1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Perf support for the Statistical Profiling Extension, introduced as 4 * part of ARMv8.2. 5 * 6 * Copyright (C) 2016 ARM Limited 7 * 8 * Author: Will Deacon <will.deacon@arm.com> 9 */ 10 11 #define PMUNAME "arm_spe" 12 #define DRVNAME PMUNAME "_pmu" 13 #define pr_fmt(fmt) DRVNAME ": " fmt 14 15 #include <linux/bitfield.h> 16 #include <linux/bitops.h> 17 #include <linux/bug.h> 18 #include <linux/capability.h> 19 #include <linux/cpuhotplug.h> 20 #include <linux/cpumask.h> 21 #include <linux/device.h> 22 #include <linux/errno.h> 23 #include <linux/interrupt.h> 24 #include <linux/irq.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/module.h> 28 #include <linux/of.h> 29 #include <linux/perf_event.h> 30 #include <linux/perf/arm_pmu.h> 31 #include <linux/platform_device.h> 32 #include <linux/printk.h> 33 #include <linux/slab.h> 34 #include <linux/smp.h> 35 #include <linux/vmalloc.h> 36 37 #include <asm/barrier.h> 38 #include <asm/cpufeature.h> 39 #include <asm/mmu.h> 40 #include <asm/sysreg.h> 41 42 /* 43 * Cache if the event is allowed to trace Context information. 44 * This allows us to perform the check, i.e, perfmon_capable(), 45 * in the context of the event owner, once, during the event_init(). 46 */ 47 #define SPE_PMU_HW_FLAGS_CX 0x00001 48 49 static_assert((PERF_EVENT_FLAG_ARCH & SPE_PMU_HW_FLAGS_CX) == SPE_PMU_HW_FLAGS_CX); 50 51 static void set_spe_event_has_cx(struct perf_event *event) 52 { 53 if (IS_ENABLED(CONFIG_PID_IN_CONTEXTIDR) && perfmon_capable()) 54 event->hw.flags |= SPE_PMU_HW_FLAGS_CX; 55 } 56 57 static bool get_spe_event_has_cx(struct perf_event *event) 58 { 59 return !!(event->hw.flags & SPE_PMU_HW_FLAGS_CX); 60 } 61 62 #define ARM_SPE_BUF_PAD_BYTE 0 63 64 struct arm_spe_pmu_buf { 65 int nr_pages; 66 bool snapshot; 67 void *base; 68 }; 69 70 struct arm_spe_pmu { 71 struct pmu pmu; 72 struct platform_device *pdev; 73 cpumask_t supported_cpus; 74 struct hlist_node hotplug_node; 75 76 int irq; /* PPI */ 77 u16 pmsver; 78 u16 min_period; 79 u16 counter_sz; 80 81 #define SPE_PMU_FEAT_FILT_EVT (1UL << 0) 82 #define SPE_PMU_FEAT_FILT_TYP (1UL << 1) 83 #define SPE_PMU_FEAT_FILT_LAT (1UL << 2) 84 #define SPE_PMU_FEAT_ARCH_INST (1UL << 3) 85 #define SPE_PMU_FEAT_LDS (1UL << 4) 86 #define SPE_PMU_FEAT_ERND (1UL << 5) 87 #define SPE_PMU_FEAT_INV_FILT_EVT (1UL << 6) 88 #define SPE_PMU_FEAT_DEV_PROBED (1UL << 63) 89 u64 features; 90 91 u16 max_record_sz; 92 u16 align; 93 struct perf_output_handle __percpu *handle; 94 }; 95 96 #define to_spe_pmu(p) (container_of(p, struct arm_spe_pmu, pmu)) 97 98 /* Convert a free-running index from perf into an SPE buffer offset */ 99 #define PERF_IDX2OFF(idx, buf) ((idx) % ((buf)->nr_pages << PAGE_SHIFT)) 100 101 /* Keep track of our dynamic hotplug state */ 102 static enum cpuhp_state arm_spe_pmu_online; 103 104 enum arm_spe_pmu_buf_fault_action { 105 SPE_PMU_BUF_FAULT_ACT_SPURIOUS, 106 SPE_PMU_BUF_FAULT_ACT_FATAL, 107 SPE_PMU_BUF_FAULT_ACT_OK, 108 }; 109 110 /* This sysfs gunk was really good fun to write. */ 111 enum arm_spe_pmu_capabilities { 112 SPE_PMU_CAP_ARCH_INST = 0, 113 SPE_PMU_CAP_ERND, 114 SPE_PMU_CAP_FEAT_MAX, 115 SPE_PMU_CAP_CNT_SZ = SPE_PMU_CAP_FEAT_MAX, 116 SPE_PMU_CAP_MIN_IVAL, 117 }; 118 119 static int arm_spe_pmu_feat_caps[SPE_PMU_CAP_FEAT_MAX] = { 120 [SPE_PMU_CAP_ARCH_INST] = SPE_PMU_FEAT_ARCH_INST, 121 [SPE_PMU_CAP_ERND] = SPE_PMU_FEAT_ERND, 122 }; 123 124 static u32 arm_spe_pmu_cap_get(struct arm_spe_pmu *spe_pmu, int cap) 125 { 126 if (cap < SPE_PMU_CAP_FEAT_MAX) 127 return !!(spe_pmu->features & arm_spe_pmu_feat_caps[cap]); 128 129 switch (cap) { 130 case SPE_PMU_CAP_CNT_SZ: 131 return spe_pmu->counter_sz; 132 case SPE_PMU_CAP_MIN_IVAL: 133 return spe_pmu->min_period; 134 default: 135 WARN(1, "unknown cap %d\n", cap); 136 } 137 138 return 0; 139 } 140 141 static ssize_t arm_spe_pmu_cap_show(struct device *dev, 142 struct device_attribute *attr, 143 char *buf) 144 { 145 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 146 struct dev_ext_attribute *ea = 147 container_of(attr, struct dev_ext_attribute, attr); 148 int cap = (long)ea->var; 149 150 return sysfs_emit(buf, "%u\n", arm_spe_pmu_cap_get(spe_pmu, cap)); 151 } 152 153 #define SPE_EXT_ATTR_ENTRY(_name, _func, _var) \ 154 &((struct dev_ext_attribute[]) { \ 155 { __ATTR(_name, S_IRUGO, _func, NULL), (void *)_var } \ 156 })[0].attr.attr 157 158 #define SPE_CAP_EXT_ATTR_ENTRY(_name, _var) \ 159 SPE_EXT_ATTR_ENTRY(_name, arm_spe_pmu_cap_show, _var) 160 161 static struct attribute *arm_spe_pmu_cap_attr[] = { 162 SPE_CAP_EXT_ATTR_ENTRY(arch_inst, SPE_PMU_CAP_ARCH_INST), 163 SPE_CAP_EXT_ATTR_ENTRY(ernd, SPE_PMU_CAP_ERND), 164 SPE_CAP_EXT_ATTR_ENTRY(count_size, SPE_PMU_CAP_CNT_SZ), 165 SPE_CAP_EXT_ATTR_ENTRY(min_interval, SPE_PMU_CAP_MIN_IVAL), 166 NULL, 167 }; 168 169 static const struct attribute_group arm_spe_pmu_cap_group = { 170 .name = "caps", 171 .attrs = arm_spe_pmu_cap_attr, 172 }; 173 174 /* User ABI */ 175 #define ATTR_CFG_FLD_ts_enable_CFG config /* PMSCR_EL1.TS */ 176 #define ATTR_CFG_FLD_ts_enable_LO 0 177 #define ATTR_CFG_FLD_ts_enable_HI 0 178 #define ATTR_CFG_FLD_pa_enable_CFG config /* PMSCR_EL1.PA */ 179 #define ATTR_CFG_FLD_pa_enable_LO 1 180 #define ATTR_CFG_FLD_pa_enable_HI 1 181 #define ATTR_CFG_FLD_pct_enable_CFG config /* PMSCR_EL1.PCT */ 182 #define ATTR_CFG_FLD_pct_enable_LO 2 183 #define ATTR_CFG_FLD_pct_enable_HI 2 184 #define ATTR_CFG_FLD_jitter_CFG config /* PMSIRR_EL1.RND */ 185 #define ATTR_CFG_FLD_jitter_LO 16 186 #define ATTR_CFG_FLD_jitter_HI 16 187 #define ATTR_CFG_FLD_branch_filter_CFG config /* PMSFCR_EL1.B */ 188 #define ATTR_CFG_FLD_branch_filter_LO 32 189 #define ATTR_CFG_FLD_branch_filter_HI 32 190 #define ATTR_CFG_FLD_load_filter_CFG config /* PMSFCR_EL1.LD */ 191 #define ATTR_CFG_FLD_load_filter_LO 33 192 #define ATTR_CFG_FLD_load_filter_HI 33 193 #define ATTR_CFG_FLD_store_filter_CFG config /* PMSFCR_EL1.ST */ 194 #define ATTR_CFG_FLD_store_filter_LO 34 195 #define ATTR_CFG_FLD_store_filter_HI 34 196 197 #define ATTR_CFG_FLD_event_filter_CFG config1 /* PMSEVFR_EL1 */ 198 #define ATTR_CFG_FLD_event_filter_LO 0 199 #define ATTR_CFG_FLD_event_filter_HI 63 200 201 #define ATTR_CFG_FLD_min_latency_CFG config2 /* PMSLATFR_EL1.MINLAT */ 202 #define ATTR_CFG_FLD_min_latency_LO 0 203 #define ATTR_CFG_FLD_min_latency_HI 11 204 205 #define ATTR_CFG_FLD_inv_event_filter_CFG config3 /* PMSNEVFR_EL1 */ 206 #define ATTR_CFG_FLD_inv_event_filter_LO 0 207 #define ATTR_CFG_FLD_inv_event_filter_HI 63 208 209 /* Why does everything I do descend into this? */ 210 #define __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 211 (lo) == (hi) ? #cfg ":" #lo "\n" : #cfg ":" #lo "-" #hi 212 213 #define _GEN_PMU_FORMAT_ATTR(cfg, lo, hi) \ 214 __GEN_PMU_FORMAT_ATTR(cfg, lo, hi) 215 216 #define GEN_PMU_FORMAT_ATTR(name) \ 217 PMU_FORMAT_ATTR(name, \ 218 _GEN_PMU_FORMAT_ATTR(ATTR_CFG_FLD_##name##_CFG, \ 219 ATTR_CFG_FLD_##name##_LO, \ 220 ATTR_CFG_FLD_##name##_HI)) 221 222 #define _ATTR_CFG_GET_FLD(attr, cfg, lo, hi) \ 223 ((((attr)->cfg) >> lo) & GENMASK(hi - lo, 0)) 224 225 #define ATTR_CFG_GET_FLD(attr, name) \ 226 _ATTR_CFG_GET_FLD(attr, \ 227 ATTR_CFG_FLD_##name##_CFG, \ 228 ATTR_CFG_FLD_##name##_LO, \ 229 ATTR_CFG_FLD_##name##_HI) 230 231 GEN_PMU_FORMAT_ATTR(ts_enable); 232 GEN_PMU_FORMAT_ATTR(pa_enable); 233 GEN_PMU_FORMAT_ATTR(pct_enable); 234 GEN_PMU_FORMAT_ATTR(jitter); 235 GEN_PMU_FORMAT_ATTR(branch_filter); 236 GEN_PMU_FORMAT_ATTR(load_filter); 237 GEN_PMU_FORMAT_ATTR(store_filter); 238 GEN_PMU_FORMAT_ATTR(event_filter); 239 GEN_PMU_FORMAT_ATTR(inv_event_filter); 240 GEN_PMU_FORMAT_ATTR(min_latency); 241 242 static struct attribute *arm_spe_pmu_formats_attr[] = { 243 &format_attr_ts_enable.attr, 244 &format_attr_pa_enable.attr, 245 &format_attr_pct_enable.attr, 246 &format_attr_jitter.attr, 247 &format_attr_branch_filter.attr, 248 &format_attr_load_filter.attr, 249 &format_attr_store_filter.attr, 250 &format_attr_event_filter.attr, 251 &format_attr_inv_event_filter.attr, 252 &format_attr_min_latency.attr, 253 NULL, 254 }; 255 256 static umode_t arm_spe_pmu_format_attr_is_visible(struct kobject *kobj, 257 struct attribute *attr, 258 int unused) 259 { 260 struct device *dev = kobj_to_dev(kobj); 261 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 262 263 if (attr == &format_attr_inv_event_filter.attr && !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 264 return 0; 265 266 return attr->mode; 267 } 268 269 static const struct attribute_group arm_spe_pmu_format_group = { 270 .name = "format", 271 .is_visible = arm_spe_pmu_format_attr_is_visible, 272 .attrs = arm_spe_pmu_formats_attr, 273 }; 274 275 static ssize_t cpumask_show(struct device *dev, 276 struct device_attribute *attr, char *buf) 277 { 278 struct arm_spe_pmu *spe_pmu = dev_get_drvdata(dev); 279 280 return cpumap_print_to_pagebuf(true, buf, &spe_pmu->supported_cpus); 281 } 282 static DEVICE_ATTR_RO(cpumask); 283 284 static struct attribute *arm_spe_pmu_attrs[] = { 285 &dev_attr_cpumask.attr, 286 NULL, 287 }; 288 289 static const struct attribute_group arm_spe_pmu_group = { 290 .attrs = arm_spe_pmu_attrs, 291 }; 292 293 static const struct attribute_group *arm_spe_pmu_attr_groups[] = { 294 &arm_spe_pmu_group, 295 &arm_spe_pmu_cap_group, 296 &arm_spe_pmu_format_group, 297 NULL, 298 }; 299 300 /* Convert between user ABI and register values */ 301 static u64 arm_spe_event_to_pmscr(struct perf_event *event) 302 { 303 struct perf_event_attr *attr = &event->attr; 304 u64 reg = 0; 305 306 reg |= FIELD_PREP(PMSCR_EL1_TS, ATTR_CFG_GET_FLD(attr, ts_enable)); 307 reg |= FIELD_PREP(PMSCR_EL1_PA, ATTR_CFG_GET_FLD(attr, pa_enable)); 308 reg |= FIELD_PREP(PMSCR_EL1_PCT, ATTR_CFG_GET_FLD(attr, pct_enable)); 309 310 if (!attr->exclude_user) 311 reg |= PMSCR_EL1_E0SPE; 312 313 if (!attr->exclude_kernel) 314 reg |= PMSCR_EL1_E1SPE; 315 316 if (get_spe_event_has_cx(event)) 317 reg |= PMSCR_EL1_CX; 318 319 return reg; 320 } 321 322 static void arm_spe_event_sanitise_period(struct perf_event *event) 323 { 324 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 325 u64 period = event->hw.sample_period; 326 u64 max_period = PMSIRR_EL1_INTERVAL_MASK; 327 328 if (period < spe_pmu->min_period) 329 period = spe_pmu->min_period; 330 else if (period > max_period) 331 period = max_period; 332 else 333 period &= max_period; 334 335 event->hw.sample_period = period; 336 } 337 338 static u64 arm_spe_event_to_pmsirr(struct perf_event *event) 339 { 340 struct perf_event_attr *attr = &event->attr; 341 u64 reg = 0; 342 343 arm_spe_event_sanitise_period(event); 344 345 reg |= FIELD_PREP(PMSIRR_EL1_RND, ATTR_CFG_GET_FLD(attr, jitter)); 346 reg |= event->hw.sample_period; 347 348 return reg; 349 } 350 351 static u64 arm_spe_event_to_pmsfcr(struct perf_event *event) 352 { 353 struct perf_event_attr *attr = &event->attr; 354 u64 reg = 0; 355 356 reg |= FIELD_PREP(PMSFCR_EL1_LD, ATTR_CFG_GET_FLD(attr, load_filter)); 357 reg |= FIELD_PREP(PMSFCR_EL1_ST, ATTR_CFG_GET_FLD(attr, store_filter)); 358 reg |= FIELD_PREP(PMSFCR_EL1_B, ATTR_CFG_GET_FLD(attr, branch_filter)); 359 360 if (reg) 361 reg |= PMSFCR_EL1_FT; 362 363 if (ATTR_CFG_GET_FLD(attr, event_filter)) 364 reg |= PMSFCR_EL1_FE; 365 366 if (ATTR_CFG_GET_FLD(attr, inv_event_filter)) 367 reg |= PMSFCR_EL1_FnE; 368 369 if (ATTR_CFG_GET_FLD(attr, min_latency)) 370 reg |= PMSFCR_EL1_FL; 371 372 return reg; 373 } 374 375 static u64 arm_spe_event_to_pmsevfr(struct perf_event *event) 376 { 377 struct perf_event_attr *attr = &event->attr; 378 return ATTR_CFG_GET_FLD(attr, event_filter); 379 } 380 381 static u64 arm_spe_event_to_pmsnevfr(struct perf_event *event) 382 { 383 struct perf_event_attr *attr = &event->attr; 384 return ATTR_CFG_GET_FLD(attr, inv_event_filter); 385 } 386 387 static u64 arm_spe_event_to_pmslatfr(struct perf_event *event) 388 { 389 struct perf_event_attr *attr = &event->attr; 390 return FIELD_PREP(PMSLATFR_EL1_MINLAT, ATTR_CFG_GET_FLD(attr, min_latency)); 391 } 392 393 static void arm_spe_pmu_pad_buf(struct perf_output_handle *handle, int len) 394 { 395 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 396 u64 head = PERF_IDX2OFF(handle->head, buf); 397 398 memset(buf->base + head, ARM_SPE_BUF_PAD_BYTE, len); 399 if (!buf->snapshot) 400 perf_aux_output_skip(handle, len); 401 } 402 403 static u64 arm_spe_pmu_next_snapshot_off(struct perf_output_handle *handle) 404 { 405 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 406 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 407 u64 head = PERF_IDX2OFF(handle->head, buf); 408 u64 limit = buf->nr_pages * PAGE_SIZE; 409 410 /* 411 * The trace format isn't parseable in reverse, so clamp 412 * the limit to half of the buffer size in snapshot mode 413 * so that the worst case is half a buffer of records, as 414 * opposed to a single record. 415 */ 416 if (head < limit >> 1) 417 limit >>= 1; 418 419 /* 420 * If we're within max_record_sz of the limit, we must 421 * pad, move the head index and recompute the limit. 422 */ 423 if (limit - head < spe_pmu->max_record_sz) { 424 arm_spe_pmu_pad_buf(handle, limit - head); 425 handle->head = PERF_IDX2OFF(limit, buf); 426 limit = ((buf->nr_pages * PAGE_SIZE) >> 1) + handle->head; 427 } 428 429 return limit; 430 } 431 432 static u64 __arm_spe_pmu_next_off(struct perf_output_handle *handle) 433 { 434 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 435 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 436 const u64 bufsize = buf->nr_pages * PAGE_SIZE; 437 u64 limit = bufsize; 438 u64 head, tail, wakeup; 439 440 /* 441 * The head can be misaligned for two reasons: 442 * 443 * 1. The hardware left PMBPTR pointing to the first byte after 444 * a record when generating a buffer management event. 445 * 446 * 2. We used perf_aux_output_skip to consume handle->size bytes 447 * and CIRC_SPACE was used to compute the size, which always 448 * leaves one entry free. 449 * 450 * Deal with this by padding to the next alignment boundary and 451 * moving the head index. If we run out of buffer space, we'll 452 * reduce handle->size to zero and end up reporting truncation. 453 */ 454 head = PERF_IDX2OFF(handle->head, buf); 455 if (!IS_ALIGNED(head, spe_pmu->align)) { 456 unsigned long delta = roundup(head, spe_pmu->align) - head; 457 458 delta = min(delta, handle->size); 459 arm_spe_pmu_pad_buf(handle, delta); 460 head = PERF_IDX2OFF(handle->head, buf); 461 } 462 463 /* If we've run out of free space, then nothing more to do */ 464 if (!handle->size) 465 goto no_space; 466 467 /* Compute the tail and wakeup indices now that we've aligned head */ 468 tail = PERF_IDX2OFF(handle->head + handle->size, buf); 469 wakeup = PERF_IDX2OFF(handle->wakeup, buf); 470 471 /* 472 * Avoid clobbering unconsumed data. We know we have space, so 473 * if we see head == tail we know that the buffer is empty. If 474 * head > tail, then there's nothing to clobber prior to 475 * wrapping. 476 */ 477 if (head < tail) 478 limit = round_down(tail, PAGE_SIZE); 479 480 /* 481 * Wakeup may be arbitrarily far into the future. If it's not in 482 * the current generation, either we'll wrap before hitting it, 483 * or it's in the past and has been handled already. 484 * 485 * If there's a wakeup before we wrap, arrange to be woken up by 486 * the page boundary following it. Keep the tail boundary if 487 * that's lower. 488 */ 489 if (handle->wakeup < (handle->head + handle->size) && head <= wakeup) 490 limit = min(limit, round_up(wakeup, PAGE_SIZE)); 491 492 if (limit > head) 493 return limit; 494 495 arm_spe_pmu_pad_buf(handle, handle->size); 496 no_space: 497 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED); 498 perf_aux_output_end(handle, 0); 499 return 0; 500 } 501 502 static u64 arm_spe_pmu_next_off(struct perf_output_handle *handle) 503 { 504 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 505 struct arm_spe_pmu *spe_pmu = to_spe_pmu(handle->event->pmu); 506 u64 limit = __arm_spe_pmu_next_off(handle); 507 u64 head = PERF_IDX2OFF(handle->head, buf); 508 509 /* 510 * If the head has come too close to the end of the buffer, 511 * then pad to the end and recompute the limit. 512 */ 513 if (limit && (limit - head < spe_pmu->max_record_sz)) { 514 arm_spe_pmu_pad_buf(handle, limit - head); 515 limit = __arm_spe_pmu_next_off(handle); 516 } 517 518 return limit; 519 } 520 521 static void arm_spe_perf_aux_output_begin(struct perf_output_handle *handle, 522 struct perf_event *event) 523 { 524 u64 base, limit; 525 struct arm_spe_pmu_buf *buf; 526 527 /* Start a new aux session */ 528 buf = perf_aux_output_begin(handle, event); 529 if (!buf) { 530 event->hw.state |= PERF_HES_STOPPED; 531 /* 532 * We still need to clear the limit pointer, since the 533 * profiler might only be disabled by virtue of a fault. 534 */ 535 limit = 0; 536 goto out_write_limit; 537 } 538 539 limit = buf->snapshot ? arm_spe_pmu_next_snapshot_off(handle) 540 : arm_spe_pmu_next_off(handle); 541 if (limit) 542 limit |= PMBLIMITR_EL1_E; 543 544 limit += (u64)buf->base; 545 base = (u64)buf->base + PERF_IDX2OFF(handle->head, buf); 546 write_sysreg_s(base, SYS_PMBPTR_EL1); 547 548 out_write_limit: 549 write_sysreg_s(limit, SYS_PMBLIMITR_EL1); 550 } 551 552 static void arm_spe_perf_aux_output_end(struct perf_output_handle *handle) 553 { 554 struct arm_spe_pmu_buf *buf = perf_get_aux(handle); 555 u64 offset, size; 556 557 offset = read_sysreg_s(SYS_PMBPTR_EL1) - (u64)buf->base; 558 size = offset - PERF_IDX2OFF(handle->head, buf); 559 560 if (buf->snapshot) 561 handle->head = offset; 562 563 perf_aux_output_end(handle, size); 564 } 565 566 static void arm_spe_pmu_disable_and_drain_local(void) 567 { 568 /* Disable profiling at EL0 and EL1 */ 569 write_sysreg_s(0, SYS_PMSCR_EL1); 570 isb(); 571 572 /* Drain any buffered data */ 573 psb_csync(); 574 dsb(nsh); 575 576 /* Disable the profiling buffer */ 577 write_sysreg_s(0, SYS_PMBLIMITR_EL1); 578 isb(); 579 } 580 581 /* IRQ handling */ 582 static enum arm_spe_pmu_buf_fault_action 583 arm_spe_pmu_buf_get_fault_act(struct perf_output_handle *handle) 584 { 585 const char *err_str; 586 u64 pmbsr; 587 enum arm_spe_pmu_buf_fault_action ret; 588 589 /* 590 * Ensure new profiling data is visible to the CPU and any external 591 * aborts have been resolved. 592 */ 593 psb_csync(); 594 dsb(nsh); 595 596 /* Ensure hardware updates to PMBPTR_EL1 are visible */ 597 isb(); 598 599 /* Service required? */ 600 pmbsr = read_sysreg_s(SYS_PMBSR_EL1); 601 if (!FIELD_GET(PMBSR_EL1_S, pmbsr)) 602 return SPE_PMU_BUF_FAULT_ACT_SPURIOUS; 603 604 /* 605 * If we've lost data, disable profiling and also set the PARTIAL 606 * flag to indicate that the last record is corrupted. 607 */ 608 if (FIELD_GET(PMBSR_EL1_DL, pmbsr)) 609 perf_aux_output_flag(handle, PERF_AUX_FLAG_TRUNCATED | 610 PERF_AUX_FLAG_PARTIAL); 611 612 /* Report collisions to userspace so that it can up the period */ 613 if (FIELD_GET(PMBSR_EL1_COLL, pmbsr)) 614 perf_aux_output_flag(handle, PERF_AUX_FLAG_COLLISION); 615 616 /* We only expect buffer management events */ 617 switch (FIELD_GET(PMBSR_EL1_EC, pmbsr)) { 618 case PMBSR_EL1_EC_BUF: 619 /* Handled below */ 620 break; 621 case PMBSR_EL1_EC_FAULT_S1: 622 case PMBSR_EL1_EC_FAULT_S2: 623 err_str = "Unexpected buffer fault"; 624 goto out_err; 625 default: 626 err_str = "Unknown error code"; 627 goto out_err; 628 } 629 630 /* Buffer management event */ 631 switch (FIELD_GET(PMBSR_EL1_BUF_BSC_MASK, pmbsr)) { 632 case PMBSR_EL1_BUF_BSC_FULL: 633 ret = SPE_PMU_BUF_FAULT_ACT_OK; 634 goto out_stop; 635 default: 636 err_str = "Unknown buffer status code"; 637 } 638 639 out_err: 640 pr_err_ratelimited("%s on CPU %d [PMBSR=0x%016llx, PMBPTR=0x%016llx, PMBLIMITR=0x%016llx]\n", 641 err_str, smp_processor_id(), pmbsr, 642 read_sysreg_s(SYS_PMBPTR_EL1), 643 read_sysreg_s(SYS_PMBLIMITR_EL1)); 644 ret = SPE_PMU_BUF_FAULT_ACT_FATAL; 645 646 out_stop: 647 arm_spe_perf_aux_output_end(handle); 648 return ret; 649 } 650 651 static irqreturn_t arm_spe_pmu_irq_handler(int irq, void *dev) 652 { 653 struct perf_output_handle *handle = dev; 654 struct perf_event *event = handle->event; 655 enum arm_spe_pmu_buf_fault_action act; 656 657 if (!perf_get_aux(handle)) 658 return IRQ_NONE; 659 660 act = arm_spe_pmu_buf_get_fault_act(handle); 661 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 662 return IRQ_NONE; 663 664 /* 665 * Ensure perf callbacks have completed, which may disable the 666 * profiling buffer in response to a TRUNCATION flag. 667 */ 668 irq_work_run(); 669 670 switch (act) { 671 case SPE_PMU_BUF_FAULT_ACT_FATAL: 672 /* 673 * If a fatal exception occurred then leaving the profiling 674 * buffer enabled is a recipe waiting to happen. Since 675 * fatal faults don't always imply truncation, make sure 676 * that the profiling buffer is disabled explicitly before 677 * clearing the syndrome register. 678 */ 679 arm_spe_pmu_disable_and_drain_local(); 680 break; 681 case SPE_PMU_BUF_FAULT_ACT_OK: 682 /* 683 * We handled the fault (the buffer was full), so resume 684 * profiling as long as we didn't detect truncation. 685 * PMBPTR might be misaligned, but we'll burn that bridge 686 * when we get to it. 687 */ 688 if (!(handle->aux_flags & PERF_AUX_FLAG_TRUNCATED)) { 689 arm_spe_perf_aux_output_begin(handle, event); 690 isb(); 691 } 692 break; 693 case SPE_PMU_BUF_FAULT_ACT_SPURIOUS: 694 /* We've seen you before, but GCC has the memory of a sieve. */ 695 break; 696 } 697 698 /* The buffer pointers are now sane, so resume profiling. */ 699 write_sysreg_s(0, SYS_PMBSR_EL1); 700 return IRQ_HANDLED; 701 } 702 703 static u64 arm_spe_pmsevfr_res0(u16 pmsver) 704 { 705 switch (pmsver) { 706 case ID_AA64DFR0_EL1_PMSVer_IMP: 707 return PMSEVFR_EL1_RES0_IMP; 708 case ID_AA64DFR0_EL1_PMSVer_V1P1: 709 return PMSEVFR_EL1_RES0_V1P1; 710 case ID_AA64DFR0_EL1_PMSVer_V1P2: 711 /* Return the highest version we support in default */ 712 default: 713 return PMSEVFR_EL1_RES0_V1P2; 714 } 715 } 716 717 /* Perf callbacks */ 718 static int arm_spe_pmu_event_init(struct perf_event *event) 719 { 720 u64 reg; 721 struct perf_event_attr *attr = &event->attr; 722 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 723 724 /* This is, of course, deeply driver-specific */ 725 if (attr->type != event->pmu->type) 726 return -ENOENT; 727 728 if (event->cpu >= 0 && 729 !cpumask_test_cpu(event->cpu, &spe_pmu->supported_cpus)) 730 return -ENOENT; 731 732 if (arm_spe_event_to_pmsevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 733 return -EOPNOTSUPP; 734 735 if (arm_spe_event_to_pmsnevfr(event) & arm_spe_pmsevfr_res0(spe_pmu->pmsver)) 736 return -EOPNOTSUPP; 737 738 if (attr->exclude_idle) 739 return -EOPNOTSUPP; 740 741 /* 742 * Feedback-directed frequency throttling doesn't work when we 743 * have a buffer of samples. We'd need to manually count the 744 * samples in the buffer when it fills up and adjust the event 745 * count to reflect that. Instead, just force the user to specify 746 * a sample period. 747 */ 748 if (attr->freq) 749 return -EINVAL; 750 751 reg = arm_spe_event_to_pmsfcr(event); 752 if ((FIELD_GET(PMSFCR_EL1_FE, reg)) && 753 !(spe_pmu->features & SPE_PMU_FEAT_FILT_EVT)) 754 return -EOPNOTSUPP; 755 756 if ((FIELD_GET(PMSFCR_EL1_FnE, reg)) && 757 !(spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT)) 758 return -EOPNOTSUPP; 759 760 if ((FIELD_GET(PMSFCR_EL1_FT, reg)) && 761 !(spe_pmu->features & SPE_PMU_FEAT_FILT_TYP)) 762 return -EOPNOTSUPP; 763 764 if ((FIELD_GET(PMSFCR_EL1_FL, reg)) && 765 !(spe_pmu->features & SPE_PMU_FEAT_FILT_LAT)) 766 return -EOPNOTSUPP; 767 768 set_spe_event_has_cx(event); 769 reg = arm_spe_event_to_pmscr(event); 770 if (!perfmon_capable() && 771 (reg & (PMSCR_EL1_PA | PMSCR_EL1_PCT))) 772 return -EACCES; 773 774 return 0; 775 } 776 777 static void arm_spe_pmu_start(struct perf_event *event, int flags) 778 { 779 u64 reg; 780 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 781 struct hw_perf_event *hwc = &event->hw; 782 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 783 784 hwc->state = 0; 785 arm_spe_perf_aux_output_begin(handle, event); 786 if (hwc->state) 787 return; 788 789 reg = arm_spe_event_to_pmsfcr(event); 790 write_sysreg_s(reg, SYS_PMSFCR_EL1); 791 792 reg = arm_spe_event_to_pmsevfr(event); 793 write_sysreg_s(reg, SYS_PMSEVFR_EL1); 794 795 if (spe_pmu->features & SPE_PMU_FEAT_INV_FILT_EVT) { 796 reg = arm_spe_event_to_pmsnevfr(event); 797 write_sysreg_s(reg, SYS_PMSNEVFR_EL1); 798 } 799 800 reg = arm_spe_event_to_pmslatfr(event); 801 write_sysreg_s(reg, SYS_PMSLATFR_EL1); 802 803 if (flags & PERF_EF_RELOAD) { 804 reg = arm_spe_event_to_pmsirr(event); 805 write_sysreg_s(reg, SYS_PMSIRR_EL1); 806 isb(); 807 reg = local64_read(&hwc->period_left); 808 write_sysreg_s(reg, SYS_PMSICR_EL1); 809 } 810 811 reg = arm_spe_event_to_pmscr(event); 812 isb(); 813 write_sysreg_s(reg, SYS_PMSCR_EL1); 814 } 815 816 static void arm_spe_pmu_stop(struct perf_event *event, int flags) 817 { 818 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 819 struct hw_perf_event *hwc = &event->hw; 820 struct perf_output_handle *handle = this_cpu_ptr(spe_pmu->handle); 821 822 /* If we're already stopped, then nothing to do */ 823 if (hwc->state & PERF_HES_STOPPED) 824 return; 825 826 /* Stop all trace generation */ 827 arm_spe_pmu_disable_and_drain_local(); 828 829 if (flags & PERF_EF_UPDATE) { 830 /* 831 * If there's a fault pending then ensure we contain it 832 * to this buffer, since we might be on the context-switch 833 * path. 834 */ 835 if (perf_get_aux(handle)) { 836 enum arm_spe_pmu_buf_fault_action act; 837 838 act = arm_spe_pmu_buf_get_fault_act(handle); 839 if (act == SPE_PMU_BUF_FAULT_ACT_SPURIOUS) 840 arm_spe_perf_aux_output_end(handle); 841 else 842 write_sysreg_s(0, SYS_PMBSR_EL1); 843 } 844 845 /* 846 * This may also contain ECOUNT, but nobody else should 847 * be looking at period_left, since we forbid frequency 848 * based sampling. 849 */ 850 local64_set(&hwc->period_left, read_sysreg_s(SYS_PMSICR_EL1)); 851 hwc->state |= PERF_HES_UPTODATE; 852 } 853 854 hwc->state |= PERF_HES_STOPPED; 855 } 856 857 static int arm_spe_pmu_add(struct perf_event *event, int flags) 858 { 859 int ret = 0; 860 struct arm_spe_pmu *spe_pmu = to_spe_pmu(event->pmu); 861 struct hw_perf_event *hwc = &event->hw; 862 int cpu = event->cpu == -1 ? smp_processor_id() : event->cpu; 863 864 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 865 return -ENOENT; 866 867 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED; 868 869 if (flags & PERF_EF_START) { 870 arm_spe_pmu_start(event, PERF_EF_RELOAD); 871 if (hwc->state & PERF_HES_STOPPED) 872 ret = -EINVAL; 873 } 874 875 return ret; 876 } 877 878 static void arm_spe_pmu_del(struct perf_event *event, int flags) 879 { 880 arm_spe_pmu_stop(event, PERF_EF_UPDATE); 881 } 882 883 static void arm_spe_pmu_read(struct perf_event *event) 884 { 885 } 886 887 static void *arm_spe_pmu_setup_aux(struct perf_event *event, void **pages, 888 int nr_pages, bool snapshot) 889 { 890 int i, cpu = event->cpu; 891 struct page **pglist; 892 struct arm_spe_pmu_buf *buf; 893 894 /* We need at least two pages for this to work. */ 895 if (nr_pages < 2) 896 return NULL; 897 898 /* 899 * We require an even number of pages for snapshot mode, so that 900 * we can effectively treat the buffer as consisting of two equal 901 * parts and give userspace a fighting chance of getting some 902 * useful data out of it. 903 */ 904 if (snapshot && (nr_pages & 1)) 905 return NULL; 906 907 if (cpu == -1) 908 cpu = raw_smp_processor_id(); 909 910 buf = kzalloc_node(sizeof(*buf), GFP_KERNEL, cpu_to_node(cpu)); 911 if (!buf) 912 return NULL; 913 914 pglist = kcalloc(nr_pages, sizeof(*pglist), GFP_KERNEL); 915 if (!pglist) 916 goto out_free_buf; 917 918 for (i = 0; i < nr_pages; ++i) 919 pglist[i] = virt_to_page(pages[i]); 920 921 buf->base = vmap(pglist, nr_pages, VM_MAP, PAGE_KERNEL); 922 if (!buf->base) 923 goto out_free_pglist; 924 925 buf->nr_pages = nr_pages; 926 buf->snapshot = snapshot; 927 928 kfree(pglist); 929 return buf; 930 931 out_free_pglist: 932 kfree(pglist); 933 out_free_buf: 934 kfree(buf); 935 return NULL; 936 } 937 938 static void arm_spe_pmu_free_aux(void *aux) 939 { 940 struct arm_spe_pmu_buf *buf = aux; 941 942 vunmap(buf->base); 943 kfree(buf); 944 } 945 946 /* Initialisation and teardown functions */ 947 static int arm_spe_pmu_perf_init(struct arm_spe_pmu *spe_pmu) 948 { 949 static atomic_t pmu_idx = ATOMIC_INIT(-1); 950 951 int idx; 952 char *name; 953 struct device *dev = &spe_pmu->pdev->dev; 954 955 spe_pmu->pmu = (struct pmu) { 956 .module = THIS_MODULE, 957 .capabilities = PERF_PMU_CAP_EXCLUSIVE | PERF_PMU_CAP_ITRACE, 958 .attr_groups = arm_spe_pmu_attr_groups, 959 /* 960 * We hitch a ride on the software context here, so that 961 * we can support per-task profiling (which is not possible 962 * with the invalid context as it doesn't get sched callbacks). 963 * This requires that userspace either uses a dummy event for 964 * perf_event_open, since the aux buffer is not setup until 965 * a subsequent mmap, or creates the profiling event in a 966 * disabled state and explicitly PERF_EVENT_IOC_ENABLEs it 967 * once the buffer has been created. 968 */ 969 .task_ctx_nr = perf_sw_context, 970 .event_init = arm_spe_pmu_event_init, 971 .add = arm_spe_pmu_add, 972 .del = arm_spe_pmu_del, 973 .start = arm_spe_pmu_start, 974 .stop = arm_spe_pmu_stop, 975 .read = arm_spe_pmu_read, 976 .setup_aux = arm_spe_pmu_setup_aux, 977 .free_aux = arm_spe_pmu_free_aux, 978 }; 979 980 idx = atomic_inc_return(&pmu_idx); 981 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%d", PMUNAME, idx); 982 if (!name) { 983 dev_err(dev, "failed to allocate name for pmu %d\n", idx); 984 return -ENOMEM; 985 } 986 987 return perf_pmu_register(&spe_pmu->pmu, name, -1); 988 } 989 990 static void arm_spe_pmu_perf_destroy(struct arm_spe_pmu *spe_pmu) 991 { 992 perf_pmu_unregister(&spe_pmu->pmu); 993 } 994 995 static void __arm_spe_pmu_dev_probe(void *info) 996 { 997 int fld; 998 u64 reg; 999 struct arm_spe_pmu *spe_pmu = info; 1000 struct device *dev = &spe_pmu->pdev->dev; 1001 1002 fld = cpuid_feature_extract_unsigned_field(read_cpuid(ID_AA64DFR0_EL1), 1003 ID_AA64DFR0_EL1_PMSVer_SHIFT); 1004 if (!fld) { 1005 dev_err(dev, 1006 "unsupported ID_AA64DFR0_EL1.PMSVer [%d] on CPU %d\n", 1007 fld, smp_processor_id()); 1008 return; 1009 } 1010 spe_pmu->pmsver = (u16)fld; 1011 1012 /* Read PMBIDR first to determine whether or not we have access */ 1013 reg = read_sysreg_s(SYS_PMBIDR_EL1); 1014 if (FIELD_GET(PMBIDR_EL1_P, reg)) { 1015 dev_err(dev, 1016 "profiling buffer owned by higher exception level\n"); 1017 return; 1018 } 1019 1020 /* Minimum alignment. If it's out-of-range, then fail the probe */ 1021 fld = FIELD_GET(PMBIDR_EL1_ALIGN, reg); 1022 spe_pmu->align = 1 << fld; 1023 if (spe_pmu->align > SZ_2K) { 1024 dev_err(dev, "unsupported PMBIDR.Align [%d] on CPU %d\n", 1025 fld, smp_processor_id()); 1026 return; 1027 } 1028 1029 /* It's now safe to read PMSIDR and figure out what we've got */ 1030 reg = read_sysreg_s(SYS_PMSIDR_EL1); 1031 if (FIELD_GET(PMSIDR_EL1_FE, reg)) 1032 spe_pmu->features |= SPE_PMU_FEAT_FILT_EVT; 1033 1034 if (FIELD_GET(PMSIDR_EL1_FnE, reg)) 1035 spe_pmu->features |= SPE_PMU_FEAT_INV_FILT_EVT; 1036 1037 if (FIELD_GET(PMSIDR_EL1_FT, reg)) 1038 spe_pmu->features |= SPE_PMU_FEAT_FILT_TYP; 1039 1040 if (FIELD_GET(PMSIDR_EL1_FL, reg)) 1041 spe_pmu->features |= SPE_PMU_FEAT_FILT_LAT; 1042 1043 if (FIELD_GET(PMSIDR_EL1_ARCHINST, reg)) 1044 spe_pmu->features |= SPE_PMU_FEAT_ARCH_INST; 1045 1046 if (FIELD_GET(PMSIDR_EL1_LDS, reg)) 1047 spe_pmu->features |= SPE_PMU_FEAT_LDS; 1048 1049 if (FIELD_GET(PMSIDR_EL1_ERND, reg)) 1050 spe_pmu->features |= SPE_PMU_FEAT_ERND; 1051 1052 /* This field has a spaced out encoding, so just use a look-up */ 1053 fld = FIELD_GET(PMSIDR_EL1_INTERVAL, reg); 1054 switch (fld) { 1055 case PMSIDR_EL1_INTERVAL_256: 1056 spe_pmu->min_period = 256; 1057 break; 1058 case PMSIDR_EL1_INTERVAL_512: 1059 spe_pmu->min_period = 512; 1060 break; 1061 case PMSIDR_EL1_INTERVAL_768: 1062 spe_pmu->min_period = 768; 1063 break; 1064 case PMSIDR_EL1_INTERVAL_1024: 1065 spe_pmu->min_period = 1024; 1066 break; 1067 case PMSIDR_EL1_INTERVAL_1536: 1068 spe_pmu->min_period = 1536; 1069 break; 1070 case PMSIDR_EL1_INTERVAL_2048: 1071 spe_pmu->min_period = 2048; 1072 break; 1073 case PMSIDR_EL1_INTERVAL_3072: 1074 spe_pmu->min_period = 3072; 1075 break; 1076 default: 1077 dev_warn(dev, "unknown PMSIDR_EL1.Interval [%d]; assuming 8\n", 1078 fld); 1079 fallthrough; 1080 case PMSIDR_EL1_INTERVAL_4096: 1081 spe_pmu->min_period = 4096; 1082 } 1083 1084 /* Maximum record size. If it's out-of-range, then fail the probe */ 1085 fld = FIELD_GET(PMSIDR_EL1_MAXSIZE, reg); 1086 spe_pmu->max_record_sz = 1 << fld; 1087 if (spe_pmu->max_record_sz > SZ_2K || spe_pmu->max_record_sz < 16) { 1088 dev_err(dev, "unsupported PMSIDR_EL1.MaxSize [%d] on CPU %d\n", 1089 fld, smp_processor_id()); 1090 return; 1091 } 1092 1093 fld = FIELD_GET(PMSIDR_EL1_COUNTSIZE, reg); 1094 switch (fld) { 1095 default: 1096 dev_warn(dev, "unknown PMSIDR_EL1.CountSize [%d]; assuming 2\n", 1097 fld); 1098 fallthrough; 1099 case PMSIDR_EL1_COUNTSIZE_12_BIT_SAT: 1100 spe_pmu->counter_sz = 12; 1101 break; 1102 case PMSIDR_EL1_COUNTSIZE_16_BIT_SAT: 1103 spe_pmu->counter_sz = 16; 1104 } 1105 1106 dev_info(dev, 1107 "probed SPEv1.%d for CPUs %*pbl [max_record_sz %u, align %u, features 0x%llx]\n", 1108 spe_pmu->pmsver - 1, cpumask_pr_args(&spe_pmu->supported_cpus), 1109 spe_pmu->max_record_sz, spe_pmu->align, spe_pmu->features); 1110 1111 spe_pmu->features |= SPE_PMU_FEAT_DEV_PROBED; 1112 } 1113 1114 static void __arm_spe_pmu_reset_local(void) 1115 { 1116 /* 1117 * This is probably overkill, as we have no idea where we're 1118 * draining any buffered data to... 1119 */ 1120 arm_spe_pmu_disable_and_drain_local(); 1121 1122 /* Reset the buffer base pointer */ 1123 write_sysreg_s(0, SYS_PMBPTR_EL1); 1124 isb(); 1125 1126 /* Clear any pending management interrupts */ 1127 write_sysreg_s(0, SYS_PMBSR_EL1); 1128 isb(); 1129 } 1130 1131 static void __arm_spe_pmu_setup_one(void *info) 1132 { 1133 struct arm_spe_pmu *spe_pmu = info; 1134 1135 __arm_spe_pmu_reset_local(); 1136 enable_percpu_irq(spe_pmu->irq, IRQ_TYPE_NONE); 1137 } 1138 1139 static void __arm_spe_pmu_stop_one(void *info) 1140 { 1141 struct arm_spe_pmu *spe_pmu = info; 1142 1143 disable_percpu_irq(spe_pmu->irq); 1144 __arm_spe_pmu_reset_local(); 1145 } 1146 1147 static int arm_spe_pmu_cpu_startup(unsigned int cpu, struct hlist_node *node) 1148 { 1149 struct arm_spe_pmu *spe_pmu; 1150 1151 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1152 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1153 return 0; 1154 1155 __arm_spe_pmu_setup_one(spe_pmu); 1156 return 0; 1157 } 1158 1159 static int arm_spe_pmu_cpu_teardown(unsigned int cpu, struct hlist_node *node) 1160 { 1161 struct arm_spe_pmu *spe_pmu; 1162 1163 spe_pmu = hlist_entry_safe(node, struct arm_spe_pmu, hotplug_node); 1164 if (!cpumask_test_cpu(cpu, &spe_pmu->supported_cpus)) 1165 return 0; 1166 1167 __arm_spe_pmu_stop_one(spe_pmu); 1168 return 0; 1169 } 1170 1171 static int arm_spe_pmu_dev_init(struct arm_spe_pmu *spe_pmu) 1172 { 1173 int ret; 1174 cpumask_t *mask = &spe_pmu->supported_cpus; 1175 1176 /* Make sure we probe the hardware on a relevant CPU */ 1177 ret = smp_call_function_any(mask, __arm_spe_pmu_dev_probe, spe_pmu, 1); 1178 if (ret || !(spe_pmu->features & SPE_PMU_FEAT_DEV_PROBED)) 1179 return -ENXIO; 1180 1181 /* Request our PPIs (note that the IRQ is still disabled) */ 1182 ret = request_percpu_irq(spe_pmu->irq, arm_spe_pmu_irq_handler, DRVNAME, 1183 spe_pmu->handle); 1184 if (ret) 1185 return ret; 1186 1187 /* 1188 * Register our hotplug notifier now so we don't miss any events. 1189 * This will enable the IRQ for any supported CPUs that are already 1190 * up. 1191 */ 1192 ret = cpuhp_state_add_instance(arm_spe_pmu_online, 1193 &spe_pmu->hotplug_node); 1194 if (ret) 1195 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1196 1197 return ret; 1198 } 1199 1200 static void arm_spe_pmu_dev_teardown(struct arm_spe_pmu *spe_pmu) 1201 { 1202 cpuhp_state_remove_instance(arm_spe_pmu_online, &spe_pmu->hotplug_node); 1203 free_percpu_irq(spe_pmu->irq, spe_pmu->handle); 1204 } 1205 1206 /* Driver and device probing */ 1207 static int arm_spe_pmu_irq_probe(struct arm_spe_pmu *spe_pmu) 1208 { 1209 struct platform_device *pdev = spe_pmu->pdev; 1210 int irq = platform_get_irq(pdev, 0); 1211 1212 if (irq < 0) 1213 return -ENXIO; 1214 1215 if (!irq_is_percpu(irq)) { 1216 dev_err(&pdev->dev, "expected PPI but got SPI (%d)\n", irq); 1217 return -EINVAL; 1218 } 1219 1220 if (irq_get_percpu_devid_partition(irq, &spe_pmu->supported_cpus)) { 1221 dev_err(&pdev->dev, "failed to get PPI partition (%d)\n", irq); 1222 return -EINVAL; 1223 } 1224 1225 spe_pmu->irq = irq; 1226 return 0; 1227 } 1228 1229 static const struct of_device_id arm_spe_pmu_of_match[] = { 1230 { .compatible = "arm,statistical-profiling-extension-v1", .data = (void *)1 }, 1231 { /* Sentinel */ }, 1232 }; 1233 MODULE_DEVICE_TABLE(of, arm_spe_pmu_of_match); 1234 1235 static const struct platform_device_id arm_spe_match[] = { 1236 { ARMV8_SPE_PDEV_NAME, 0}, 1237 { } 1238 }; 1239 MODULE_DEVICE_TABLE(platform, arm_spe_match); 1240 1241 static int arm_spe_pmu_device_probe(struct platform_device *pdev) 1242 { 1243 int ret; 1244 struct arm_spe_pmu *spe_pmu; 1245 struct device *dev = &pdev->dev; 1246 1247 /* 1248 * If kernelspace is unmapped when running at EL0, then the SPE 1249 * buffer will fault and prematurely terminate the AUX session. 1250 */ 1251 if (arm64_kernel_unmapped_at_el0()) { 1252 dev_warn_once(dev, "profiling buffer inaccessible. Try passing \"kpti=off\" on the kernel command line\n"); 1253 return -EPERM; 1254 } 1255 1256 spe_pmu = devm_kzalloc(dev, sizeof(*spe_pmu), GFP_KERNEL); 1257 if (!spe_pmu) 1258 return -ENOMEM; 1259 1260 spe_pmu->handle = alloc_percpu(typeof(*spe_pmu->handle)); 1261 if (!spe_pmu->handle) 1262 return -ENOMEM; 1263 1264 spe_pmu->pdev = pdev; 1265 platform_set_drvdata(pdev, spe_pmu); 1266 1267 ret = arm_spe_pmu_irq_probe(spe_pmu); 1268 if (ret) 1269 goto out_free_handle; 1270 1271 ret = arm_spe_pmu_dev_init(spe_pmu); 1272 if (ret) 1273 goto out_free_handle; 1274 1275 ret = arm_spe_pmu_perf_init(spe_pmu); 1276 if (ret) 1277 goto out_teardown_dev; 1278 1279 return 0; 1280 1281 out_teardown_dev: 1282 arm_spe_pmu_dev_teardown(spe_pmu); 1283 out_free_handle: 1284 free_percpu(spe_pmu->handle); 1285 return ret; 1286 } 1287 1288 static int arm_spe_pmu_device_remove(struct platform_device *pdev) 1289 { 1290 struct arm_spe_pmu *spe_pmu = platform_get_drvdata(pdev); 1291 1292 arm_spe_pmu_perf_destroy(spe_pmu); 1293 arm_spe_pmu_dev_teardown(spe_pmu); 1294 free_percpu(spe_pmu->handle); 1295 return 0; 1296 } 1297 1298 static struct platform_driver arm_spe_pmu_driver = { 1299 .id_table = arm_spe_match, 1300 .driver = { 1301 .name = DRVNAME, 1302 .of_match_table = of_match_ptr(arm_spe_pmu_of_match), 1303 .suppress_bind_attrs = true, 1304 }, 1305 .probe = arm_spe_pmu_device_probe, 1306 .remove = arm_spe_pmu_device_remove, 1307 }; 1308 1309 static int __init arm_spe_pmu_init(void) 1310 { 1311 int ret; 1312 1313 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, DRVNAME, 1314 arm_spe_pmu_cpu_startup, 1315 arm_spe_pmu_cpu_teardown); 1316 if (ret < 0) 1317 return ret; 1318 arm_spe_pmu_online = ret; 1319 1320 ret = platform_driver_register(&arm_spe_pmu_driver); 1321 if (ret) 1322 cpuhp_remove_multi_state(arm_spe_pmu_online); 1323 1324 return ret; 1325 } 1326 1327 static void __exit arm_spe_pmu_exit(void) 1328 { 1329 platform_driver_unregister(&arm_spe_pmu_driver); 1330 cpuhp_remove_multi_state(arm_spe_pmu_online); 1331 } 1332 1333 module_init(arm_spe_pmu_init); 1334 module_exit(arm_spe_pmu_exit); 1335 1336 MODULE_DESCRIPTION("Perf driver for the ARMv8.2 Statistical Profiling Extension"); 1337 MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>"); 1338 MODULE_LICENSE("GPL v2"); 1339