG_FLD_pa_enable_CFG		config	/* PMSCR_EL1.PA */
169 #define ATTR_CFG_FLD_pa_enable_LO		1
170 #define ATTR_CFG_FLD_pa_enable_HI		1
171 #define ATTR_CFG_FLD_pct_enable_CFG		config	/* PMSCR_EL1.PCT */
172 #define ATTR_CFG_FLD_pct_enable_LO		2
173 #define ATTR_CFG_FLD_pct_enable_HI		2
174 #define ATTR_CFG_FLD_jitter_CFG			config	/* PMSIRR_EL1.RND */
175 #define ATTR_CFG_FLD_jitter_LO			16
176 #define ATTR_CFG_FLD_jitter_HI			16
177 #define ATTR_CFG_FLD_branch_filter_CFG		config	/* PMSFCR_EL1.B */
178 #define ATTR_CFG_FLD_branch_filter_LO		32
179 #define ATTR_CFG_FLD_branch_filter_HI		32
180 #define ATTR_CFG_FLD_load_filter_CFG		config	/* PMSFCR_EL1.LD */
181 #define ATTR_CFG_FLD_load_filter_LO		33
182 #define ATTR_CFG_FLD_load_filter_HI		33
183 #define ATTR_CFG_FLD_store_filter_CFG		config	/* PMSFCR_EL1.ST */
184 #define ATTR_CFG_FLD_store_filter_LO		34
185 #define ATTR_CFG_FLD_store_filter_HI		34
186 
187 #define ATTR_CFG_FLD_event_filter_CFG		config1	/* PMSEVFR_EL1 */
188 #define ATTR_CFG_FLD_event_filter_LO		0
189 #define ATTR_CFG_FLD_event_filter_HI		63
190 
191 #define ATTR_CFG_FLD_min_latency_CFG		config2	/* PMSLATFR_EL1.MINLAT */
192 #define ATTR_CFG_FLD_min_latency_LO		0
193 #define ATTR_CFG_FLD_min_latency_HI		11
194 
195 /* Why does everything I do descend into this? */
196 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
197 	(lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi
198 
199 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi)				\
200 	__GEN_PMU_FORMAT_ATTR(cfg, lo, hi)
201 
202 #define GEN_PMU_FORMAT_ATTR(name)					\
203 	PMU_FORMAT_ATTR(name,						\
204 	_GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG,			\
205 			     ATTR_CFG_FLD_##name##_LO,			\
206 			     ATTR_CFG_FLD_##name##_HI))
207 
208 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi)				\
209 	((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0))
210 
211 #define ATTR_CFG_GET_FLD(attr, name)					\
212 	_ATTR_CFG_GET_FLD(attr,						\
213 			  ATTR_CFG_FLD_##name##_CFG,			\
214 			  ATTR_CFG_FLD_##name##_LO,			\
215 			  ATTR_CFG_FLD_##name##_HI)
216 
217 GEN_PMU_FORMAT_ATTR(ts_enable);
218 GEN_PMU_FORMAT_ATTR(pa_enable);
219 GEN_PMU_FORMAT_ATTR(pct_enable);
220 GEN_PMU_FORMAT_ATTR(jitter);
221 GEN_PMU_FORMAT_ATTR(branch_filter);
222 GEN_PMU_FORMAT_ATTR(load_filter);
223 GEN_PMU_FORMAT_ATTR(store_filter);
224 GEN_PMU_FORMAT_ATTR(event_filter);
225 GEN_PMU_FORMAT_ATTR(min_latency);
226 
227 static struct attribute *arm_spe_pmu_formats_attr[] = {
228 	&format_attr_ts_enable.attr,
229 	&format_attr_pa_enable.attr,
230 	&format_attr_pct_enable.attr,
231 	&format_attr_jitter.attr,
232 	&format_attr_branch_filter.attr,
233 	&format_attr_load_filter.attr,
234 	&format_attr_store_filter.attr,
235 	&format_attr_event_filter.attr,
236 	&format_attr_min_latency.attr,
237 	NULL,
238 };
239 
240 static struct attribute_group arm_spe_pmu_format_group = {
241 	.name	= "format",
242 	.attrs	= arm_spe_pmu_formats_attr,
243 };
244 
245 static ssize_t arm_spe_pmu_get_attr_cpumask(struct device *dev,
246 					    struct device_attribute *attr,
247 					    char *buf)
248 {
249 	struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev);
250 
251 	return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus);
252 }
253 static DEVICE_ATTR(cpumask, S_IRUGO, arm_spe_pmu_get_attr_cpumask, NULL);
254 
255 static struct attribute *arm_spe_pmu_attrs[] = {
256 	&dev_attr_cpumask.attr,
257 	NULL,
258 };
259 
260 static struct attribute_group arm_spe_pmu_group = {
261 	.attrs	= arm_spe_pmu_attrs,
262 };
263 
264 static const struct attribute_group *arm_spe_pmu_attr_groups[] = {
265 	&arm_spe_pmu_group,
266 	&arm_spe_pmu_cap_group,
267 	&arm_spe_pmu_format_group,
268 	NULL,
269 };
270 
271 /* Convert between user ABI and register values */
272 static u64 arm_spe_event_to_pmscr(struct perf_event *event)
273 {
274 	struct perf_event_attr *attr = &event->attr;
275 	u64 reg = 0;
276 
277 	reg |= ATTR_CFG_GET_FLD(attr, ts_enable) << SYS_PMSCR_EL1_TS_SHIFT;
278 	reg |= ATTR_CFG_GET_FLD(attr, pa_enable) << SYS_PMSCR_EL1_PA_SHIFT;
279 	reg |= ATTR_CFG_GET_FLD(attr, pct_enable) << SYS_PMSCR_EL1_PCT_SHIFT;
280 
281 	if (!attr->exclude_user)
282 		reg |= BIT(SYS_PMSCR_EL1_E0SPE_SHIFT);
283 
284 	if (!attr->exclude_kernel)
285 		reg |= BIT(SYS_PMSCR_EL1_E1SPE_SHIFT);
286 
287 	if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && capable(CAP_SYS_ADMIN))
288 		reg |= BIT(SYS_PMSCR_EL1_CX_SHIFT);
289 
290 	return reg;
291 }
292 
293 static void arm_spe_event_sanitise_period(struct perf_event *event)
294 {
295 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
296 	u64 period = event->hw.sample_period;
297 	u64 max_period = SYS_PMSIRR_EL1_INTERVAL_MASK
298 			 << SYS_PMSIRR_EL1_INTERVAL_SHIFT;
299 
300 	if (period < spe_pmu->min_period)
301 		period = spe_pmu->min_period;
302 	else if (period > max_period)
303 		period = max_period;
304 	else
305 		period &= max_period;
306 
307 	event->hw.sample_period = period;
308 }
309 
310 static u64 arm_spe_event_to_pmsirr(struct perf_event *event)
311 {
312 	struct perf_event_attr *attr = &event->attr;
313 	u64 reg = 0;
314 
315 	arm_spe_event_sanitise_period(event);
316 
317 	reg |= ATTR_CFG_GET_FLD(attr, jitter) << SYS_PMSIRR_EL1_RND_SHIFT;
318 	reg |= event->hw.sample_period;
319 
320 	return reg;
321 }
322 
323 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event)
324 {
325 	struct perf_event_attr *attr = &event->attr;
326 	u64 reg = 0;
327 
328 	reg |= ATTR_CFG_GET_FLD(attr, load_filter) << SYS_PMSFCR_EL1_LD_SHIFT;
329 	reg |= ATTR_CFG_GET_FLD(attr, store_filter) << SYS_PMSFCR_EL1_ST_SHIFT;
330 	reg |= ATTR_CFG_GET_FLD(attr, branch_filter) << SYS_PMSFCR_EL1_B_SHIFT;
331 
332 	if (reg)
333 		reg |= BIT(SYS_PMSFCR_EL1_FT_SHIFT);
334 
335 	if (ATTR_CFG_GET_FLD(attr, event_filter))
336 		reg |= BIT(SYS_PMSFCR_EL1_FE_SHIFT);
337 
338 	if (ATTR_CFG_GET_FLD(attr, min_latency))
339 		reg |= BIT(SYS_PMSFCR_EL1_FL_SHIFT);
340 
341 	return reg;
342 }
343 
344 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event)
345 {
346 	struct perf_event_attr *attr = &event->attr;
347 	return ATTR_CFG_GET_FLD(attr, event_filter);
348 }
349 
350 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event)
351 {
352 	struct perf_event_attr *attr = &event->attr;
353 	return ATTR_CFG_GET_FLD(attr, min_latency)
354 	       << SYS_PMSLATFR_EL1_MINLAT_SHIFT;
355 }
356 
357 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len)
358 {
359 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
360 	u64 head = PERF_IDX2OFF(handle->head, buf);
361 
362 	memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len);
363 	if (!buf->snapshot)
364 		perf_aux_output_skip(handle, len);
365 }
366 
367 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle)
368 {
369 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
370 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
371 	u64 head = PERF_IDX2OFF(handle->head, buf);
372 	u64 limit = buf->nr_pages * PAGE_SIZE;
373 
374 	/*
375 	 * The trace format isn't parseable in reverse, so clamp
376 	 * the limit to half of the buffer size in snapshot mode
377 	 * so that the worst case is half a buffer of records, as
378 	 * opposed to a single record.
379 	 */
380 	if (head < limit >> 1)
381 		limit >>= 1;
382 
383 	/*
384 	 * If we're within max_record_sz of the limit, we must
385 	 * pad, move the head index and recompute the limit.
386 	 */
387 	if (limit - head < spe_pmu->max_record_sz) {
388 		arm_spe_pmu_pad_buf(handle, limit - head);
389 		handle->head = PERF_IDX2OFF(limit, buf);
390 		limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head;
391 	}
392 
393 	return limit;
394 }
395 
396 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle)
397 {
398 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
399 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
400 	const u64 bufsize = buf->nr_pages * PAGE_SIZE;
401 	u64 limit = bufsize;
402 	u64 head, tail, wakeup;
403 
404 	/*
405 	 * The head can be misaligned for two reasons:
406 	 *
407 	 * 1. The hardware left PMBPTR pointing to the first byte after
408 	 *    a record when generating a buffer management event.
409 	 *
410 	 * 2. We used perf_aux_output_skip to consume handle->size bytes
411 	 *    and CIRC_SPACE was used to compute the size, which always
412 	 *    leaves one entry free.
413 	 *
414 	 * Deal with this by padding to the next alignment boundary and
415 	 * moving the head index. If we run out of buffer space, we'll
416 	 * reduce handle->size to zero and end up reporting truncation.
417 	 */
418 	head = PERF_IDX2OFF(handle->head, buf);
419 	if (!IS_ALIGNED(head, spe_pmu->align)) {
420 		unsigned long delta = roundup(head, spe_pmu->align) - head;
421 
422 		delta = min(delta, handle->size);
423 		arm_spe_pmu_pad_buf(handle, delta);
424 		head = PERF_IDX2OFF(handle->head, buf);
425 	}
426 
427 	/* If we've run out of free space, then nothing more to do */
428 	if (!handle->size)
429 		goto no_space;
430 
431 	/* Compute the tail and wakeup indices now that we've aligned head */
432 	tail = PERF_IDX2OFF(handle->head + handle->size, buf);
433 	wakeup = PERF_IDX2OFF(handle->wakeup, buf);
434 
435 	/*
436 	 * Avoid clobbering unconsumed data. We know we have space, so
437 	 * if we see head == tail we know that the buffer is empty. If
438 	 * head > tail, then there's nothing to clobber prior to
439 	 * wrapping.
440 	 */
441 	if (head < tail)
442 		limit = round_down(tail, PAGE_SIZE);
443 
444 	/*
445 	 * Wakeup may be arbitrarily far into the future. If it's not in
446 	 * the current generation, either we'll wrap before hitting it,
447 	 * or it's in the past and has been handled already.
448 	 *
449 	 * If there's a wakeup before we wrap, arrange to be woken up by
450 	 * the page boundary following it. Keep the tail boundary if
451 	 * that's lower.
452 	 */
453 	if (handle->wakeup < (handle->head + handle->size) && head <= wakeup)
454 		limit = min(limit, round_up(wakeup, PAGE_SIZE));
455 
456 	if (limit > head)
457 		return limit;
458 
459 	arm_spe_pmu_pad_buf(handle, handle->size);
460 no_space:
461 	perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED);
462 	perf_aux_output_end(handle, 0);
463 	return 0;
464 }
465 
466 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle)
467 {
468 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
469 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu);
470 	u64 limit = __arm_spe_pmu_next_off(handle);
471 	u64 head = PERF_IDX2OFF(handle->head, buf);
472 
473 	/*
474 	 * If the head has come too close to the end of the buffer,
475 	 * then pad to the end and recompute the limit.
476 	 */
477 	if (limit && (limit - head < spe_pmu->max_record_sz)) {
478 		arm_spe_pmu_pad_buf(handle, limit - head);
479 		limit = __arm_spe_pmu_next_off(handle);
480 	}
481 
482 	return limit;
483 }
484 
485 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle,
486 					  struct perf_event *event)
487 {
488 	u64 base, limit;
489 	struct arm_spe_pmu_buf *buf;
490 
491 	/* Start a new aux session */
492 	buf = perf_aux_output_begin(handle, event);
493 	if (!buf) {
494 		event->hw.state |= PERF_HES_STOPPED;
495 		/*
496 		 * We still need to clear the limit pointer, since the
497 		 * profiler might only be disabled by virtue of a fault.
498 		 */
499 		limit = 0;
500 		goto out_write_limit;
501 	}
502 
503 	limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle)
504 			      : arm_spe_pmu_next_off(handle);
505 	if (limit)
506 		limit |= BIT(SYS_PMBLIMITR_EL1_E_SHIFT);
507 
508 	limit += (u64)buf->base;
509 	base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf);
510 	write_sysreg_s(base, SYS_PMBPTR_EL1);
511 
512 out_write_limit:
513 	write_sysreg_s(limit, SYS_PMBLIMITR_EL1);
514 }
515 
516 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle)
517 {
518 	struct arm_spe_pmu_buf *buf = perf_get_aux(handle);
519 	u64 offset, size;
520 
521 	offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base;
522 	size = offset - PERF_IDX2OFF(handle->head, buf);
523 
524 	if (buf->snapshot)
525 		handle->head = offset;
526 
527 	perf_aux_output_end(handle, size);
528 }
529 
530 static void arm_spe_pmu_disable_and_drain_local(void)
531 {
532 	/* Disable profiling at EL0 and EL1 */
533 	write_sysreg_s(0, SYS_PMSCR_EL1);
534 	isb();
535 
536 	/* Drain any buffered data */
537 	psb_csync();
538 	dsb(nsh);
539 
540 	/* Disable the profiling buffer */
541 	write_sysreg_s(0, SYS_PMBLIMITR_EL1);
542 	isb();
543 }
544 
545 /* IRQ handling */
546 static enum arm_spe_pmu_buf_fault_action
547 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle)
548 {
549 	const char *err_str;
550 	u64 pmbsr;
551 	enum arm_spe_pmu_buf_fault_action ret;
552 
553 	/*
554 	 * Ensure new profiling data is visible to the CPU and any external
555 	 * aborts have been resolved.
556 	 */
557 	psb_csync();
558 	dsb(nsh);
559 
560 	/* Ensure hardware updates to PMBPTR_EL1 are visible */
561 	isb();
562 
563 	/* Service required? */
564 	pmbsr = read_sysreg_s(SYS_PMBSR_EL1);
565 	if (!(pmbsr & BIT(SYS_PMBSR_EL1_S_SHIFT)))
566 		return SPE_PMU_BUF_FAULT_ACT_SPURIOUS;
567 
568 	/*
569 	 * If we've lost data, disable profiling and also set the PARTIAL
570 	 * flag to indicate that the last record is corrupted.
571 	 */
572 	if (pmbsr & BIT(SYS_PMBSR_EL1_DL_SHIFT))
573 		perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED |
574 					     PERF_AUX_FLAG_PARTIAL);
575 
576 	/* Report collisions to userspace so that it can up the period */
577 	if (pmbsr & BIT(SYS_PMBSR_EL1_COLL_SHIFT))
578 		perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION);
579 
580 	/* We only expect buffer management events */
581 	switch (pmbsr & (SYS_PMBSR_EL1_EC_MASK << SYS_PMBSR_EL1_EC_SHIFT)) {
582 	case SYS_PMBSR_EL1_EC_BUF:
583 		/* Handled below */
584 		break;
585 	case SYS_PMBSR_EL1_EC_FAULT_S1:
586 	case SYS_PMBSR_EL1_EC_FAULT_S2:
587 		err_str = "Unexpected buffer fault";
588 		goto out_err;
589 	default:
590 		err_str = "Unknown error code";
591 		goto out_err;
592 	}
593 
594 	/* Buffer management event */
595 	switch (pmbsr &
596 		(SYS_PMBSR_EL1_BUF_BSC_MASK << SYS_PMBSR_EL1_BUF_BSC_SHIFT)) {
597 	case SYS_PMBSR_EL1_BUF_BSC_FULL:
598 		ret = SPE_PMU_BUF_FAULT_ACT_OK;
599 		goto out_stop;
600 	default:
601 		err_str = "Unknown buffer status code";
602 	}
603 
604 out_err:
605 	pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n",
606 			   err_str, smp_processor_id(), pmbsr,
607 			   read_sysreg_s(SYS_PMBPTR_EL1),
608 			   read_sysreg_s(SYS_PMBLIMITR_EL1));
609 	ret = SPE_PMU_BUF_FAULT_ACT_FATAL;
610 
611 out_stop:
612 	arm_spe_perf_aux_output_end(handle);
613 	return ret;
614 }
615 
616 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev)
617 {
618 	struct perf_output_handle *handle = dev;
619 	struct perf_event *event = handle->event;
620 	enum arm_spe_pmu_buf_fault_action act;
621 
622 	if (!perf_get_aux(handle))
623 		return IRQ_NONE;
624 
625 	act = arm_spe_pmu_buf_get_fault_act(handle);
626 	if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
627 		return IRQ_NONE;
628 
629 	/*
630 	 * Ensure perf callbacks have completed, which may disable the
631 	 * profiling buffer in response to a TRUNCATION flag.
632 	 */
633 	irq_work_run();
634 
635 	switch (act) {
636 	case SPE_PMU_BUF_FAULT_ACT_FATAL:
637 		/*
638 		 * If a fatal exception occurred then leaving the profiling
639 		 * buffer enabled is a recipe waiting to happen. Since
640 		 * fatal faults don't always imply truncation, make sure
641 		 * that the profiling buffer is disabled explicitly before
642 		 * clearing the syndrome register.
643 		 */
644 		arm_spe_pmu_disable_and_drain_local();
645 		break;
646 	case SPE_PMU_BUF_FAULT_ACT_OK:
647 		/*
648 		 * We handled the fault (the buffer was full), so resume
649 		 * profiling as long as we didn't detect truncation.
650 		 * PMBPTR might be misaligned, but we'll burn that bridge
651 		 * when we get to it.
652 		 */
653 		if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) {
654 			arm_spe_perf_aux_output_begin(handle, event);
655 			isb();
656 		}
657 		break;
658 	case SPE_PMU_BUF_FAULT_ACT_SPURIOUS:
659 		/* We've seen you before, but GCC has the memory of a sieve. */
660 		break;
661 	}
662 
663 	/* The buffer pointers are now sane, so resume profiling. */
664 	write_sysreg_s(0, SYS_PMBSR_EL1);
665 	return IRQ_HANDLED;
666 }
667 
668 /* Perf callbacks */
669 static int arm_spe_pmu_event_init(struct perf_event *event)
670 {
671 	u64 reg;
672 	struct perf_event_attr *attr = &event->attr;
673 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
674 
675 	/* This is, of course, deeply driver-specific */
676 	if (attr->type != event->pmu->type)
677 		return -ENOENT;
678 
679 	if (event->cpu >= 0 &&
680 	    !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus))
681 		return -ENOENT;
682 
683 	if (arm_spe_event_to_pmsevfr(event) & SYS_PMSEVFR_EL1_RES0)
684 		return -EOPNOTSUPP;
685 
686 	if (attr->exclude_idle)
687 		return -EOPNOTSUPP;
688 
689 	/*
690 	 * Feedback-directed frequency throttling doesn't work when we
691 	 * have a buffer of samples. We'd need to manually count the
692 	 * samples in the buffer when it fills up and adjust the event
693 	 * count to reflect that. Instead, just force the user to specify
694 	 * a sample period.
695 	 */
696 	if (attr->freq)
697 		return -EINVAL;
698 
699 	reg = arm_spe_event_to_pmsfcr(event);
700 	if ((reg & BIT(SYS_PMSFCR_EL1_FE_SHIFT)) &&
701 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT))
702 		return -EOPNOTSUPP;
703 
704 	if ((reg & BIT(SYS_PMSFCR_EL1_FT_SHIFT)) &&
705 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP))
706 		return -EOPNOTSUPP;
707 
708 	if ((reg & BIT(SYS_PMSFCR_EL1_FL_SHIFT)) &&
709 	    !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT))
710 		return -EOPNOTSUPP;
711 
712 	reg = arm_spe_event_to_pmscr(event);
713 	if (!capable(CAP_SYS_ADMIN) &&
714 	    (reg & (BIT(SYS_PMSCR_EL1_PA_SHIFT) |
715 		    BIT(SYS_PMSCR_EL1_CX_SHIFT) |
716 		    BIT(SYS_PMSCR_EL1_PCT_SHIFT))))
717 		return -EACCES;
718 
719 	return 0;
720 }
721 
722 static void arm_spe_pmu_start(struct perf_event *event, int flags)
723 {
724 	u64 reg;
725 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
726 	struct hw_perf_event *hwc = &event->hw;
727 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
728 
729 	hwc->state = 0;
730 	arm_spe_perf_aux_output_begin(handle, event);
731 	if (hwc->state)
732 		return;
733 
734 	reg = arm_spe_event_to_pmsfcr(event);
735 	write_sysreg_s(reg, SYS_PMSFCR_EL1);
736 
737 	reg = arm_spe_event_to_pmsevfr(event);
738 	write_sysreg_s(reg, SYS_PMSEVFR_EL1);
739 
740 	reg = arm_spe_event_to_pmslatfr(event);
741 	write_sysreg_s(reg, SYS_PMSLATFR_EL1);
742 
743 	if (flags & PERF_EF_RELOAD) {
744 		reg = arm_spe_event_to_pmsirr(event);
745 		write_sysreg_s(reg, SYS_PMSIRR_EL1);
746 		isb();
747 		reg = local64_read(&hwc->period_left);
748 		write_sysreg_s(reg, SYS_PMSICR_EL1);
749 	}
750 
751 	reg = arm_spe_event_to_pmscr(event);
752 	isb();
753 	write_sysreg_s(reg, SYS_PMSCR_EL1);
754 }
755 
756 static void arm_spe_pmu_stop(struct perf_event *event, int flags)
757 {
758 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
759 	struct hw_perf_event *hwc = &event->hw;
760 	struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle);
761 
762 	/* If we're already stopped, then nothing to do */
763 	if (hwc->state & PERF_HES_STOPPED)
764 		return;
765 
766 	/* Stop all trace generation */
767 	arm_spe_pmu_disable_and_drain_local();
768 
769 	if (flags & PERF_EF_UPDATE) {
770 		/*
771 		 * If there's a fault pending then ensure we contain it
772 		 * to this buffer, since we might be on the context-switch
773 		 * path.
774 		 */
775 		if (perf_get_aux(handle)) {
776 			enum arm_spe_pmu_buf_fault_action act;
777 
778 			act = arm_spe_pmu_buf_get_fault_act(handle);
779 			if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS)
780 				arm_spe_perf_aux_output_end(handle);
781 			else
782 				write_sysreg_s(0, SYS_PMBSR_EL1);
783 		}
784 
785 		/*
786 		 * This may also contain ECOUNT, but nobody else should
787 		 * be looking at period_left, since we forbid frequency
788 		 * based sampling.
789 		 */
790 		local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1));
791 		hwc->state |= PERF_HES_UPTODATE;
792 	}
793 
794 	hwc->state |= PERF_HES_STOPPED;
795 }
796 
797 static int arm_spe_pmu_add(struct perf_event *event, int flags)
798 {
799 	int ret = 0;
800 	struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu);
801 	struct hw_perf_event *hwc = &event->hw;
802 	int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu;
803 
804 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
805 		return -ENOENT;
806 
807 	hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
808 
809 	if (flags & PERF_EF_START) {
810 		arm_spe_pmu_start(event, PERF_EF_RELOAD);
811 		if (hwc->state & PERF_HES_STOPPED)
812 			ret = -EINVAL;
813 	}
814 
815 	return ret;
816 }
817 
818 static void arm_spe_pmu_del(struct perf_event *event, int flags)
819 {
820 	arm_spe_pmu_stop(event, PERF_EF_UPDATE);
821 }
822 
823 static void arm_spe_pmu_read(struct perf_event *event)
824 {
825 }
826 
827 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages,
828 				   int nr_pages, bool snapshot)
829 {
830 	int i, cpu = event->cpu;
831 	struct page **pglist;
832 	struct arm_spe_pmu_buf *buf;
833 
834 	/* We need at least two pages for this to work. */
835 	if (nr_pages < 2)
836 		return NULL;
837 
838 	/*
839 	 * We require an even number of pages for snapshot mode, so that
840 	 * we can effectively treat the buffer as consisting of two equal
841 	 * parts and give userspace a fighting chance of getting some
842 	 * useful data out of it.
843 	 */
844 	if (!nr_pages || (snapshot && (nr_pages & 1)))
845 		return NULL;
846 
847 	if (cpu == -1)
848 		cpu = raw_smp_processor_id();
849 
850 	buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu));
851 	if (!buf)
852 		return NULL;
853 
854 	pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL);
855 	if (!pglist)
856 		goto out_free_buf;
857 
858 	for (i = 0; i < nr_pages; ++i) {
859 		struct page *page = virt_to_page(pages[i]);
860 
861 		if (PagePrivate(page)) {
862 			pr_warn("unexpected high-order page for auxbuf!");
863 			goto out_free_pglist;
864 		}
865 
866 		pglist[i] = virt_to_page(pages[i]);
867 	}
868 
869 	buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL);
870 	if (!buf->base)
871 		goto out_free_pglist;
872 
873 	buf->nr_pages	= nr_pages;
874 	buf->snapshot	= snapshot;
875 
876 	kfree(pglist);
877 	return buf;
878 
879 out_free_pglist:
880 	kfree(pglist);
881 out_free_buf:
882 	kfree(buf);
883 	return NULL;
884 }
885 
886 static void arm_spe_pmu_free_aux(void *aux)
887 {
888 	struct arm_spe_pmu_buf *buf = aux;
889 
890 	vunmap(buf->base);
891 	kfree(buf);
892 }
893 
894 /* Initialisation and teardown functions */
895 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu)
896 {
897 	static atomic_t pmu_idx = ATOMIC_INIT(-1);
898 
899 	int idx;
900 	char *name;
901 	struct device *dev = &spe_pmu->pdev->dev;
902 
903 	spe_pmu->pmu = (struct pmu) {
904 		.module = THIS_MODULE,
905 		.capabilities	= PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE,
906 		.attr_groups	= arm_spe_pmu_attr_groups,
907 		/*
908 		 * We hitch a ride on the software context here, so that
909 		 * we can support per-task profiling (which is not possible
910 		 * with the invalid context as it doesn't get sched callbacks).
911 		 * This requires that userspace either uses a dummy event for
912 		 * perf_event_open, since the aux buffer is not setup until
913 		 * a subsequent mmap, or creates the profiling event in a
914 		 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it
915 		 * once the buffer has been created.
916 		 */
917 		.task_ctx_nr	= perf_sw_context,
918 		.event_init	= arm_spe_pmu_event_init,
919 		.add		= arm_spe_pmu_add,
920 		.del		= arm_spe_pmu_del,
921 		.start		= arm_spe_pmu_start,
922 		.stop		= arm_spe_pmu_stop,
923 		.read		= arm_spe_pmu_read,
924 		.setup_aux	= arm_spe_pmu_setup_aux,
925 		.free_aux	= arm_spe_pmu_free_aux,
926 	};
927 
928 	idx = atomic_inc_return(&pmu_idx);
929 	name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx);
930 	if (!name) {
931 		dev_err(dev, "failed to allocate name for pmu %d\n", idx);
932 		return -ENOMEM;
933 	}
934 
935 	return perf_pmu_register(&spe_pmu->pmu, name, -1);
936 }
937 
938 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu)
939 {
940 	perf_pmu_unregister(&spe_pmu->pmu);
941 }
942 
943 static void __arm_spe_pmu_dev_probe(void *info)
944 {
945 	int fld;
946 	u64 reg;
947 	struct arm_spe_pmu *spe_pmu = info;
948 	struct device *dev = &spe_pmu->pdev->dev;
949 
950 	fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1),
951 						   ID_AA64DFR0_PMSVER_SHIFT);
952 	if (!fld) {
953 		dev_err(dev,
954 			"unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n",
955 			fld, smp_processor_id());
956 		return;
957 	}
958 
959 	/* Read PMBIDR first to determine whether or not we have access */
960 	reg = read_sysreg_s(SYS_PMBIDR_EL1);
961 	if (reg & BIT(SYS_PMBIDR_EL1_P_SHIFT)) {
962 		dev_err(dev,
963 			"profiling buffer owned by higher exception level\n");
964 		return;
965 	}
966 
967 	/* Minimum alignment. If it's out-of-range, then fail the probe */
968 	fld = reg >> SYS_PMBIDR_EL1_ALIGN_SHIFT & SYS_PMBIDR_EL1_ALIGN_MASK;
969 	spe_pmu->align = 1 << fld;
970 	if (spe_pmu->align > SZ_2K) {
971 		dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n",
972 			fld, smp_processor_id());
973 		return;
974 	}
975 
976 	/* It's now safe to read PMSIDR and figure out what we've got */
977 	reg = read_sysreg_s(SYS_PMSIDR_EL1);
978 	if (reg & BIT(SYS_PMSIDR_EL1_FE_SHIFT))
979 		spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT;
980 
981 	if (reg & BIT(SYS_PMSIDR_EL1_FT_SHIFT))
982 		spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP;
983 
984 	if (reg & BIT(SYS_PMSIDR_EL1_FL_SHIFT))
985 		spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT;
986 
987 	if (reg & BIT(SYS_PMSIDR_EL1_ARCHINST_SHIFT))
988 		spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST;
989 
990 	if (reg & BIT(SYS_PMSIDR_EL1_LDS_SHIFT))
991 		spe_pmu->features |= SPE_PMU_FEAT_LDS;
992 
993 	if (reg & BIT(SYS_PMSIDR_EL1_ERND_SHIFT))
994 		spe_pmu->features |= SPE_PMU_FEAT_ERND;
995 
996 	/* This field has a spaced out encoding, so just use a look-up */
997 	fld = reg >> SYS_PMSIDR_EL1_INTERVAL_SHIFT & SYS_PMSIDR_EL1_INTERVAL_MASK;
998 	switch (fld) {
999 	case 0:
1000 		spe_pmu->min_period = 256;
1001 		break;
1002 	case 2:
1003 		spe_pmu->min_period = 512;
1004 		break;
1005 	case 3:
1006 		spe_pmu->min_period = 768;
1007 		break;
1008 	case 4:
1009 		spe_pmu->min_period = 1024;
1010 		break;
1011 	case 5:
1012 		spe_pmu->min_period = 1536;
1013 		break;
1014 	case 6:
1015 		spe_pmu->min_period = 2048;
1016 		break;
1017 	case 7:
1018 		spe_pmu->min_period = 3072;
1019 		break;
1020 	default:
1021 		dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n",
1022 			 fld);
1023 		/* Fallthrough */
1024 	case 8:
1025 		spe_pmu->min_period = 4096;
1026 	}
1027 
1028 	/* Maximum record size. If it's out-of-range, then fail the probe */
1029 	fld = reg >> SYS_PMSIDR_EL1_MAXSIZE_SHIFT & SYS_PMSIDR_EL1_MAXSIZE_MASK;
1030 	spe_pmu->max_record_sz = 1 << fld;
1031 	if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) {
1032 		dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n",
1033 			fld, smp_processor_id());
1034 		return;
1035 	}
1036 
1037 	fld = reg >> SYS_PMSIDR_EL1_COUNTSIZE_SHIFT & SYS_PMSIDR_EL1_COUNTSIZE_MASK;
1038 	switch (fld) {
1039 	default:
1040 		dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n",
1041 			 fld);
1042 		/* Fallthrough */
1043 	case 2:
1044 		spe_pmu->counter_sz = 12;
1045 	}
1046 
1047 	dev_info(dev,
1048 		 "probed for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n",
1049 		 cpumask_pr_args(&spe_pmu->supported_cpus),
1050 		 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features);
1051 
1052 	spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED;
1053 	return;
1054 }
1055 
1056 static void __arm_spe_pmu_reset_local(void)
1057 {
1058 	/*
1059 	 * This is probably overkill, as we have no idea where we're
1060 	 * draining any buffered data to...
1061 	 */
1062 	arm_spe_pmu_disable_and_drain_local();
1063 
1064 	/* Reset the buffer base pointer */
1065 	write_sysreg_s(0, SYS_PMBPTR_EL1);
1066 	isb();
1067 
1068 	/* Clear any pending management interrupts */
1069 	write_sysreg_s(0, SYS_PMBSR_EL1);
1070 	isb();
1071 }
1072 
1073 static void __arm_spe_pmu_setup_one(void *info)
1074 {
1075 	struct arm_spe_pmu *spe_pmu = info;
1076 
1077 	__arm_spe_pmu_reset_local();
1078 	enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE);
1079 }
1080 
1081 static void __arm_spe_pmu_stop_one(void *info)
1082 {
1083 	struct arm_spe_pmu *spe_pmu = info;
1084 
1085 	disable_percpu_irq(spe_pmu->irq);
1086 	__arm_spe_pmu_reset_local();
1087 }
1088 
1089 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node)
1090 {
1091 	struct arm_spe_pmu *spe_pmu;
1092 
1093 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1094 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1095 		return 0;
1096 
1097 	__arm_spe_pmu_setup_one(spe_pmu);
1098 	return 0;
1099 }
1100 
1101 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1102 {
1103 	struct arm_spe_pmu *spe_pmu;
1104 
1105 	spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node);
1106 	if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus))
1107 		return 0;
1108 
1109 	__arm_spe_pmu_stop_one(spe_pmu);
1110 	return 0;
1111 }
1112 
1113 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu)
1114 {
1115 	int ret;
1116 	cpumask_t *mask = &spe_pmu->supported_cpus;
1117 
1118 	/* Make sure we probe the hardware on a relevant CPU */
1119 	ret = smp_call_function_any(mask,  __arm_spe_pmu_dev_probe, spe_pmu, 1);
1120 	if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED))
1121 		return -ENXIO;
1122 
1123 	/* Request our PPIs (note that the IRQ is still disabled) */
1124 	ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME,
1125 				 spe_pmu->handle);
1126 	if (ret)
1127 		return ret;
1128 
1129 	/*
1130 	 * Register our hotplug notifier now so we don't miss any events.
1131 	 * This will enable the IRQ for any supported CPUs that are already
1132 	 * up.
1133 	 */
1134 	ret = cpuhp_state_add_instance(arm_spe_pmu_online,
1135 				       &spe_pmu->hotplug_node);
1136 	if (ret)
1137 		free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1138 
1139 	return ret;
1140 }
1141 
1142 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu)
1143 {
1144 	cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node);
1145 	free_percpu_irq(spe_pmu->irq, spe_pmu->handle);
1146 }
1147 
1148 /* Driver and device probing */
1149 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu)
1150 {
1151 	struct platform_device *pdev = spe_pmu->pdev;
1152 	int irq = platform_get_irq(pdev, 0);
1153 
1154 	if (irq < 0) {
1155 		dev_err(&pdev->dev, "failed to get IRQ (%d)\n", irq);
1156 		return -ENXIO;
1157 	}
1158 
1159 	if (!irq_is_percpu(irq)) {
1160 		dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq);
1161 		return -EINVAL;
1162 	}
1163 
1164 	if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) {
1165 		dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq);
1166 		return -EINVAL;
1167 	}
1168 
1169 	spe_pmu->irq = irq;
1170 	return 0;
1171 }
1172 
1173 static const struct of_device_id arm_spe_pmu_of_match[] = {
1174 	{ .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 },
1175 	{ /* Sentinel */ },
1176 };
1177 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match);
1178 
1179 static int arm_spe_pmu_device_dt_probe(struct platform_device *pdev)
1180 {
1181 	int ret;
1182 	struct arm_spe_pmu *spe_pmu;
1183 	struct device *dev = &pdev->dev;
1184 
1185 	/*
1186 	 * If kernelspace is unmapped when running at EL0, then the SPE
1187 	 * buffer will fault and prematurely terminate the AUX session.
1188 	 */
1189 	if (arm64_kernel_unmapped_at_el0()) {
1190 		dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n");
1191 		return -EPERM;
1192 	}
1193 
1194 	spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL);
1195 	if (!spe_pmu) {
1196 		dev_err(dev, "failed to allocate spe_pmu\n");
1197 		return -ENOMEM;
1198 	}
1199 
1200 	spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle));
1201 	if (!spe_pmu->handle)
1202 		return -ENOMEM;
1203 
1204 	spe_pmu->pdev = pdev;
1205 	platform_set_drvdata(pdev, spe_pmu);
1206 
1207 	ret = arm_spe_pmu_irq_probe(spe_pmu);
1208 	if (ret)
1209 		goto out_free_handle;
1210 
1211 	ret = arm_spe_pmu_dev_init(spe_pmu);
1212 	if (ret)
1213 		goto out_free_handle;
1214 
1215 	ret = arm_spe_pmu_perf_init(spe_pmu);
1216 	if (ret)
1217 		goto out_teardown_dev;
1218 
1219 	return 0;
1220 
1221 out_teardown_dev:
1222 	arm_spe_pmu_dev_teardown(spe_pmu);
1223 out_free_handle:
1224 	free_percpu(spe_pmu->handle);
1225 	return ret;
1226 }
1227 
1228 static int arm_spe_pmu_device_remove(struct platform_device *pdev)
1229 {
1230 	struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev);
1231 
1232 	arm_spe_pmu_perf_destroy(spe_pmu);
1233 	arm_spe_pmu_dev_teardown(spe_pmu);
1234 	free_percpu(spe_pmu->handle);
1235 	return 0;
1236 }
1237 
1238 static struct platform_driver arm_spe_pmu_driver = {
1239 	.driver	= {
1240 		.name		= DRVNAME,
1241 		.of_match_table	= of_match_ptr(arm_spe_pmu_of_match),
1242 	},
1243 	.probe	= arm_spe_pmu_device_dt_probe,
1244 	.remove	= arm_spe_pmu_device_remove,
1245 };
1246 
1247 static int __init arm_spe_pmu_init(void)
1248 {
1249 	int ret;
1250 
1251 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME,
1252 				      arm_spe_pmu_cpu_startup,
1253 				      arm_spe_pmu_cpu_teardown);
1254 	if (ret < 0)
1255 		return ret;
1256 	arm_spe_pmu_online = ret;
1257 
1258 	ret = platform_driver_register(&arm_spe_pmu_driver);
1259 	if (ret)
1260 		cpuhp_remove_multi_state(arm_spe_pmu_online);
1261 
1262 	return ret;
1263 }
1264 
1265 static void __exit arm_spe_pmu_exit(void)
1266 {
1267 	platform_driver_unregister(&arm_spe_pmu_driver);
1268 	cpuhp_remove_multi_state(arm_spe_pmu_online);
1269 }
1270 
1271 module_init(arm_spe_pmu_init);
1272 module_exit(arm_spe_pmu_exit);
1273 
1274 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension");
1275 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
1276 MODULE_LICENSE("GPL v2");
1277