xref: /openbmc/linux/drivers/perf/arm_pmu_acpi.c (revision 4da722ca)
1 /*
2  * ACPI probing code for ARM performance counters.
3  *
4  * Copyright (C) 2017 ARM Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 #include <linux/acpi.h>
12 #include <linux/cpumask.h>
13 #include <linux/init.h>
14 #include <linux/percpu.h>
15 #include <linux/perf/arm_pmu.h>
16 
17 #include <asm/cputype.h>
18 
19 static DEFINE_PER_CPU(struct arm_pmu *, probed_pmus);
20 static DEFINE_PER_CPU(int, pmu_irqs);
21 
22 static int arm_pmu_acpi_register_irq(int cpu)
23 {
24 	struct acpi_madt_generic_interrupt *gicc;
25 	int gsi, trigger;
26 
27 	gicc = acpi_cpu_get_madt_gicc(cpu);
28 	if (WARN_ON(!gicc))
29 		return -EINVAL;
30 
31 	gsi = gicc->performance_interrupt;
32 
33 	/*
34 	 * Per the ACPI spec, the MADT cannot describe a PMU that doesn't
35 	 * have an interrupt. QEMU advertises this by using a GSI of zero,
36 	 * which is not known to be valid on any hardware despite being
37 	 * valid per the spec. Take the pragmatic approach and reject a
38 	 * GSI of zero for now.
39 	 */
40 	if (!gsi)
41 		return 0;
42 
43 	if (gicc->flags & ACPI_MADT_PERFORMANCE_IRQ_MODE)
44 		trigger = ACPI_EDGE_SENSITIVE;
45 	else
46 		trigger = ACPI_LEVEL_SENSITIVE;
47 
48 	/*
49 	 * Helpfully, the MADT GICC doesn't have a polarity flag for the
50 	 * "performance interrupt". Luckily, on compliant GICs the polarity is
51 	 * a fixed value in HW (for both SPIs and PPIs) that we cannot change
52 	 * from SW.
53 	 *
54 	 * Here we pass in ACPI_ACTIVE_HIGH to keep the core code happy. This
55 	 * may not match the real polarity, but that should not matter.
56 	 *
57 	 * Other interrupt controllers are not supported with ACPI.
58 	 */
59 	return acpi_register_gsi(NULL, gsi, trigger, ACPI_ACTIVE_HIGH);
60 }
61 
62 static void arm_pmu_acpi_unregister_irq(int cpu)
63 {
64 	struct acpi_madt_generic_interrupt *gicc;
65 	int gsi;
66 
67 	gicc = acpi_cpu_get_madt_gicc(cpu);
68 	if (!gicc)
69 		return;
70 
71 	gsi = gicc->performance_interrupt;
72 	acpi_unregister_gsi(gsi);
73 }
74 
75 static int arm_pmu_acpi_parse_irqs(void)
76 {
77 	int irq, cpu, irq_cpu, err;
78 
79 	for_each_possible_cpu(cpu) {
80 		irq = arm_pmu_acpi_register_irq(cpu);
81 		if (irq < 0) {
82 			err = irq;
83 			pr_warn("Unable to parse ACPI PMU IRQ for CPU%d: %d\n",
84 				cpu, err);
85 			goto out_err;
86 		} else if (irq == 0) {
87 			pr_warn("No ACPI PMU IRQ for CPU%d\n", cpu);
88 		}
89 
90 		per_cpu(pmu_irqs, cpu) = irq;
91 	}
92 
93 	return 0;
94 
95 out_err:
96 	for_each_possible_cpu(cpu) {
97 		irq = per_cpu(pmu_irqs, cpu);
98 		if (!irq)
99 			continue;
100 
101 		arm_pmu_acpi_unregister_irq(cpu);
102 
103 		/*
104 		 * Blat all copies of the IRQ so that we only unregister the
105 		 * corresponding GSI once (e.g. when we have PPIs).
106 		 */
107 		for_each_possible_cpu(irq_cpu) {
108 			if (per_cpu(pmu_irqs, irq_cpu) == irq)
109 				per_cpu(pmu_irqs, irq_cpu) = 0;
110 		}
111 	}
112 
113 	return err;
114 }
115 
116 static struct arm_pmu *arm_pmu_acpi_find_alloc_pmu(void)
117 {
118 	unsigned long cpuid = read_cpuid_id();
119 	struct arm_pmu *pmu;
120 	int cpu;
121 
122 	for_each_possible_cpu(cpu) {
123 		pmu = per_cpu(probed_pmus, cpu);
124 		if (!pmu || pmu->acpi_cpuid != cpuid)
125 			continue;
126 
127 		return pmu;
128 	}
129 
130 	pmu = armpmu_alloc();
131 	if (!pmu) {
132 		pr_warn("Unable to allocate PMU for CPU%d\n",
133 			smp_processor_id());
134 		return NULL;
135 	}
136 
137 	pmu->acpi_cpuid = cpuid;
138 
139 	return pmu;
140 }
141 
142 /*
143  * This must run before the common arm_pmu hotplug logic, so that we can
144  * associate a CPU and its interrupt before the common code tries to manage the
145  * affinity and so on.
146  *
147  * Note that hotplug events are serialized, so we cannot race with another CPU
148  * coming up. The perf core won't open events while a hotplug event is in
149  * progress.
150  */
151 static int arm_pmu_acpi_cpu_starting(unsigned int cpu)
152 {
153 	struct arm_pmu *pmu;
154 	struct pmu_hw_events __percpu *hw_events;
155 	int irq;
156 
157 	/* If we've already probed this CPU, we have nothing to do */
158 	if (per_cpu(probed_pmus, cpu))
159 		return 0;
160 
161 	irq = per_cpu(pmu_irqs, cpu);
162 
163 	pmu = arm_pmu_acpi_find_alloc_pmu();
164 	if (!pmu)
165 		return -ENOMEM;
166 
167 	cpumask_set_cpu(cpu, &pmu->supported_cpus);
168 
169 	per_cpu(probed_pmus, cpu) = pmu;
170 
171 	/*
172 	 * Log and request the IRQ so the core arm_pmu code can manage it.  In
173 	 * some situations (e.g. mismatched PPIs), we may fail to request the
174 	 * IRQ. However, it may be too late for us to do anything about it.
175 	 * The common ARM PMU code will log a warning in this case.
176 	 */
177 	hw_events = pmu->hw_events;
178 	per_cpu(hw_events->irq, cpu) = irq;
179 	armpmu_request_irq(pmu, cpu);
180 
181 	/*
182 	 * Ideally, we'd probe the PMU here when we find the first matching
183 	 * CPU. We can't do that for several reasons; see the comment in
184 	 * arm_pmu_acpi_init().
185 	 *
186 	 * So for the time being, we're done.
187 	 */
188 	return 0;
189 }
190 
191 int arm_pmu_acpi_probe(armpmu_init_fn init_fn)
192 {
193 	int pmu_idx = 0;
194 	int cpu, ret;
195 
196 	if (acpi_disabled)
197 		return 0;
198 
199 	/*
200 	 * Initialise and register the set of PMUs which we know about right
201 	 * now. Ideally we'd do this in arm_pmu_acpi_cpu_starting() so that we
202 	 * could handle late hotplug, but this may lead to deadlock since we
203 	 * might try to register a hotplug notifier instance from within a
204 	 * hotplug notifier.
205 	 *
206 	 * There's also the problem of having access to the right init_fn,
207 	 * without tying this too deeply into the "real" PMU driver.
208 	 *
209 	 * For the moment, as with the platform/DT case, we need at least one
210 	 * of a PMU's CPUs to be online at probe time.
211 	 */
212 	for_each_possible_cpu(cpu) {
213 		struct arm_pmu *pmu = per_cpu(probed_pmus, cpu);
214 		char *base_name;
215 
216 		if (!pmu || pmu->name)
217 			continue;
218 
219 		ret = init_fn(pmu);
220 		if (ret == -ENODEV) {
221 			/* PMU not handled by this driver, or not present */
222 			continue;
223 		} else if (ret) {
224 			pr_warn("Unable to initialise PMU for CPU%d\n", cpu);
225 			return ret;
226 		}
227 
228 		base_name = pmu->name;
229 		pmu->name = kasprintf(GFP_KERNEL, "%s_%d", base_name, pmu_idx++);
230 		if (!pmu->name) {
231 			pr_warn("Unable to allocate PMU name for CPU%d\n", cpu);
232 			return -ENOMEM;
233 		}
234 
235 		ret = armpmu_register(pmu);
236 		if (ret) {
237 			pr_warn("Failed to register PMU for CPU%d\n", cpu);
238 			return ret;
239 		}
240 	}
241 
242 	return 0;
243 }
244 
245 static int arm_pmu_acpi_init(void)
246 {
247 	int ret;
248 
249 	if (acpi_disabled)
250 		return 0;
251 
252 	/*
253 	 * We can't request IRQs yet, since we don't know the cookie value
254 	 * until we know which CPUs share the same logical PMU. We'll handle
255 	 * that in arm_pmu_acpi_cpu_starting().
256 	 */
257 	ret = arm_pmu_acpi_parse_irqs();
258 	if (ret)
259 		return ret;
260 
261 	ret = cpuhp_setup_state(CPUHP_AP_PERF_ARM_ACPI_STARTING,
262 				"perf/arm/pmu_acpi:starting",
263 				arm_pmu_acpi_cpu_starting, NULL);
264 
265 	return ret;
266 }
267 subsys_initcall(arm_pmu_acpi_init)
268