xref: /openbmc/linux/drivers/perf/arm_pmuv3.c (revision 1992f2af)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * ARMv8 PMUv3 Performance Events handling code.
4  *
5  * Copyright (C) 2012 ARM Limited
6  * Author: Will Deacon <will.deacon@arm.com>
7  *
8  * This code is based heavily on the ARMv7 perf event code.
9  */
10 
11 #include <asm/irq_regs.h>
12 #include <asm/perf_event.h>
13 #include <asm/virt.h>
14 
15 #include <clocksource/arm_arch_timer.h>
16 
17 #include <linux/acpi.h>
18 #include <linux/clocksource.h>
19 #include <linux/of.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/perf/arm_pmuv3.h>
22 #include <linux/platform_device.h>
23 #include <linux/sched_clock.h>
24 #include <linux/smp.h>
25 #include <linux/nmi.h>
26 
27 #include <asm/arm_pmuv3.h>
28 
29 /* ARMv8 Cortex-A53 specific event types. */
30 #define ARMV8_A53_PERFCTR_PREF_LINEFILL				0xC2
31 
32 /* ARMv8 Cavium ThunderX specific event types. */
33 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST			0xE9
34 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS		0xEA
35 #define ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS		0xEB
36 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS		0xEC
37 #define ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS		0xED
38 
39 /*
40  * ARMv8 Architectural defined events, not all of these may
41  * be supported on any given implementation. Unsupported events will
42  * be disabled at run-time based on the PMCEID registers.
43  */
44 static const unsigned armv8_pmuv3_perf_map[PERF_COUNT_HW_MAX] = {
45 	PERF_MAP_ALL_UNSUPPORTED,
46 	[PERF_COUNT_HW_CPU_CYCLES]		= ARMV8_PMUV3_PERFCTR_CPU_CYCLES,
47 	[PERF_COUNT_HW_INSTRUCTIONS]		= ARMV8_PMUV3_PERFCTR_INST_RETIRED,
48 	[PERF_COUNT_HW_CACHE_REFERENCES]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
49 	[PERF_COUNT_HW_CACHE_MISSES]		= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
50 	[PERF_COUNT_HW_BRANCH_MISSES]		= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
51 	[PERF_COUNT_HW_BUS_CYCLES]		= ARMV8_PMUV3_PERFCTR_BUS_CYCLES,
52 	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= ARMV8_PMUV3_PERFCTR_STALL_FRONTEND,
53 	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= ARMV8_PMUV3_PERFCTR_STALL_BACKEND,
54 };
55 
56 static const unsigned armv8_pmuv3_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
57 						[PERF_COUNT_HW_CACHE_OP_MAX]
58 						[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
59 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
60 
61 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE,
62 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL,
63 
64 	[C(L1I)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE,
65 	[C(L1I)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL,
66 
67 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL,
68 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1D_TLB,
69 
70 	[C(ITLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL,
71 	[C(ITLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_L1I_TLB,
72 
73 	[C(LL)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD,
74 	[C(LL)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_LL_CACHE_RD,
75 
76 	[C(BPU)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_PMUV3_PERFCTR_BR_PRED,
77 	[C(BPU)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_PMUV3_PERFCTR_BR_MIS_PRED,
78 };
79 
80 static const unsigned armv8_a53_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
81 					      [PERF_COUNT_HW_CACHE_OP_MAX]
82 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
83 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
84 
85 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_A53_PERFCTR_PREF_LINEFILL,
86 
87 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
88 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
89 };
90 
91 static const unsigned armv8_a57_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
92 					      [PERF_COUNT_HW_CACHE_OP_MAX]
93 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
94 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
95 
96 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
97 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
98 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
99 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
100 
101 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
102 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
103 
104 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
105 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
106 };
107 
108 static const unsigned armv8_a73_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
109 					      [PERF_COUNT_HW_CACHE_OP_MAX]
110 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
111 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
112 
113 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
114 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
115 };
116 
117 static const unsigned armv8_thunder_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
118 						   [PERF_COUNT_HW_CACHE_OP_MAX]
119 						   [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
120 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
121 
122 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
123 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
124 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
125 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_THUNDER_PERFCTR_L1D_CACHE_MISS_ST,
126 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_ACCESS,
127 	[C(L1D)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1D_CACHE_PREF_MISS,
128 
129 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_ACCESS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_ACCESS,
130 	[C(L1I)][C(OP_PREFETCH)][C(RESULT_MISS)] = ARMV8_THUNDER_PERFCTR_L1I_CACHE_PREF_MISS,
131 
132 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
133 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
134 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
135 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
136 };
137 
138 static const unsigned armv8_vulcan_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
139 					      [PERF_COUNT_HW_CACHE_OP_MAX]
140 					      [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
141 	PERF_CACHE_MAP_ALL_UNSUPPORTED,
142 
143 	[C(L1D)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_RD,
144 	[C(L1D)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_RD,
145 	[C(L1D)][C(OP_WRITE)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_WR,
146 	[C(L1D)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_CACHE_REFILL_WR,
147 
148 	[C(DTLB)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_RD,
149 	[C(DTLB)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_L1D_TLB_WR,
150 	[C(DTLB)][C(OP_READ)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_RD,
151 	[C(DTLB)][C(OP_WRITE)][C(RESULT_MISS)]	= ARMV8_IMPDEF_PERFCTR_L1D_TLB_REFILL_WR,
152 
153 	[C(NODE)][C(OP_READ)][C(RESULT_ACCESS)]	= ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_RD,
154 	[C(NODE)][C(OP_WRITE)][C(RESULT_ACCESS)] = ARMV8_IMPDEF_PERFCTR_BUS_ACCESS_WR,
155 };
156 
157 static ssize_t
158 armv8pmu_events_sysfs_show(struct device *dev,
159 			   struct device_attribute *attr, char *page)
160 {
161 	struct perf_pmu_events_attr *pmu_attr;
162 
163 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
164 
165 	return sprintf(page, "event=0x%04llx\n", pmu_attr->id);
166 }
167 
168 #define ARMV8_EVENT_ATTR(name, config)						\
169 	PMU_EVENT_ATTR_ID(name, armv8pmu_events_sysfs_show, config)
170 
171 static struct attribute *armv8_pmuv3_event_attrs[] = {
172 	/*
173 	 * Don't expose the sw_incr event in /sys. It's not usable as writes to
174 	 * PMSWINC_EL0 will trap as PMUSERENR.{SW,EN}=={0,0} and event rotation
175 	 * means we don't have a fixed event<->counter relationship regardless.
176 	 */
177 	ARMV8_EVENT_ATTR(l1i_cache_refill, ARMV8_PMUV3_PERFCTR_L1I_CACHE_REFILL),
178 	ARMV8_EVENT_ATTR(l1i_tlb_refill, ARMV8_PMUV3_PERFCTR_L1I_TLB_REFILL),
179 	ARMV8_EVENT_ATTR(l1d_cache_refill, ARMV8_PMUV3_PERFCTR_L1D_CACHE_REFILL),
180 	ARMV8_EVENT_ATTR(l1d_cache, ARMV8_PMUV3_PERFCTR_L1D_CACHE),
181 	ARMV8_EVENT_ATTR(l1d_tlb_refill, ARMV8_PMUV3_PERFCTR_L1D_TLB_REFILL),
182 	ARMV8_EVENT_ATTR(ld_retired, ARMV8_PMUV3_PERFCTR_LD_RETIRED),
183 	ARMV8_EVENT_ATTR(st_retired, ARMV8_PMUV3_PERFCTR_ST_RETIRED),
184 	ARMV8_EVENT_ATTR(inst_retired, ARMV8_PMUV3_PERFCTR_INST_RETIRED),
185 	ARMV8_EVENT_ATTR(exc_taken, ARMV8_PMUV3_PERFCTR_EXC_TAKEN),
186 	ARMV8_EVENT_ATTR(exc_return, ARMV8_PMUV3_PERFCTR_EXC_RETURN),
187 	ARMV8_EVENT_ATTR(cid_write_retired, ARMV8_PMUV3_PERFCTR_CID_WRITE_RETIRED),
188 	ARMV8_EVENT_ATTR(pc_write_retired, ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED),
189 	ARMV8_EVENT_ATTR(br_immed_retired, ARMV8_PMUV3_PERFCTR_BR_IMMED_RETIRED),
190 	ARMV8_EVENT_ATTR(br_return_retired, ARMV8_PMUV3_PERFCTR_BR_RETURN_RETIRED),
191 	ARMV8_EVENT_ATTR(unaligned_ldst_retired, ARMV8_PMUV3_PERFCTR_UNALIGNED_LDST_RETIRED),
192 	ARMV8_EVENT_ATTR(br_mis_pred, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED),
193 	ARMV8_EVENT_ATTR(cpu_cycles, ARMV8_PMUV3_PERFCTR_CPU_CYCLES),
194 	ARMV8_EVENT_ATTR(br_pred, ARMV8_PMUV3_PERFCTR_BR_PRED),
195 	ARMV8_EVENT_ATTR(mem_access, ARMV8_PMUV3_PERFCTR_MEM_ACCESS),
196 	ARMV8_EVENT_ATTR(l1i_cache, ARMV8_PMUV3_PERFCTR_L1I_CACHE),
197 	ARMV8_EVENT_ATTR(l1d_cache_wb, ARMV8_PMUV3_PERFCTR_L1D_CACHE_WB),
198 	ARMV8_EVENT_ATTR(l2d_cache, ARMV8_PMUV3_PERFCTR_L2D_CACHE),
199 	ARMV8_EVENT_ATTR(l2d_cache_refill, ARMV8_PMUV3_PERFCTR_L2D_CACHE_REFILL),
200 	ARMV8_EVENT_ATTR(l2d_cache_wb, ARMV8_PMUV3_PERFCTR_L2D_CACHE_WB),
201 	ARMV8_EVENT_ATTR(bus_access, ARMV8_PMUV3_PERFCTR_BUS_ACCESS),
202 	ARMV8_EVENT_ATTR(memory_error, ARMV8_PMUV3_PERFCTR_MEMORY_ERROR),
203 	ARMV8_EVENT_ATTR(inst_spec, ARMV8_PMUV3_PERFCTR_INST_SPEC),
204 	ARMV8_EVENT_ATTR(ttbr_write_retired, ARMV8_PMUV3_PERFCTR_TTBR_WRITE_RETIRED),
205 	ARMV8_EVENT_ATTR(bus_cycles, ARMV8_PMUV3_PERFCTR_BUS_CYCLES),
206 	/* Don't expose the chain event in /sys, since it's useless in isolation */
207 	ARMV8_EVENT_ATTR(l1d_cache_allocate, ARMV8_PMUV3_PERFCTR_L1D_CACHE_ALLOCATE),
208 	ARMV8_EVENT_ATTR(l2d_cache_allocate, ARMV8_PMUV3_PERFCTR_L2D_CACHE_ALLOCATE),
209 	ARMV8_EVENT_ATTR(br_retired, ARMV8_PMUV3_PERFCTR_BR_RETIRED),
210 	ARMV8_EVENT_ATTR(br_mis_pred_retired, ARMV8_PMUV3_PERFCTR_BR_MIS_PRED_RETIRED),
211 	ARMV8_EVENT_ATTR(stall_frontend, ARMV8_PMUV3_PERFCTR_STALL_FRONTEND),
212 	ARMV8_EVENT_ATTR(stall_backend, ARMV8_PMUV3_PERFCTR_STALL_BACKEND),
213 	ARMV8_EVENT_ATTR(l1d_tlb, ARMV8_PMUV3_PERFCTR_L1D_TLB),
214 	ARMV8_EVENT_ATTR(l1i_tlb, ARMV8_PMUV3_PERFCTR_L1I_TLB),
215 	ARMV8_EVENT_ATTR(l2i_cache, ARMV8_PMUV3_PERFCTR_L2I_CACHE),
216 	ARMV8_EVENT_ATTR(l2i_cache_refill, ARMV8_PMUV3_PERFCTR_L2I_CACHE_REFILL),
217 	ARMV8_EVENT_ATTR(l3d_cache_allocate, ARMV8_PMUV3_PERFCTR_L3D_CACHE_ALLOCATE),
218 	ARMV8_EVENT_ATTR(l3d_cache_refill, ARMV8_PMUV3_PERFCTR_L3D_CACHE_REFILL),
219 	ARMV8_EVENT_ATTR(l3d_cache, ARMV8_PMUV3_PERFCTR_L3D_CACHE),
220 	ARMV8_EVENT_ATTR(l3d_cache_wb, ARMV8_PMUV3_PERFCTR_L3D_CACHE_WB),
221 	ARMV8_EVENT_ATTR(l2d_tlb_refill, ARMV8_PMUV3_PERFCTR_L2D_TLB_REFILL),
222 	ARMV8_EVENT_ATTR(l2i_tlb_refill, ARMV8_PMUV3_PERFCTR_L2I_TLB_REFILL),
223 	ARMV8_EVENT_ATTR(l2d_tlb, ARMV8_PMUV3_PERFCTR_L2D_TLB),
224 	ARMV8_EVENT_ATTR(l2i_tlb, ARMV8_PMUV3_PERFCTR_L2I_TLB),
225 	ARMV8_EVENT_ATTR(remote_access, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS),
226 	ARMV8_EVENT_ATTR(ll_cache, ARMV8_PMUV3_PERFCTR_LL_CACHE),
227 	ARMV8_EVENT_ATTR(ll_cache_miss, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS),
228 	ARMV8_EVENT_ATTR(dtlb_walk, ARMV8_PMUV3_PERFCTR_DTLB_WALK),
229 	ARMV8_EVENT_ATTR(itlb_walk, ARMV8_PMUV3_PERFCTR_ITLB_WALK),
230 	ARMV8_EVENT_ATTR(ll_cache_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_RD),
231 	ARMV8_EVENT_ATTR(ll_cache_miss_rd, ARMV8_PMUV3_PERFCTR_LL_CACHE_MISS_RD),
232 	ARMV8_EVENT_ATTR(remote_access_rd, ARMV8_PMUV3_PERFCTR_REMOTE_ACCESS_RD),
233 	ARMV8_EVENT_ATTR(l1d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L1D_CACHE_LMISS_RD),
234 	ARMV8_EVENT_ATTR(op_retired, ARMV8_PMUV3_PERFCTR_OP_RETIRED),
235 	ARMV8_EVENT_ATTR(op_spec, ARMV8_PMUV3_PERFCTR_OP_SPEC),
236 	ARMV8_EVENT_ATTR(stall, ARMV8_PMUV3_PERFCTR_STALL),
237 	ARMV8_EVENT_ATTR(stall_slot_backend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_BACKEND),
238 	ARMV8_EVENT_ATTR(stall_slot_frontend, ARMV8_PMUV3_PERFCTR_STALL_SLOT_FRONTEND),
239 	ARMV8_EVENT_ATTR(stall_slot, ARMV8_PMUV3_PERFCTR_STALL_SLOT),
240 	ARMV8_EVENT_ATTR(sample_pop, ARMV8_SPE_PERFCTR_SAMPLE_POP),
241 	ARMV8_EVENT_ATTR(sample_feed, ARMV8_SPE_PERFCTR_SAMPLE_FEED),
242 	ARMV8_EVENT_ATTR(sample_filtrate, ARMV8_SPE_PERFCTR_SAMPLE_FILTRATE),
243 	ARMV8_EVENT_ATTR(sample_collision, ARMV8_SPE_PERFCTR_SAMPLE_COLLISION),
244 	ARMV8_EVENT_ATTR(cnt_cycles, ARMV8_AMU_PERFCTR_CNT_CYCLES),
245 	ARMV8_EVENT_ATTR(stall_backend_mem, ARMV8_AMU_PERFCTR_STALL_BACKEND_MEM),
246 	ARMV8_EVENT_ATTR(l1i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L1I_CACHE_LMISS),
247 	ARMV8_EVENT_ATTR(l2d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L2D_CACHE_LMISS_RD),
248 	ARMV8_EVENT_ATTR(l2i_cache_lmiss, ARMV8_PMUV3_PERFCTR_L2I_CACHE_LMISS),
249 	ARMV8_EVENT_ATTR(l3d_cache_lmiss_rd, ARMV8_PMUV3_PERFCTR_L3D_CACHE_LMISS_RD),
250 	ARMV8_EVENT_ATTR(trb_wrap, ARMV8_PMUV3_PERFCTR_TRB_WRAP),
251 	ARMV8_EVENT_ATTR(trb_trig, ARMV8_PMUV3_PERFCTR_TRB_TRIG),
252 	ARMV8_EVENT_ATTR(trcextout0, ARMV8_PMUV3_PERFCTR_TRCEXTOUT0),
253 	ARMV8_EVENT_ATTR(trcextout1, ARMV8_PMUV3_PERFCTR_TRCEXTOUT1),
254 	ARMV8_EVENT_ATTR(trcextout2, ARMV8_PMUV3_PERFCTR_TRCEXTOUT2),
255 	ARMV8_EVENT_ATTR(trcextout3, ARMV8_PMUV3_PERFCTR_TRCEXTOUT3),
256 	ARMV8_EVENT_ATTR(cti_trigout4, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT4),
257 	ARMV8_EVENT_ATTR(cti_trigout5, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT5),
258 	ARMV8_EVENT_ATTR(cti_trigout6, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT6),
259 	ARMV8_EVENT_ATTR(cti_trigout7, ARMV8_PMUV3_PERFCTR_CTI_TRIGOUT7),
260 	ARMV8_EVENT_ATTR(ldst_align_lat, ARMV8_PMUV3_PERFCTR_LDST_ALIGN_LAT),
261 	ARMV8_EVENT_ATTR(ld_align_lat, ARMV8_PMUV3_PERFCTR_LD_ALIGN_LAT),
262 	ARMV8_EVENT_ATTR(st_align_lat, ARMV8_PMUV3_PERFCTR_ST_ALIGN_LAT),
263 	ARMV8_EVENT_ATTR(mem_access_checked, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED),
264 	ARMV8_EVENT_ATTR(mem_access_checked_rd, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_RD),
265 	ARMV8_EVENT_ATTR(mem_access_checked_wr, ARMV8_MTE_PERFCTR_MEM_ACCESS_CHECKED_WR),
266 	NULL,
267 };
268 
269 static umode_t
270 armv8pmu_event_attr_is_visible(struct kobject *kobj,
271 			       struct attribute *attr, int unused)
272 {
273 	struct device *dev = kobj_to_dev(kobj);
274 	struct pmu *pmu = dev_get_drvdata(dev);
275 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
276 	struct perf_pmu_events_attr *pmu_attr;
277 
278 	pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr.attr);
279 
280 	if (pmu_attr->id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
281 	    test_bit(pmu_attr->id, cpu_pmu->pmceid_bitmap))
282 		return attr->mode;
283 
284 	if (pmu_attr->id >= ARMV8_PMUV3_EXT_COMMON_EVENT_BASE) {
285 		u64 id = pmu_attr->id - ARMV8_PMUV3_EXT_COMMON_EVENT_BASE;
286 
287 		if (id < ARMV8_PMUV3_MAX_COMMON_EVENTS &&
288 		    test_bit(id, cpu_pmu->pmceid_ext_bitmap))
289 			return attr->mode;
290 	}
291 
292 	return 0;
293 }
294 
295 static const struct attribute_group armv8_pmuv3_events_attr_group = {
296 	.name = "events",
297 	.attrs = armv8_pmuv3_event_attrs,
298 	.is_visible = armv8pmu_event_attr_is_visible,
299 };
300 
301 PMU_FORMAT_ATTR(event, "config:0-15");
302 PMU_FORMAT_ATTR(long, "config1:0");
303 PMU_FORMAT_ATTR(rdpmc, "config1:1");
304 
305 static int sysctl_perf_user_access __read_mostly;
306 
307 static inline bool armv8pmu_event_is_64bit(struct perf_event *event)
308 {
309 	return event->attr.config1 & 0x1;
310 }
311 
312 static inline bool armv8pmu_event_want_user_access(struct perf_event *event)
313 {
314 	return event->attr.config1 & 0x2;
315 }
316 
317 static struct attribute *armv8_pmuv3_format_attrs[] = {
318 	&format_attr_event.attr,
319 	&format_attr_long.attr,
320 	&format_attr_rdpmc.attr,
321 	NULL,
322 };
323 
324 static const struct attribute_group armv8_pmuv3_format_attr_group = {
325 	.name = "format",
326 	.attrs = armv8_pmuv3_format_attrs,
327 };
328 
329 static ssize_t slots_show(struct device *dev, struct device_attribute *attr,
330 			  char *page)
331 {
332 	struct pmu *pmu = dev_get_drvdata(dev);
333 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
334 	u32 slots = cpu_pmu->reg_pmmir & ARMV8_PMU_SLOTS_MASK;
335 
336 	return sysfs_emit(page, "0x%08x\n", slots);
337 }
338 
339 static DEVICE_ATTR_RO(slots);
340 
341 static ssize_t bus_slots_show(struct device *dev, struct device_attribute *attr,
342 			      char *page)
343 {
344 	struct pmu *pmu = dev_get_drvdata(dev);
345 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
346 	u32 bus_slots = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_SLOTS_SHIFT)
347 			& ARMV8_PMU_BUS_SLOTS_MASK;
348 
349 	return sysfs_emit(page, "0x%08x\n", bus_slots);
350 }
351 
352 static DEVICE_ATTR_RO(bus_slots);
353 
354 static ssize_t bus_width_show(struct device *dev, struct device_attribute *attr,
355 			      char *page)
356 {
357 	struct pmu *pmu = dev_get_drvdata(dev);
358 	struct arm_pmu *cpu_pmu = container_of(pmu, struct arm_pmu, pmu);
359 	u32 bus_width = (cpu_pmu->reg_pmmir >> ARMV8_PMU_BUS_WIDTH_SHIFT)
360 			& ARMV8_PMU_BUS_WIDTH_MASK;
361 	u32 val = 0;
362 
363 	/* Encoded as Log2(number of bytes), plus one */
364 	if (bus_width > 2 && bus_width < 13)
365 		val = 1 << (bus_width - 1);
366 
367 	return sysfs_emit(page, "0x%08x\n", val);
368 }
369 
370 static DEVICE_ATTR_RO(bus_width);
371 
372 static struct attribute *armv8_pmuv3_caps_attrs[] = {
373 	&dev_attr_slots.attr,
374 	&dev_attr_bus_slots.attr,
375 	&dev_attr_bus_width.attr,
376 	NULL,
377 };
378 
379 static const struct attribute_group armv8_pmuv3_caps_attr_group = {
380 	.name = "caps",
381 	.attrs = armv8_pmuv3_caps_attrs,
382 };
383 
384 /*
385  * Perf Events' indices
386  */
387 #define	ARMV8_IDX_CYCLE_COUNTER	0
388 #define	ARMV8_IDX_COUNTER0	1
389 #define	ARMV8_IDX_CYCLE_COUNTER_USER	32
390 
391 /*
392  * We unconditionally enable ARMv8.5-PMU long event counter support
393  * (64-bit events) where supported. Indicate if this arm_pmu has long
394  * event counter support.
395  *
396  * On AArch32, long counters make no sense (you can't access the top
397  * bits), so we only enable this on AArch64.
398  */
399 static bool armv8pmu_has_long_event(struct arm_pmu *cpu_pmu)
400 {
401 	return (IS_ENABLED(CONFIG_ARM64) && is_pmuv3p5(cpu_pmu->pmuver));
402 }
403 
404 static inline bool armv8pmu_event_has_user_read(struct perf_event *event)
405 {
406 	return event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT;
407 }
408 
409 /*
410  * We must chain two programmable counters for 64 bit events,
411  * except when we have allocated the 64bit cycle counter (for CPU
412  * cycles event) or when user space counter access is enabled.
413  */
414 static inline bool armv8pmu_event_is_chained(struct perf_event *event)
415 {
416 	int idx = event->hw.idx;
417 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
418 
419 	return !armv8pmu_event_has_user_read(event) &&
420 	       armv8pmu_event_is_64bit(event) &&
421 	       !armv8pmu_has_long_event(cpu_pmu) &&
422 	       (idx != ARMV8_IDX_CYCLE_COUNTER);
423 }
424 
425 /*
426  * ARMv8 low level PMU access
427  */
428 
429 /*
430  * Perf Event to low level counters mapping
431  */
432 #define	ARMV8_IDX_TO_COUNTER(x)	\
433 	(((x) - ARMV8_IDX_COUNTER0) & ARMV8_PMU_COUNTER_MASK)
434 
435 static inline u64 armv8pmu_pmcr_read(void)
436 {
437 	return read_pmcr();
438 }
439 
440 static inline void armv8pmu_pmcr_write(u64 val)
441 {
442 	val &= ARMV8_PMU_PMCR_MASK;
443 	isb();
444 	write_pmcr(val);
445 }
446 
447 static inline int armv8pmu_has_overflowed(u32 pmovsr)
448 {
449 	return pmovsr & ARMV8_PMU_OVERFLOWED_MASK;
450 }
451 
452 static inline int armv8pmu_counter_has_overflowed(u32 pmnc, int idx)
453 {
454 	return pmnc & BIT(ARMV8_IDX_TO_COUNTER(idx));
455 }
456 
457 static inline u64 armv8pmu_read_evcntr(int idx)
458 {
459 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
460 
461 	return read_pmevcntrn(counter);
462 }
463 
464 static inline u64 armv8pmu_read_hw_counter(struct perf_event *event)
465 {
466 	int idx = event->hw.idx;
467 	u64 val = armv8pmu_read_evcntr(idx);
468 
469 	if (armv8pmu_event_is_chained(event))
470 		val = (val << 32) | armv8pmu_read_evcntr(idx - 1);
471 	return val;
472 }
473 
474 /*
475  * The cycle counter is always a 64-bit counter. When ARMV8_PMU_PMCR_LP
476  * is set the event counters also become 64-bit counters. Unless the
477  * user has requested a long counter (attr.config1) then we want to
478  * interrupt upon 32-bit overflow - we achieve this by applying a bias.
479  */
480 static bool armv8pmu_event_needs_bias(struct perf_event *event)
481 {
482 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
483 	struct hw_perf_event *hwc = &event->hw;
484 	int idx = hwc->idx;
485 
486 	if (armv8pmu_event_is_64bit(event))
487 		return false;
488 
489 	if (armv8pmu_has_long_event(cpu_pmu) ||
490 	    idx == ARMV8_IDX_CYCLE_COUNTER)
491 		return true;
492 
493 	return false;
494 }
495 
496 static u64 armv8pmu_bias_long_counter(struct perf_event *event, u64 value)
497 {
498 	if (armv8pmu_event_needs_bias(event))
499 		value |= GENMASK_ULL(63, 32);
500 
501 	return value;
502 }
503 
504 static u64 armv8pmu_unbias_long_counter(struct perf_event *event, u64 value)
505 {
506 	if (armv8pmu_event_needs_bias(event))
507 		value &= ~GENMASK_ULL(63, 32);
508 
509 	return value;
510 }
511 
512 static u64 armv8pmu_read_counter(struct perf_event *event)
513 {
514 	struct hw_perf_event *hwc = &event->hw;
515 	int idx = hwc->idx;
516 	u64 value;
517 
518 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
519 		value = read_pmccntr();
520 	else
521 		value = armv8pmu_read_hw_counter(event);
522 
523 	return  armv8pmu_unbias_long_counter(event, value);
524 }
525 
526 static inline void armv8pmu_write_evcntr(int idx, u64 value)
527 {
528 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
529 
530 	write_pmevcntrn(counter, value);
531 }
532 
533 static inline void armv8pmu_write_hw_counter(struct perf_event *event,
534 					     u64 value)
535 {
536 	int idx = event->hw.idx;
537 
538 	if (armv8pmu_event_is_chained(event)) {
539 		armv8pmu_write_evcntr(idx, upper_32_bits(value));
540 		armv8pmu_write_evcntr(idx - 1, lower_32_bits(value));
541 	} else {
542 		armv8pmu_write_evcntr(idx, value);
543 	}
544 }
545 
546 static void armv8pmu_write_counter(struct perf_event *event, u64 value)
547 {
548 	struct hw_perf_event *hwc = &event->hw;
549 	int idx = hwc->idx;
550 
551 	value = armv8pmu_bias_long_counter(event, value);
552 
553 	if (idx == ARMV8_IDX_CYCLE_COUNTER)
554 		write_pmccntr(value);
555 	else
556 		armv8pmu_write_hw_counter(event, value);
557 }
558 
559 static inline void armv8pmu_write_evtype(int idx, u32 val)
560 {
561 	u32 counter = ARMV8_IDX_TO_COUNTER(idx);
562 
563 	val &= ARMV8_PMU_EVTYPE_MASK;
564 	write_pmevtypern(counter, val);
565 }
566 
567 static inline void armv8pmu_write_event_type(struct perf_event *event)
568 {
569 	struct hw_perf_event *hwc = &event->hw;
570 	int idx = hwc->idx;
571 
572 	/*
573 	 * For chained events, the low counter is programmed to count
574 	 * the event of interest and the high counter is programmed
575 	 * with CHAIN event code with filters set to count at all ELs.
576 	 */
577 	if (armv8pmu_event_is_chained(event)) {
578 		u32 chain_evt = ARMV8_PMUV3_PERFCTR_CHAIN |
579 				ARMV8_PMU_INCLUDE_EL2;
580 
581 		armv8pmu_write_evtype(idx - 1, hwc->config_base);
582 		armv8pmu_write_evtype(idx, chain_evt);
583 	} else {
584 		if (idx == ARMV8_IDX_CYCLE_COUNTER)
585 			write_pmccfiltr(hwc->config_base);
586 		else
587 			armv8pmu_write_evtype(idx, hwc->config_base);
588 	}
589 }
590 
591 static u32 armv8pmu_event_cnten_mask(struct perf_event *event)
592 {
593 	int counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
594 	u32 mask = BIT(counter);
595 
596 	if (armv8pmu_event_is_chained(event))
597 		mask |= BIT(counter - 1);
598 	return mask;
599 }
600 
601 static inline void armv8pmu_enable_counter(u32 mask)
602 {
603 	/*
604 	 * Make sure event configuration register writes are visible before we
605 	 * enable the counter.
606 	 * */
607 	isb();
608 	write_pmcntenset(mask);
609 }
610 
611 static inline void armv8pmu_enable_event_counter(struct perf_event *event)
612 {
613 	struct perf_event_attr *attr = &event->attr;
614 	u32 mask = armv8pmu_event_cnten_mask(event);
615 
616 	kvm_set_pmu_events(mask, attr);
617 
618 	/* We rely on the hypervisor switch code to enable guest counters */
619 	if (!kvm_pmu_counter_deferred(attr))
620 		armv8pmu_enable_counter(mask);
621 }
622 
623 static inline void armv8pmu_disable_counter(u32 mask)
624 {
625 	write_pmcntenclr(mask);
626 	/*
627 	 * Make sure the effects of disabling the counter are visible before we
628 	 * start configuring the event.
629 	 */
630 	isb();
631 }
632 
633 static inline void armv8pmu_disable_event_counter(struct perf_event *event)
634 {
635 	struct perf_event_attr *attr = &event->attr;
636 	u32 mask = armv8pmu_event_cnten_mask(event);
637 
638 	kvm_clr_pmu_events(mask);
639 
640 	/* We rely on the hypervisor switch code to disable guest counters */
641 	if (!kvm_pmu_counter_deferred(attr))
642 		armv8pmu_disable_counter(mask);
643 }
644 
645 static inline void armv8pmu_enable_intens(u32 mask)
646 {
647 	write_pmintenset(mask);
648 }
649 
650 static inline void armv8pmu_enable_event_irq(struct perf_event *event)
651 {
652 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
653 	armv8pmu_enable_intens(BIT(counter));
654 }
655 
656 static inline void armv8pmu_disable_intens(u32 mask)
657 {
658 	write_pmintenclr(mask);
659 	isb();
660 	/* Clear the overflow flag in case an interrupt is pending. */
661 	write_pmovsclr(mask);
662 	isb();
663 }
664 
665 static inline void armv8pmu_disable_event_irq(struct perf_event *event)
666 {
667 	u32 counter = ARMV8_IDX_TO_COUNTER(event->hw.idx);
668 	armv8pmu_disable_intens(BIT(counter));
669 }
670 
671 static inline u32 armv8pmu_getreset_flags(void)
672 {
673 	u32 value;
674 
675 	/* Read */
676 	value = read_pmovsclr();
677 
678 	/* Write to clear flags */
679 	value &= ARMV8_PMU_OVSR_MASK;
680 	write_pmovsclr(value);
681 
682 	return value;
683 }
684 
685 static void update_pmuserenr(u64 val)
686 {
687 	lockdep_assert_irqs_disabled();
688 
689 	/*
690 	 * The current PMUSERENR_EL0 value might be the value for the guest.
691 	 * If that's the case, have KVM keep tracking of the register value
692 	 * for the host EL0 so that KVM can restore it before returning to
693 	 * the host EL0. Otherwise, update the register now.
694 	 */
695 	if (kvm_set_pmuserenr(val))
696 		return;
697 
698 	write_pmuserenr(val);
699 }
700 
701 static void armv8pmu_disable_user_access(void)
702 {
703 	update_pmuserenr(0);
704 }
705 
706 static void armv8pmu_enable_user_access(struct arm_pmu *cpu_pmu)
707 {
708 	int i;
709 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
710 
711 	/* Clear any unused counters to avoid leaking their contents */
712 	for_each_clear_bit(i, cpuc->used_mask, cpu_pmu->num_events) {
713 		if (i == ARMV8_IDX_CYCLE_COUNTER)
714 			write_pmccntr(0);
715 		else
716 			armv8pmu_write_evcntr(i, 0);
717 	}
718 
719 	update_pmuserenr(ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_CR);
720 }
721 
722 static void armv8pmu_enable_event(struct perf_event *event)
723 {
724 	/*
725 	 * Enable counter and interrupt, and set the counter to count
726 	 * the event that we're interested in.
727 	 */
728 	armv8pmu_disable_event_counter(event);
729 	armv8pmu_write_event_type(event);
730 	armv8pmu_enable_event_irq(event);
731 	armv8pmu_enable_event_counter(event);
732 }
733 
734 static void armv8pmu_disable_event(struct perf_event *event)
735 {
736 	armv8pmu_disable_event_counter(event);
737 	armv8pmu_disable_event_irq(event);
738 }
739 
740 static void armv8pmu_start(struct arm_pmu *cpu_pmu)
741 {
742 	struct perf_event_context *ctx;
743 	int nr_user = 0;
744 
745 	ctx = perf_cpu_task_ctx();
746 	if (ctx)
747 		nr_user = ctx->nr_user;
748 
749 	if (sysctl_perf_user_access && nr_user)
750 		armv8pmu_enable_user_access(cpu_pmu);
751 	else
752 		armv8pmu_disable_user_access();
753 
754 	/* Enable all counters */
755 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() | ARMV8_PMU_PMCR_E);
756 
757 	kvm_vcpu_pmu_resync_el0();
758 }
759 
760 static void armv8pmu_stop(struct arm_pmu *cpu_pmu)
761 {
762 	/* Disable all counters */
763 	armv8pmu_pmcr_write(armv8pmu_pmcr_read() & ~ARMV8_PMU_PMCR_E);
764 }
765 
766 static irqreturn_t armv8pmu_handle_irq(struct arm_pmu *cpu_pmu)
767 {
768 	u32 pmovsr;
769 	struct perf_sample_data data;
770 	struct pmu_hw_events *cpuc = this_cpu_ptr(cpu_pmu->hw_events);
771 	struct pt_regs *regs;
772 	int idx;
773 
774 	/*
775 	 * Get and reset the IRQ flags
776 	 */
777 	pmovsr = armv8pmu_getreset_flags();
778 
779 	/*
780 	 * Did an overflow occur?
781 	 */
782 	if (!armv8pmu_has_overflowed(pmovsr))
783 		return IRQ_NONE;
784 
785 	/*
786 	 * Handle the counter(s) overflow(s)
787 	 */
788 	regs = get_irq_regs();
789 
790 	/*
791 	 * Stop the PMU while processing the counter overflows
792 	 * to prevent skews in group events.
793 	 */
794 	armv8pmu_stop(cpu_pmu);
795 	for (idx = 0; idx < cpu_pmu->num_events; ++idx) {
796 		struct perf_event *event = cpuc->events[idx];
797 		struct hw_perf_event *hwc;
798 
799 		/* Ignore if we don't have an event. */
800 		if (!event)
801 			continue;
802 
803 		/*
804 		 * We have a single interrupt for all counters. Check that
805 		 * each counter has overflowed before we process it.
806 		 */
807 		if (!armv8pmu_counter_has_overflowed(pmovsr, idx))
808 			continue;
809 
810 		hwc = &event->hw;
811 		armpmu_event_update(event);
812 		perf_sample_data_init(&data, 0, hwc->last_period);
813 		if (!armpmu_event_set_period(event))
814 			continue;
815 
816 		/*
817 		 * Perf event overflow will queue the processing of the event as
818 		 * an irq_work which will be taken care of in the handling of
819 		 * IPI_IRQ_WORK.
820 		 */
821 		if (perf_event_overflow(event, &data, regs))
822 			cpu_pmu->disable(event);
823 	}
824 	armv8pmu_start(cpu_pmu);
825 
826 	return IRQ_HANDLED;
827 }
828 
829 static int armv8pmu_get_single_idx(struct pmu_hw_events *cpuc,
830 				    struct arm_pmu *cpu_pmu)
831 {
832 	int idx;
833 
834 	for (idx = ARMV8_IDX_COUNTER0; idx < cpu_pmu->num_events; idx++) {
835 		if (!test_and_set_bit(idx, cpuc->used_mask))
836 			return idx;
837 	}
838 	return -EAGAIN;
839 }
840 
841 static int armv8pmu_get_chain_idx(struct pmu_hw_events *cpuc,
842 				   struct arm_pmu *cpu_pmu)
843 {
844 	int idx;
845 
846 	/*
847 	 * Chaining requires two consecutive event counters, where
848 	 * the lower idx must be even.
849 	 */
850 	for (idx = ARMV8_IDX_COUNTER0 + 1; idx < cpu_pmu->num_events; idx += 2) {
851 		if (!test_and_set_bit(idx, cpuc->used_mask)) {
852 			/* Check if the preceding even counter is available */
853 			if (!test_and_set_bit(idx - 1, cpuc->used_mask))
854 				return idx;
855 			/* Release the Odd counter */
856 			clear_bit(idx, cpuc->used_mask);
857 		}
858 	}
859 	return -EAGAIN;
860 }
861 
862 static int armv8pmu_get_event_idx(struct pmu_hw_events *cpuc,
863 				  struct perf_event *event)
864 {
865 	struct arm_pmu *cpu_pmu = to_arm_pmu(event->pmu);
866 	struct hw_perf_event *hwc = &event->hw;
867 	unsigned long evtype = hwc->config_base & ARMV8_PMU_EVTYPE_EVENT;
868 
869 	/* Always prefer to place a cycle counter into the cycle counter. */
870 	if (evtype == ARMV8_PMUV3_PERFCTR_CPU_CYCLES) {
871 		if (!test_and_set_bit(ARMV8_IDX_CYCLE_COUNTER, cpuc->used_mask))
872 			return ARMV8_IDX_CYCLE_COUNTER;
873 		else if (armv8pmu_event_is_64bit(event) &&
874 			   armv8pmu_event_want_user_access(event) &&
875 			   !armv8pmu_has_long_event(cpu_pmu))
876 				return -EAGAIN;
877 	}
878 
879 	/*
880 	 * Otherwise use events counters
881 	 */
882 	if (armv8pmu_event_is_chained(event))
883 		return	armv8pmu_get_chain_idx(cpuc, cpu_pmu);
884 	else
885 		return armv8pmu_get_single_idx(cpuc, cpu_pmu);
886 }
887 
888 static void armv8pmu_clear_event_idx(struct pmu_hw_events *cpuc,
889 				     struct perf_event *event)
890 {
891 	int idx = event->hw.idx;
892 
893 	clear_bit(idx, cpuc->used_mask);
894 	if (armv8pmu_event_is_chained(event))
895 		clear_bit(idx - 1, cpuc->used_mask);
896 }
897 
898 static int armv8pmu_user_event_idx(struct perf_event *event)
899 {
900 	if (!sysctl_perf_user_access || !armv8pmu_event_has_user_read(event))
901 		return 0;
902 
903 	/*
904 	 * We remap the cycle counter index to 32 to
905 	 * match the offset applied to the rest of
906 	 * the counter indices.
907 	 */
908 	if (event->hw.idx == ARMV8_IDX_CYCLE_COUNTER)
909 		return ARMV8_IDX_CYCLE_COUNTER_USER;
910 
911 	return event->hw.idx;
912 }
913 
914 /*
915  * Add an event filter to a given event.
916  */
917 static int armv8pmu_set_event_filter(struct hw_perf_event *event,
918 				     struct perf_event_attr *attr)
919 {
920 	unsigned long config_base = 0;
921 
922 	if (attr->exclude_idle)
923 		return -EPERM;
924 
925 	/*
926 	 * If we're running in hyp mode, then we *are* the hypervisor.
927 	 * Therefore we ignore exclude_hv in this configuration, since
928 	 * there's no hypervisor to sample anyway. This is consistent
929 	 * with other architectures (x86 and Power).
930 	 */
931 	if (is_kernel_in_hyp_mode()) {
932 		if (!attr->exclude_kernel && !attr->exclude_host)
933 			config_base |= ARMV8_PMU_INCLUDE_EL2;
934 		if (attr->exclude_guest)
935 			config_base |= ARMV8_PMU_EXCLUDE_EL1;
936 		if (attr->exclude_host)
937 			config_base |= ARMV8_PMU_EXCLUDE_EL0;
938 	} else {
939 		if (!attr->exclude_hv && !attr->exclude_host)
940 			config_base |= ARMV8_PMU_INCLUDE_EL2;
941 	}
942 
943 	/*
944 	 * Filter out !VHE kernels and guest kernels
945 	 */
946 	if (attr->exclude_kernel)
947 		config_base |= ARMV8_PMU_EXCLUDE_EL1;
948 
949 	if (attr->exclude_user)
950 		config_base |= ARMV8_PMU_EXCLUDE_EL0;
951 
952 	/*
953 	 * Install the filter into config_base as this is used to
954 	 * construct the event type.
955 	 */
956 	event->config_base = config_base;
957 
958 	return 0;
959 }
960 
961 static void armv8pmu_reset(void *info)
962 {
963 	struct arm_pmu *cpu_pmu = (struct arm_pmu *)info;
964 	u64 pmcr;
965 
966 	/* The counter and interrupt enable registers are unknown at reset. */
967 	armv8pmu_disable_counter(U32_MAX);
968 	armv8pmu_disable_intens(U32_MAX);
969 
970 	/* Clear the counters we flip at guest entry/exit */
971 	kvm_clr_pmu_events(U32_MAX);
972 
973 	/*
974 	 * Initialize & Reset PMNC. Request overflow interrupt for
975 	 * 64 bit cycle counter but cheat in armv8pmu_write_counter().
976 	 */
977 	pmcr = ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C | ARMV8_PMU_PMCR_LC;
978 
979 	/* Enable long event counter support where available */
980 	if (armv8pmu_has_long_event(cpu_pmu))
981 		pmcr |= ARMV8_PMU_PMCR_LP;
982 
983 	armv8pmu_pmcr_write(pmcr);
984 }
985 
986 static int __armv8_pmuv3_map_event_id(struct arm_pmu *armpmu,
987 				      struct perf_event *event)
988 {
989 	if (event->attr.type == PERF_TYPE_HARDWARE &&
990 	    event->attr.config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) {
991 
992 		if (test_bit(ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED,
993 			     armpmu->pmceid_bitmap))
994 			return ARMV8_PMUV3_PERFCTR_PC_WRITE_RETIRED;
995 
996 		if (test_bit(ARMV8_PMUV3_PERFCTR_BR_RETIRED,
997 			     armpmu->pmceid_bitmap))
998 			return ARMV8_PMUV3_PERFCTR_BR_RETIRED;
999 
1000 		return HW_OP_UNSUPPORTED;
1001 	}
1002 
1003 	return armpmu_map_event(event, &armv8_pmuv3_perf_map,
1004 				&armv8_pmuv3_perf_cache_map,
1005 				ARMV8_PMU_EVTYPE_EVENT);
1006 }
1007 
1008 static int __armv8_pmuv3_map_event(struct perf_event *event,
1009 				   const unsigned (*extra_event_map)
1010 						  [PERF_COUNT_HW_MAX],
1011 				   const unsigned (*extra_cache_map)
1012 						  [PERF_COUNT_HW_CACHE_MAX]
1013 						  [PERF_COUNT_HW_CACHE_OP_MAX]
1014 						  [PERF_COUNT_HW_CACHE_RESULT_MAX])
1015 {
1016 	int hw_event_id;
1017 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
1018 
1019 	hw_event_id = __armv8_pmuv3_map_event_id(armpmu, event);
1020 
1021 	/*
1022 	 * CHAIN events only work when paired with an adjacent counter, and it
1023 	 * never makes sense for a user to open one in isolation, as they'll be
1024 	 * rotated arbitrarily.
1025 	 */
1026 	if (hw_event_id == ARMV8_PMUV3_PERFCTR_CHAIN)
1027 		return -EINVAL;
1028 
1029 	if (armv8pmu_event_is_64bit(event))
1030 		event->hw.flags |= ARMPMU_EVT_64BIT;
1031 
1032 	/*
1033 	 * User events must be allocated into a single counter, and so
1034 	 * must not be chained.
1035 	 *
1036 	 * Most 64-bit events require long counter support, but 64-bit
1037 	 * CPU_CYCLES events can be placed into the dedicated cycle
1038 	 * counter when this is free.
1039 	 */
1040 	if (armv8pmu_event_want_user_access(event)) {
1041 		if (!(event->attach_state & PERF_ATTACH_TASK))
1042 			return -EINVAL;
1043 		if (armv8pmu_event_is_64bit(event) &&
1044 		    (hw_event_id != ARMV8_PMUV3_PERFCTR_CPU_CYCLES) &&
1045 		    !armv8pmu_has_long_event(armpmu))
1046 			return -EOPNOTSUPP;
1047 
1048 		event->hw.flags |= PERF_EVENT_FLAG_USER_READ_CNT;
1049 	}
1050 
1051 	/* Only expose micro/arch events supported by this PMU */
1052 	if ((hw_event_id > 0) && (hw_event_id < ARMV8_PMUV3_MAX_COMMON_EVENTS)
1053 	    && test_bit(hw_event_id, armpmu->pmceid_bitmap)) {
1054 		return hw_event_id;
1055 	}
1056 
1057 	return armpmu_map_event(event, extra_event_map, extra_cache_map,
1058 				ARMV8_PMU_EVTYPE_EVENT);
1059 }
1060 
1061 static int armv8_pmuv3_map_event(struct perf_event *event)
1062 {
1063 	return __armv8_pmuv3_map_event(event, NULL, NULL);
1064 }
1065 
1066 static int armv8_a53_map_event(struct perf_event *event)
1067 {
1068 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a53_perf_cache_map);
1069 }
1070 
1071 static int armv8_a57_map_event(struct perf_event *event)
1072 {
1073 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a57_perf_cache_map);
1074 }
1075 
1076 static int armv8_a73_map_event(struct perf_event *event)
1077 {
1078 	return __armv8_pmuv3_map_event(event, NULL, &armv8_a73_perf_cache_map);
1079 }
1080 
1081 static int armv8_thunder_map_event(struct perf_event *event)
1082 {
1083 	return __armv8_pmuv3_map_event(event, NULL,
1084 				       &armv8_thunder_perf_cache_map);
1085 }
1086 
1087 static int armv8_vulcan_map_event(struct perf_event *event)
1088 {
1089 	return __armv8_pmuv3_map_event(event, NULL,
1090 				       &armv8_vulcan_perf_cache_map);
1091 }
1092 
1093 struct armv8pmu_probe_info {
1094 	struct arm_pmu *pmu;
1095 	bool present;
1096 };
1097 
1098 static void __armv8pmu_probe_pmu(void *info)
1099 {
1100 	struct armv8pmu_probe_info *probe = info;
1101 	struct arm_pmu *cpu_pmu = probe->pmu;
1102 	u64 pmceid_raw[2];
1103 	u32 pmceid[2];
1104 	int pmuver;
1105 
1106 	pmuver = read_pmuver();
1107 	if (!pmuv3_implemented(pmuver))
1108 		return;
1109 
1110 	cpu_pmu->pmuver = pmuver;
1111 	probe->present = true;
1112 
1113 	/* Read the nb of CNTx counters supported from PMNC */
1114 	cpu_pmu->num_events = (armv8pmu_pmcr_read() >> ARMV8_PMU_PMCR_N_SHIFT)
1115 		& ARMV8_PMU_PMCR_N_MASK;
1116 
1117 	/* Add the CPU cycles counter */
1118 	cpu_pmu->num_events += 1;
1119 
1120 	pmceid[0] = pmceid_raw[0] = read_pmceid0();
1121 	pmceid[1] = pmceid_raw[1] = read_pmceid1();
1122 
1123 	bitmap_from_arr32(cpu_pmu->pmceid_bitmap,
1124 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1125 
1126 	pmceid[0] = pmceid_raw[0] >> 32;
1127 	pmceid[1] = pmceid_raw[1] >> 32;
1128 
1129 	bitmap_from_arr32(cpu_pmu->pmceid_ext_bitmap,
1130 			     pmceid, ARMV8_PMUV3_MAX_COMMON_EVENTS);
1131 
1132 	/* store PMMIR register for sysfs */
1133 	if (is_pmuv3p4(pmuver) && (pmceid_raw[1] & BIT(31)))
1134 		cpu_pmu->reg_pmmir = read_pmmir();
1135 	else
1136 		cpu_pmu->reg_pmmir = 0;
1137 }
1138 
1139 static int armv8pmu_probe_pmu(struct arm_pmu *cpu_pmu)
1140 {
1141 	struct armv8pmu_probe_info probe = {
1142 		.pmu = cpu_pmu,
1143 		.present = false,
1144 	};
1145 	int ret;
1146 
1147 	ret = smp_call_function_any(&cpu_pmu->supported_cpus,
1148 				    __armv8pmu_probe_pmu,
1149 				    &probe, 1);
1150 	if (ret)
1151 		return ret;
1152 
1153 	return probe.present ? 0 : -ENODEV;
1154 }
1155 
1156 static void armv8pmu_disable_user_access_ipi(void *unused)
1157 {
1158 	armv8pmu_disable_user_access();
1159 }
1160 
1161 static int armv8pmu_proc_user_access_handler(struct ctl_table *table, int write,
1162 		void *buffer, size_t *lenp, loff_t *ppos)
1163 {
1164 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1165 	if (ret || !write || sysctl_perf_user_access)
1166 		return ret;
1167 
1168 	on_each_cpu(armv8pmu_disable_user_access_ipi, NULL, 1);
1169 	return 0;
1170 }
1171 
1172 static struct ctl_table armv8_pmu_sysctl_table[] = {
1173 	{
1174 		.procname       = "perf_user_access",
1175 		.data		= &sysctl_perf_user_access,
1176 		.maxlen		= sizeof(unsigned int),
1177 		.mode           = 0644,
1178 		.proc_handler	= armv8pmu_proc_user_access_handler,
1179 		.extra1		= SYSCTL_ZERO,
1180 		.extra2		= SYSCTL_ONE,
1181 	},
1182 	{ }
1183 };
1184 
1185 static void armv8_pmu_register_sysctl_table(void)
1186 {
1187 	static u32 tbl_registered = 0;
1188 
1189 	if (!cmpxchg_relaxed(&tbl_registered, 0, 1))
1190 		register_sysctl("kernel", armv8_pmu_sysctl_table);
1191 }
1192 
1193 static int armv8_pmu_init(struct arm_pmu *cpu_pmu, char *name,
1194 			  int (*map_event)(struct perf_event *event),
1195 			  const struct attribute_group *events,
1196 			  const struct attribute_group *format,
1197 			  const struct attribute_group *caps)
1198 {
1199 	int ret = armv8pmu_probe_pmu(cpu_pmu);
1200 	if (ret)
1201 		return ret;
1202 
1203 	cpu_pmu->handle_irq		= armv8pmu_handle_irq;
1204 	cpu_pmu->enable			= armv8pmu_enable_event;
1205 	cpu_pmu->disable		= armv8pmu_disable_event;
1206 	cpu_pmu->read_counter		= armv8pmu_read_counter;
1207 	cpu_pmu->write_counter		= armv8pmu_write_counter;
1208 	cpu_pmu->get_event_idx		= armv8pmu_get_event_idx;
1209 	cpu_pmu->clear_event_idx	= armv8pmu_clear_event_idx;
1210 	cpu_pmu->start			= armv8pmu_start;
1211 	cpu_pmu->stop			= armv8pmu_stop;
1212 	cpu_pmu->reset			= armv8pmu_reset;
1213 	cpu_pmu->set_event_filter	= armv8pmu_set_event_filter;
1214 
1215 	cpu_pmu->pmu.event_idx		= armv8pmu_user_event_idx;
1216 
1217 	cpu_pmu->name			= name;
1218 	cpu_pmu->map_event		= map_event;
1219 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_EVENTS] = events ?
1220 			events : &armv8_pmuv3_events_attr_group;
1221 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_FORMATS] = format ?
1222 			format : &armv8_pmuv3_format_attr_group;
1223 	cpu_pmu->attr_groups[ARMPMU_ATTR_GROUP_CAPS] = caps ?
1224 			caps : &armv8_pmuv3_caps_attr_group;
1225 
1226 	armv8_pmu_register_sysctl_table();
1227 	return 0;
1228 }
1229 
1230 static int armv8_pmu_init_nogroups(struct arm_pmu *cpu_pmu, char *name,
1231 				   int (*map_event)(struct perf_event *event))
1232 {
1233 	return armv8_pmu_init(cpu_pmu, name, map_event, NULL, NULL, NULL);
1234 }
1235 
1236 #define PMUV3_INIT_SIMPLE(name)						\
1237 static int name##_pmu_init(struct arm_pmu *cpu_pmu)			\
1238 {									\
1239 	return armv8_pmu_init_nogroups(cpu_pmu, #name, armv8_pmuv3_map_event);\
1240 }
1241 
1242 PMUV3_INIT_SIMPLE(armv8_pmuv3)
1243 
1244 PMUV3_INIT_SIMPLE(armv8_cortex_a34)
1245 PMUV3_INIT_SIMPLE(armv8_cortex_a55)
1246 PMUV3_INIT_SIMPLE(armv8_cortex_a65)
1247 PMUV3_INIT_SIMPLE(armv8_cortex_a75)
1248 PMUV3_INIT_SIMPLE(armv8_cortex_a76)
1249 PMUV3_INIT_SIMPLE(armv8_cortex_a77)
1250 PMUV3_INIT_SIMPLE(armv8_cortex_a78)
1251 PMUV3_INIT_SIMPLE(armv9_cortex_a510)
1252 PMUV3_INIT_SIMPLE(armv9_cortex_a520)
1253 PMUV3_INIT_SIMPLE(armv9_cortex_a710)
1254 PMUV3_INIT_SIMPLE(armv9_cortex_a715)
1255 PMUV3_INIT_SIMPLE(armv9_cortex_a720)
1256 PMUV3_INIT_SIMPLE(armv8_cortex_x1)
1257 PMUV3_INIT_SIMPLE(armv9_cortex_x2)
1258 PMUV3_INIT_SIMPLE(armv9_cortex_x3)
1259 PMUV3_INIT_SIMPLE(armv9_cortex_x4)
1260 PMUV3_INIT_SIMPLE(armv8_neoverse_e1)
1261 PMUV3_INIT_SIMPLE(armv8_neoverse_n1)
1262 PMUV3_INIT_SIMPLE(armv9_neoverse_n2)
1263 PMUV3_INIT_SIMPLE(armv8_neoverse_v1)
1264 
1265 PMUV3_INIT_SIMPLE(armv8_nvidia_carmel)
1266 PMUV3_INIT_SIMPLE(armv8_nvidia_denver)
1267 
1268 static int armv8_a35_pmu_init(struct arm_pmu *cpu_pmu)
1269 {
1270 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a35",
1271 				       armv8_a53_map_event);
1272 }
1273 
1274 static int armv8_a53_pmu_init(struct arm_pmu *cpu_pmu)
1275 {
1276 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a53",
1277 				       armv8_a53_map_event);
1278 }
1279 
1280 static int armv8_a57_pmu_init(struct arm_pmu *cpu_pmu)
1281 {
1282 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a57",
1283 				       armv8_a57_map_event);
1284 }
1285 
1286 static int armv8_a72_pmu_init(struct arm_pmu *cpu_pmu)
1287 {
1288 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a72",
1289 				       armv8_a57_map_event);
1290 }
1291 
1292 static int armv8_a73_pmu_init(struct arm_pmu *cpu_pmu)
1293 {
1294 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cortex_a73",
1295 				       armv8_a73_map_event);
1296 }
1297 
1298 static int armv8_thunder_pmu_init(struct arm_pmu *cpu_pmu)
1299 {
1300 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_cavium_thunder",
1301 				       armv8_thunder_map_event);
1302 }
1303 
1304 static int armv8_vulcan_pmu_init(struct arm_pmu *cpu_pmu)
1305 {
1306 	return armv8_pmu_init_nogroups(cpu_pmu, "armv8_brcm_vulcan",
1307 				       armv8_vulcan_map_event);
1308 }
1309 
1310 static const struct of_device_id armv8_pmu_of_device_ids[] = {
1311 	{.compatible = "arm,armv8-pmuv3",	.data = armv8_pmuv3_pmu_init},
1312 	{.compatible = "arm,cortex-a34-pmu",	.data = armv8_cortex_a34_pmu_init},
1313 	{.compatible = "arm,cortex-a35-pmu",	.data = armv8_a35_pmu_init},
1314 	{.compatible = "arm,cortex-a53-pmu",	.data = armv8_a53_pmu_init},
1315 	{.compatible = "arm,cortex-a55-pmu",	.data = armv8_cortex_a55_pmu_init},
1316 	{.compatible = "arm,cortex-a57-pmu",	.data = armv8_a57_pmu_init},
1317 	{.compatible = "arm,cortex-a65-pmu",	.data = armv8_cortex_a65_pmu_init},
1318 	{.compatible = "arm,cortex-a72-pmu",	.data = armv8_a72_pmu_init},
1319 	{.compatible = "arm,cortex-a73-pmu",	.data = armv8_a73_pmu_init},
1320 	{.compatible = "arm,cortex-a75-pmu",	.data = armv8_cortex_a75_pmu_init},
1321 	{.compatible = "arm,cortex-a76-pmu",	.data = armv8_cortex_a76_pmu_init},
1322 	{.compatible = "arm,cortex-a77-pmu",	.data = armv8_cortex_a77_pmu_init},
1323 	{.compatible = "arm,cortex-a78-pmu",	.data = armv8_cortex_a78_pmu_init},
1324 	{.compatible = "arm,cortex-a510-pmu",	.data = armv9_cortex_a510_pmu_init},
1325 	{.compatible = "arm,cortex-a520-pmu",	.data = armv9_cortex_a520_pmu_init},
1326 	{.compatible = "arm,cortex-a710-pmu",	.data = armv9_cortex_a710_pmu_init},
1327 	{.compatible = "arm,cortex-a715-pmu",	.data = armv9_cortex_a715_pmu_init},
1328 	{.compatible = "arm,cortex-a720-pmu",	.data = armv9_cortex_a720_pmu_init},
1329 	{.compatible = "arm,cortex-x1-pmu",	.data = armv8_cortex_x1_pmu_init},
1330 	{.compatible = "arm,cortex-x2-pmu",	.data = armv9_cortex_x2_pmu_init},
1331 	{.compatible = "arm,cortex-x3-pmu",	.data = armv9_cortex_x3_pmu_init},
1332 	{.compatible = "arm,cortex-x4-pmu",	.data = armv9_cortex_x4_pmu_init},
1333 	{.compatible = "arm,neoverse-e1-pmu",	.data = armv8_neoverse_e1_pmu_init},
1334 	{.compatible = "arm,neoverse-n1-pmu",	.data = armv8_neoverse_n1_pmu_init},
1335 	{.compatible = "arm,neoverse-n2-pmu",	.data = armv9_neoverse_n2_pmu_init},
1336 	{.compatible = "arm,neoverse-v1-pmu",	.data = armv8_neoverse_v1_pmu_init},
1337 	{.compatible = "cavium,thunder-pmu",	.data = armv8_thunder_pmu_init},
1338 	{.compatible = "brcm,vulcan-pmu",	.data = armv8_vulcan_pmu_init},
1339 	{.compatible = "nvidia,carmel-pmu",	.data = armv8_nvidia_carmel_pmu_init},
1340 	{.compatible = "nvidia,denver-pmu",	.data = armv8_nvidia_denver_pmu_init},
1341 	{},
1342 };
1343 
1344 static int armv8_pmu_device_probe(struct platform_device *pdev)
1345 {
1346 	return arm_pmu_device_probe(pdev, armv8_pmu_of_device_ids, NULL);
1347 }
1348 
1349 static struct platform_driver armv8_pmu_driver = {
1350 	.driver		= {
1351 		.name	= ARMV8_PMU_PDEV_NAME,
1352 		.of_match_table = armv8_pmu_of_device_ids,
1353 		.suppress_bind_attrs = true,
1354 	},
1355 	.probe		= armv8_pmu_device_probe,
1356 };
1357 
1358 static int __init armv8_pmu_driver_init(void)
1359 {
1360 	int ret;
1361 
1362 	if (acpi_disabled)
1363 		ret = platform_driver_register(&armv8_pmu_driver);
1364 	else
1365 		ret = arm_pmu_acpi_probe(armv8_pmuv3_pmu_init);
1366 
1367 	if (!ret)
1368 		lockup_detector_retry_init();
1369 
1370 	return ret;
1371 }
1372 device_initcall(armv8_pmu_driver_init)
1373 
1374 void arch_perf_update_userpage(struct perf_event *event,
1375 			       struct perf_event_mmap_page *userpg, u64 now)
1376 {
1377 	struct clock_read_data *rd;
1378 	unsigned int seq;
1379 	u64 ns;
1380 
1381 	userpg->cap_user_time = 0;
1382 	userpg->cap_user_time_zero = 0;
1383 	userpg->cap_user_time_short = 0;
1384 	userpg->cap_user_rdpmc = armv8pmu_event_has_user_read(event);
1385 
1386 	if (userpg->cap_user_rdpmc) {
1387 		if (event->hw.flags & ARMPMU_EVT_64BIT)
1388 			userpg->pmc_width = 64;
1389 		else
1390 			userpg->pmc_width = 32;
1391 	}
1392 
1393 	do {
1394 		rd = sched_clock_read_begin(&seq);
1395 
1396 		if (rd->read_sched_clock != arch_timer_read_counter)
1397 			return;
1398 
1399 		userpg->time_mult = rd->mult;
1400 		userpg->time_shift = rd->shift;
1401 		userpg->time_zero = rd->epoch_ns;
1402 		userpg->time_cycles = rd->epoch_cyc;
1403 		userpg->time_mask = rd->sched_clock_mask;
1404 
1405 		/*
1406 		 * Subtract the cycle base, such that software that
1407 		 * doesn't know about cap_user_time_short still 'works'
1408 		 * assuming no wraps.
1409 		 */
1410 		ns = mul_u64_u32_shr(rd->epoch_cyc, rd->mult, rd->shift);
1411 		userpg->time_zero -= ns;
1412 
1413 	} while (sched_clock_read_retry(seq));
1414 
1415 	userpg->time_offset = userpg->time_zero - now;
1416 
1417 	/*
1418 	 * time_shift is not expected to be greater than 31 due to
1419 	 * the original published conversion algorithm shifting a
1420 	 * 32-bit value (now specifies a 64-bit value) - refer
1421 	 * perf_event_mmap_page documentation in perf_event.h.
1422 	 */
1423 	if (userpg->time_shift == 32) {
1424 		userpg->time_shift = 31;
1425 		userpg->time_mult >>= 1;
1426 	}
1427 
1428 	/*
1429 	 * Internal timekeeping for enabled/running/stopped times
1430 	 * is always computed with the sched_clock.
1431 	 */
1432 	userpg->cap_user_time = 1;
1433 	userpg->cap_user_time_zero = 1;
1434 	userpg->cap_user_time_short = 1;
1435 }
1436