xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision f125e2d4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
30 static DEFINE_PER_CPU(int, cpu_irq);
31 
32 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
33 {
34 	if (event->hw.flags & ARMPMU_EVT_64BIT)
35 		return GENMASK_ULL(63, 0);
36 	else
37 		return GENMASK_ULL(31, 0);
38 }
39 
40 static int
41 armpmu_map_cache_event(const unsigned (*cache_map)
42 				      [PERF_COUNT_HW_CACHE_MAX]
43 				      [PERF_COUNT_HW_CACHE_OP_MAX]
44 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
45 		       u64 config)
46 {
47 	unsigned int cache_type, cache_op, cache_result, ret;
48 
49 	cache_type = (config >>  0) & 0xff;
50 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
51 		return -EINVAL;
52 
53 	cache_op = (config >>  8) & 0xff;
54 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
55 		return -EINVAL;
56 
57 	cache_result = (config >> 16) & 0xff;
58 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
59 		return -EINVAL;
60 
61 	if (!cache_map)
62 		return -ENOENT;
63 
64 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
65 
66 	if (ret == CACHE_OP_UNSUPPORTED)
67 		return -ENOENT;
68 
69 	return ret;
70 }
71 
72 static int
73 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
74 {
75 	int mapping;
76 
77 	if (config >= PERF_COUNT_HW_MAX)
78 		return -EINVAL;
79 
80 	if (!event_map)
81 		return -ENOENT;
82 
83 	mapping = (*event_map)[config];
84 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
85 }
86 
87 static int
88 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
89 {
90 	return (int)(config & raw_event_mask);
91 }
92 
93 int
94 armpmu_map_event(struct perf_event *event,
95 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
96 		 const unsigned (*cache_map)
97 				[PERF_COUNT_HW_CACHE_MAX]
98 				[PERF_COUNT_HW_CACHE_OP_MAX]
99 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
100 		 u32 raw_event_mask)
101 {
102 	u64 config = event->attr.config;
103 	int type = event->attr.type;
104 
105 	if (type == event->pmu->type)
106 		return armpmu_map_raw_event(raw_event_mask, config);
107 
108 	switch (type) {
109 	case PERF_TYPE_HARDWARE:
110 		return armpmu_map_hw_event(event_map, config);
111 	case PERF_TYPE_HW_CACHE:
112 		return armpmu_map_cache_event(cache_map, config);
113 	case PERF_TYPE_RAW:
114 		return armpmu_map_raw_event(raw_event_mask, config);
115 	}
116 
117 	return -ENOENT;
118 }
119 
120 int armpmu_event_set_period(struct perf_event *event)
121 {
122 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
123 	struct hw_perf_event *hwc = &event->hw;
124 	s64 left = local64_read(&hwc->period_left);
125 	s64 period = hwc->sample_period;
126 	u64 max_period;
127 	int ret = 0;
128 
129 	max_period = arm_pmu_event_max_period(event);
130 	if (unlikely(left <= -period)) {
131 		left = period;
132 		local64_set(&hwc->period_left, left);
133 		hwc->last_period = period;
134 		ret = 1;
135 	}
136 
137 	if (unlikely(left <= 0)) {
138 		left += period;
139 		local64_set(&hwc->period_left, left);
140 		hwc->last_period = period;
141 		ret = 1;
142 	}
143 
144 	/*
145 	 * Limit the maximum period to prevent the counter value
146 	 * from overtaking the one we are about to program. In
147 	 * effect we are reducing max_period to account for
148 	 * interrupt latency (and we are being very conservative).
149 	 */
150 	if (left > (max_period >> 1))
151 		left = (max_period >> 1);
152 
153 	local64_set(&hwc->prev_count, (u64)-left);
154 
155 	armpmu->write_counter(event, (u64)(-left) & max_period);
156 
157 	perf_event_update_userpage(event);
158 
159 	return ret;
160 }
161 
162 u64 armpmu_event_update(struct perf_event *event)
163 {
164 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
165 	struct hw_perf_event *hwc = &event->hw;
166 	u64 delta, prev_raw_count, new_raw_count;
167 	u64 max_period = arm_pmu_event_max_period(event);
168 
169 again:
170 	prev_raw_count = local64_read(&hwc->prev_count);
171 	new_raw_count = armpmu->read_counter(event);
172 
173 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
174 			     new_raw_count) != prev_raw_count)
175 		goto again;
176 
177 	delta = (new_raw_count - prev_raw_count) & max_period;
178 
179 	local64_add(delta, &event->count);
180 	local64_sub(delta, &hwc->period_left);
181 
182 	return new_raw_count;
183 }
184 
185 static void
186 armpmu_read(struct perf_event *event)
187 {
188 	armpmu_event_update(event);
189 }
190 
191 static void
192 armpmu_stop(struct perf_event *event, int flags)
193 {
194 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
195 	struct hw_perf_event *hwc = &event->hw;
196 
197 	/*
198 	 * ARM pmu always has to update the counter, so ignore
199 	 * PERF_EF_UPDATE, see comments in armpmu_start().
200 	 */
201 	if (!(hwc->state & PERF_HES_STOPPED)) {
202 		armpmu->disable(event);
203 		armpmu_event_update(event);
204 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
205 	}
206 }
207 
208 static void armpmu_start(struct perf_event *event, int flags)
209 {
210 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
211 	struct hw_perf_event *hwc = &event->hw;
212 
213 	/*
214 	 * ARM pmu always has to reprogram the period, so ignore
215 	 * PERF_EF_RELOAD, see the comment below.
216 	 */
217 	if (flags & PERF_EF_RELOAD)
218 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
219 
220 	hwc->state = 0;
221 	/*
222 	 * Set the period again. Some counters can't be stopped, so when we
223 	 * were stopped we simply disabled the IRQ source and the counter
224 	 * may have been left counting. If we don't do this step then we may
225 	 * get an interrupt too soon or *way* too late if the overflow has
226 	 * happened since disabling.
227 	 */
228 	armpmu_event_set_period(event);
229 	armpmu->enable(event);
230 }
231 
232 static void
233 armpmu_del(struct perf_event *event, int flags)
234 {
235 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
236 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
237 	struct hw_perf_event *hwc = &event->hw;
238 	int idx = hwc->idx;
239 
240 	armpmu_stop(event, PERF_EF_UPDATE);
241 	hw_events->events[idx] = NULL;
242 	armpmu->clear_event_idx(hw_events, event);
243 	perf_event_update_userpage(event);
244 	/* Clear the allocated counter */
245 	hwc->idx = -1;
246 }
247 
248 static int
249 armpmu_add(struct perf_event *event, int flags)
250 {
251 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
252 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
253 	struct hw_perf_event *hwc = &event->hw;
254 	int idx;
255 
256 	/* An event following a process won't be stopped earlier */
257 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
258 		return -ENOENT;
259 
260 	/* If we don't have a space for the counter then finish early. */
261 	idx = armpmu->get_event_idx(hw_events, event);
262 	if (idx < 0)
263 		return idx;
264 
265 	/*
266 	 * If there is an event in the counter we are going to use then make
267 	 * sure it is disabled.
268 	 */
269 	event->hw.idx = idx;
270 	armpmu->disable(event);
271 	hw_events->events[idx] = event;
272 
273 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
274 	if (flags & PERF_EF_START)
275 		armpmu_start(event, PERF_EF_RELOAD);
276 
277 	/* Propagate our changes to the userspace mapping. */
278 	perf_event_update_userpage(event);
279 
280 	return 0;
281 }
282 
283 static int
284 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
285 			       struct perf_event *event)
286 {
287 	struct arm_pmu *armpmu;
288 
289 	if (is_software_event(event))
290 		return 1;
291 
292 	/*
293 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
294 	 * core perf code won't check that the pmu->ctx == leader->ctx
295 	 * until after pmu->event_init(event).
296 	 */
297 	if (event->pmu != pmu)
298 		return 0;
299 
300 	if (event->state < PERF_EVENT_STATE_OFF)
301 		return 1;
302 
303 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
304 		return 1;
305 
306 	armpmu = to_arm_pmu(event->pmu);
307 	return armpmu->get_event_idx(hw_events, event) >= 0;
308 }
309 
310 static int
311 validate_group(struct perf_event *event)
312 {
313 	struct perf_event *sibling, *leader = event->group_leader;
314 	struct pmu_hw_events fake_pmu;
315 
316 	/*
317 	 * Initialise the fake PMU. We only need to populate the
318 	 * used_mask for the purposes of validation.
319 	 */
320 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
321 
322 	if (!validate_event(event->pmu, &fake_pmu, leader))
323 		return -EINVAL;
324 
325 	for_each_sibling_event(sibling, leader) {
326 		if (!validate_event(event->pmu, &fake_pmu, sibling))
327 			return -EINVAL;
328 	}
329 
330 	if (!validate_event(event->pmu, &fake_pmu, event))
331 		return -EINVAL;
332 
333 	return 0;
334 }
335 
336 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
337 {
338 	struct arm_pmu *armpmu;
339 	int ret;
340 	u64 start_clock, finish_clock;
341 
342 	/*
343 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
344 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
345 	 * do any necessary shifting, we just need to perform the first
346 	 * dereference.
347 	 */
348 	armpmu = *(void **)dev;
349 	if (WARN_ON_ONCE(!armpmu))
350 		return IRQ_NONE;
351 
352 	start_clock = sched_clock();
353 	ret = armpmu->handle_irq(armpmu);
354 	finish_clock = sched_clock();
355 
356 	perf_sample_event_took(finish_clock - start_clock);
357 	return ret;
358 }
359 
360 static int
361 __hw_perf_event_init(struct perf_event *event)
362 {
363 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
364 	struct hw_perf_event *hwc = &event->hw;
365 	int mapping;
366 
367 	hwc->flags = 0;
368 	mapping = armpmu->map_event(event);
369 
370 	if (mapping < 0) {
371 		pr_debug("event %x:%llx not supported\n", event->attr.type,
372 			 event->attr.config);
373 		return mapping;
374 	}
375 
376 	/*
377 	 * We don't assign an index until we actually place the event onto
378 	 * hardware. Use -1 to signify that we haven't decided where to put it
379 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
380 	 * clever allocation or constraints checking at this point.
381 	 */
382 	hwc->idx		= -1;
383 	hwc->config_base	= 0;
384 	hwc->config		= 0;
385 	hwc->event_base		= 0;
386 
387 	/*
388 	 * Check whether we need to exclude the counter from certain modes.
389 	 */
390 	if (armpmu->set_event_filter &&
391 	    armpmu->set_event_filter(hwc, &event->attr)) {
392 		pr_debug("ARM performance counters do not support "
393 			 "mode exclusion\n");
394 		return -EOPNOTSUPP;
395 	}
396 
397 	/*
398 	 * Store the event encoding into the config_base field.
399 	 */
400 	hwc->config_base	    |= (unsigned long)mapping;
401 
402 	if (!is_sampling_event(event)) {
403 		/*
404 		 * For non-sampling runs, limit the sample_period to half
405 		 * of the counter width. That way, the new counter value
406 		 * is far less likely to overtake the previous one unless
407 		 * you have some serious IRQ latency issues.
408 		 */
409 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
410 		hwc->last_period    = hwc->sample_period;
411 		local64_set(&hwc->period_left, hwc->sample_period);
412 	}
413 
414 	if (event->group_leader != event) {
415 		if (validate_group(event) != 0)
416 			return -EINVAL;
417 	}
418 
419 	return 0;
420 }
421 
422 static int armpmu_event_init(struct perf_event *event)
423 {
424 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
425 
426 	/*
427 	 * Reject CPU-affine events for CPUs that are of a different class to
428 	 * that which this PMU handles. Process-following events (where
429 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
430 	 * reject them later (in armpmu_add) if they're scheduled on a
431 	 * different class of CPU.
432 	 */
433 	if (event->cpu != -1 &&
434 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
435 		return -ENOENT;
436 
437 	/* does not support taken branch sampling */
438 	if (has_branch_stack(event))
439 		return -EOPNOTSUPP;
440 
441 	if (armpmu->map_event(event) == -ENOENT)
442 		return -ENOENT;
443 
444 	return __hw_perf_event_init(event);
445 }
446 
447 static void armpmu_enable(struct pmu *pmu)
448 {
449 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
450 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
451 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
452 
453 	/* For task-bound events we may be called on other CPUs */
454 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
455 		return;
456 
457 	if (enabled)
458 		armpmu->start(armpmu);
459 }
460 
461 static void armpmu_disable(struct pmu *pmu)
462 {
463 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
464 
465 	/* For task-bound events we may be called on other CPUs */
466 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
467 		return;
468 
469 	armpmu->stop(armpmu);
470 }
471 
472 /*
473  * In heterogeneous systems, events are specific to a particular
474  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
475  * the same microarchitecture.
476  */
477 static int armpmu_filter_match(struct perf_event *event)
478 {
479 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
480 	unsigned int cpu = smp_processor_id();
481 	int ret;
482 
483 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
484 	if (ret && armpmu->filter_match)
485 		return armpmu->filter_match(event);
486 
487 	return ret;
488 }
489 
490 static ssize_t armpmu_cpumask_show(struct device *dev,
491 				   struct device_attribute *attr, char *buf)
492 {
493 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
494 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
495 }
496 
497 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
498 
499 static struct attribute *armpmu_common_attrs[] = {
500 	&dev_attr_cpus.attr,
501 	NULL,
502 };
503 
504 static struct attribute_group armpmu_common_attr_group = {
505 	.attrs = armpmu_common_attrs,
506 };
507 
508 /* Set at runtime when we know what CPU type we are. */
509 static struct arm_pmu *__oprofile_cpu_pmu;
510 
511 /*
512  * Despite the names, these two functions are CPU-specific and are used
513  * by the OProfile/perf code.
514  */
515 const char *perf_pmu_name(void)
516 {
517 	if (!__oprofile_cpu_pmu)
518 		return NULL;
519 
520 	return __oprofile_cpu_pmu->name;
521 }
522 EXPORT_SYMBOL_GPL(perf_pmu_name);
523 
524 int perf_num_counters(void)
525 {
526 	int max_events = 0;
527 
528 	if (__oprofile_cpu_pmu != NULL)
529 		max_events = __oprofile_cpu_pmu->num_events;
530 
531 	return max_events;
532 }
533 EXPORT_SYMBOL_GPL(perf_num_counters);
534 
535 static int armpmu_count_irq_users(const int irq)
536 {
537 	int cpu, count = 0;
538 
539 	for_each_possible_cpu(cpu) {
540 		if (per_cpu(cpu_irq, cpu) == irq)
541 			count++;
542 	}
543 
544 	return count;
545 }
546 
547 void armpmu_free_irq(int irq, int cpu)
548 {
549 	if (per_cpu(cpu_irq, cpu) == 0)
550 		return;
551 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
552 		return;
553 
554 	if (!irq_is_percpu_devid(irq))
555 		free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu));
556 	else if (armpmu_count_irq_users(irq) == 1)
557 		free_percpu_irq(irq, &cpu_armpmu);
558 
559 	per_cpu(cpu_irq, cpu) = 0;
560 }
561 
562 int armpmu_request_irq(int irq, int cpu)
563 {
564 	int err = 0;
565 	const irq_handler_t handler = armpmu_dispatch_irq;
566 	if (!irq)
567 		return 0;
568 
569 	if (!irq_is_percpu_devid(irq)) {
570 		unsigned long irq_flags;
571 
572 		err = irq_force_affinity(irq, cpumask_of(cpu));
573 
574 		if (err && num_possible_cpus() > 1) {
575 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
576 				irq, cpu);
577 			goto err_out;
578 		}
579 
580 		irq_flags = IRQF_PERCPU |
581 			    IRQF_NOBALANCING |
582 			    IRQF_NO_THREAD;
583 
584 		irq_set_status_flags(irq, IRQ_NOAUTOEN);
585 		err = request_irq(irq, handler, irq_flags, "arm-pmu",
586 				  per_cpu_ptr(&cpu_armpmu, cpu));
587 	} else if (armpmu_count_irq_users(irq) == 0) {
588 		err = request_percpu_irq(irq, handler, "arm-pmu",
589 					 &cpu_armpmu);
590 	}
591 
592 	if (err)
593 		goto err_out;
594 
595 	per_cpu(cpu_irq, cpu) = irq;
596 	return 0;
597 
598 err_out:
599 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
600 	return err;
601 }
602 
603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
604 {
605 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
606 	return per_cpu(hw_events->irq, cpu);
607 }
608 
609 /*
610  * PMU hardware loses all context when a CPU goes offline.
611  * When a CPU is hotplugged back in, since some hardware registers are
612  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613  * junk values out of them.
614  */
615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
616 {
617 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
618 	int irq;
619 
620 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
621 		return 0;
622 	if (pmu->reset)
623 		pmu->reset(pmu);
624 
625 	per_cpu(cpu_armpmu, cpu) = pmu;
626 
627 	irq = armpmu_get_cpu_irq(pmu, cpu);
628 	if (irq) {
629 		if (irq_is_percpu_devid(irq))
630 			enable_percpu_irq(irq, IRQ_TYPE_NONE);
631 		else
632 			enable_irq(irq);
633 	}
634 
635 	return 0;
636 }
637 
638 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
639 {
640 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
641 	int irq;
642 
643 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
644 		return 0;
645 
646 	irq = armpmu_get_cpu_irq(pmu, cpu);
647 	if (irq) {
648 		if (irq_is_percpu_devid(irq))
649 			disable_percpu_irq(irq);
650 		else
651 			disable_irq_nosync(irq);
652 	}
653 
654 	per_cpu(cpu_armpmu, cpu) = NULL;
655 
656 	return 0;
657 }
658 
659 #ifdef CONFIG_CPU_PM
660 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
661 {
662 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
663 	struct perf_event *event;
664 	int idx;
665 
666 	for (idx = 0; idx < armpmu->num_events; idx++) {
667 		event = hw_events->events[idx];
668 		if (!event)
669 			continue;
670 
671 		switch (cmd) {
672 		case CPU_PM_ENTER:
673 			/*
674 			 * Stop and update the counter
675 			 */
676 			armpmu_stop(event, PERF_EF_UPDATE);
677 			break;
678 		case CPU_PM_EXIT:
679 		case CPU_PM_ENTER_FAILED:
680 			 /*
681 			  * Restore and enable the counter.
682 			  * armpmu_start() indirectly calls
683 			  *
684 			  * perf_event_update_userpage()
685 			  *
686 			  * that requires RCU read locking to be functional,
687 			  * wrap the call within RCU_NONIDLE to make the
688 			  * RCU subsystem aware this cpu is not idle from
689 			  * an RCU perspective for the armpmu_start() call
690 			  * duration.
691 			  */
692 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
693 			break;
694 		default:
695 			break;
696 		}
697 	}
698 }
699 
700 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
701 			     void *v)
702 {
703 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
704 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
705 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
706 
707 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
708 		return NOTIFY_DONE;
709 
710 	/*
711 	 * Always reset the PMU registers on power-up even if
712 	 * there are no events running.
713 	 */
714 	if (cmd == CPU_PM_EXIT && armpmu->reset)
715 		armpmu->reset(armpmu);
716 
717 	if (!enabled)
718 		return NOTIFY_OK;
719 
720 	switch (cmd) {
721 	case CPU_PM_ENTER:
722 		armpmu->stop(armpmu);
723 		cpu_pm_pmu_setup(armpmu, cmd);
724 		break;
725 	case CPU_PM_EXIT:
726 	case CPU_PM_ENTER_FAILED:
727 		cpu_pm_pmu_setup(armpmu, cmd);
728 		armpmu->start(armpmu);
729 		break;
730 	default:
731 		return NOTIFY_DONE;
732 	}
733 
734 	return NOTIFY_OK;
735 }
736 
737 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
738 {
739 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
740 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
741 }
742 
743 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
744 {
745 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
746 }
747 #else
748 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
749 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
750 #endif
751 
752 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
753 {
754 	int err;
755 
756 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
757 				       &cpu_pmu->node);
758 	if (err)
759 		goto out;
760 
761 	err = cpu_pm_pmu_register(cpu_pmu);
762 	if (err)
763 		goto out_unregister;
764 
765 	return 0;
766 
767 out_unregister:
768 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
769 					    &cpu_pmu->node);
770 out:
771 	return err;
772 }
773 
774 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
775 {
776 	cpu_pm_pmu_unregister(cpu_pmu);
777 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
778 					    &cpu_pmu->node);
779 }
780 
781 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
782 {
783 	struct arm_pmu *pmu;
784 	int cpu;
785 
786 	pmu = kzalloc(sizeof(*pmu), flags);
787 	if (!pmu) {
788 		pr_info("failed to allocate PMU device!\n");
789 		goto out;
790 	}
791 
792 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
793 	if (!pmu->hw_events) {
794 		pr_info("failed to allocate per-cpu PMU data.\n");
795 		goto out_free_pmu;
796 	}
797 
798 	pmu->pmu = (struct pmu) {
799 		.pmu_enable	= armpmu_enable,
800 		.pmu_disable	= armpmu_disable,
801 		.event_init	= armpmu_event_init,
802 		.add		= armpmu_add,
803 		.del		= armpmu_del,
804 		.start		= armpmu_start,
805 		.stop		= armpmu_stop,
806 		.read		= armpmu_read,
807 		.filter_match	= armpmu_filter_match,
808 		.attr_groups	= pmu->attr_groups,
809 		/*
810 		 * This is a CPU PMU potentially in a heterogeneous
811 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
812 		 * and we have taken ctx sharing into account (e.g. with our
813 		 * pmu::filter_match callback and pmu::event_init group
814 		 * validation).
815 		 */
816 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
817 	};
818 
819 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
820 		&armpmu_common_attr_group;
821 
822 	for_each_possible_cpu(cpu) {
823 		struct pmu_hw_events *events;
824 
825 		events = per_cpu_ptr(pmu->hw_events, cpu);
826 		raw_spin_lock_init(&events->pmu_lock);
827 		events->percpu_pmu = pmu;
828 	}
829 
830 	return pmu;
831 
832 out_free_pmu:
833 	kfree(pmu);
834 out:
835 	return NULL;
836 }
837 
838 struct arm_pmu *armpmu_alloc(void)
839 {
840 	return __armpmu_alloc(GFP_KERNEL);
841 }
842 
843 struct arm_pmu *armpmu_alloc_atomic(void)
844 {
845 	return __armpmu_alloc(GFP_ATOMIC);
846 }
847 
848 
849 void armpmu_free(struct arm_pmu *pmu)
850 {
851 	free_percpu(pmu->hw_events);
852 	kfree(pmu);
853 }
854 
855 int armpmu_register(struct arm_pmu *pmu)
856 {
857 	int ret;
858 
859 	ret = cpu_pmu_init(pmu);
860 	if (ret)
861 		return ret;
862 
863 	if (!pmu->set_event_filter)
864 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
865 
866 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
867 	if (ret)
868 		goto out_destroy;
869 
870 	if (!__oprofile_cpu_pmu)
871 		__oprofile_cpu_pmu = pmu;
872 
873 	pr_info("enabled with %s PMU driver, %d counters available\n",
874 		pmu->name, pmu->num_events);
875 
876 	return 0;
877 
878 out_destroy:
879 	cpu_pmu_destroy(pmu);
880 	return ret;
881 }
882 
883 static int arm_pmu_hp_init(void)
884 {
885 	int ret;
886 
887 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
888 				      "perf/arm/pmu:starting",
889 				      arm_perf_starting_cpu,
890 				      arm_perf_teardown_cpu);
891 	if (ret)
892 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
893 		       ret);
894 	return ret;
895 }
896 subsys_initcall(arm_pmu_hp_init);
897