1 #undef DEBUG 2 3 /* 4 * ARM performance counter support. 5 * 6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 8 * 9 * This code is based on the sparc64 perf event code, which is in turn based 10 * on the x86 code. 11 */ 12 #define pr_fmt(fmt) "hw perfevents: " fmt 13 14 #include <linux/bitmap.h> 15 #include <linux/cpumask.h> 16 #include <linux/cpu_pm.h> 17 #include <linux/export.h> 18 #include <linux/kernel.h> 19 #include <linux/perf/arm_pmu.h> 20 #include <linux/slab.h> 21 #include <linux/sched/clock.h> 22 #include <linux/spinlock.h> 23 #include <linux/irq.h> 24 #include <linux/irqdesc.h> 25 26 #include <asm/irq_regs.h> 27 28 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 29 static DEFINE_PER_CPU(int, cpu_irq); 30 31 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 32 { 33 if (event->hw.flags & ARMPMU_EVT_64BIT) 34 return GENMASK_ULL(63, 0); 35 else 36 return GENMASK_ULL(31, 0); 37 } 38 39 static int 40 armpmu_map_cache_event(const unsigned (*cache_map) 41 [PERF_COUNT_HW_CACHE_MAX] 42 [PERF_COUNT_HW_CACHE_OP_MAX] 43 [PERF_COUNT_HW_CACHE_RESULT_MAX], 44 u64 config) 45 { 46 unsigned int cache_type, cache_op, cache_result, ret; 47 48 cache_type = (config >> 0) & 0xff; 49 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 50 return -EINVAL; 51 52 cache_op = (config >> 8) & 0xff; 53 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 54 return -EINVAL; 55 56 cache_result = (config >> 16) & 0xff; 57 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 58 return -EINVAL; 59 60 if (!cache_map) 61 return -ENOENT; 62 63 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 64 65 if (ret == CACHE_OP_UNSUPPORTED) 66 return -ENOENT; 67 68 return ret; 69 } 70 71 static int 72 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 73 { 74 int mapping; 75 76 if (config >= PERF_COUNT_HW_MAX) 77 return -EINVAL; 78 79 if (!event_map) 80 return -ENOENT; 81 82 mapping = (*event_map)[config]; 83 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 84 } 85 86 static int 87 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 88 { 89 return (int)(config & raw_event_mask); 90 } 91 92 int 93 armpmu_map_event(struct perf_event *event, 94 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 95 const unsigned (*cache_map) 96 [PERF_COUNT_HW_CACHE_MAX] 97 [PERF_COUNT_HW_CACHE_OP_MAX] 98 [PERF_COUNT_HW_CACHE_RESULT_MAX], 99 u32 raw_event_mask) 100 { 101 u64 config = event->attr.config; 102 int type = event->attr.type; 103 104 if (type == event->pmu->type) 105 return armpmu_map_raw_event(raw_event_mask, config); 106 107 switch (type) { 108 case PERF_TYPE_HARDWARE: 109 return armpmu_map_hw_event(event_map, config); 110 case PERF_TYPE_HW_CACHE: 111 return armpmu_map_cache_event(cache_map, config); 112 case PERF_TYPE_RAW: 113 return armpmu_map_raw_event(raw_event_mask, config); 114 } 115 116 return -ENOENT; 117 } 118 119 int armpmu_event_set_period(struct perf_event *event) 120 { 121 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 122 struct hw_perf_event *hwc = &event->hw; 123 s64 left = local64_read(&hwc->period_left); 124 s64 period = hwc->sample_period; 125 u64 max_period; 126 int ret = 0; 127 128 max_period = arm_pmu_event_max_period(event); 129 if (unlikely(left <= -period)) { 130 left = period; 131 local64_set(&hwc->period_left, left); 132 hwc->last_period = period; 133 ret = 1; 134 } 135 136 if (unlikely(left <= 0)) { 137 left += period; 138 local64_set(&hwc->period_left, left); 139 hwc->last_period = period; 140 ret = 1; 141 } 142 143 /* 144 * Limit the maximum period to prevent the counter value 145 * from overtaking the one we are about to program. In 146 * effect we are reducing max_period to account for 147 * interrupt latency (and we are being very conservative). 148 */ 149 if (left > (max_period >> 1)) 150 left = (max_period >> 1); 151 152 local64_set(&hwc->prev_count, (u64)-left); 153 154 armpmu->write_counter(event, (u64)(-left) & max_period); 155 156 perf_event_update_userpage(event); 157 158 return ret; 159 } 160 161 u64 armpmu_event_update(struct perf_event *event) 162 { 163 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 164 struct hw_perf_event *hwc = &event->hw; 165 u64 delta, prev_raw_count, new_raw_count; 166 u64 max_period = arm_pmu_event_max_period(event); 167 168 again: 169 prev_raw_count = local64_read(&hwc->prev_count); 170 new_raw_count = armpmu->read_counter(event); 171 172 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 173 new_raw_count) != prev_raw_count) 174 goto again; 175 176 delta = (new_raw_count - prev_raw_count) & max_period; 177 178 local64_add(delta, &event->count); 179 local64_sub(delta, &hwc->period_left); 180 181 return new_raw_count; 182 } 183 184 static void 185 armpmu_read(struct perf_event *event) 186 { 187 armpmu_event_update(event); 188 } 189 190 static void 191 armpmu_stop(struct perf_event *event, int flags) 192 { 193 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 194 struct hw_perf_event *hwc = &event->hw; 195 196 /* 197 * ARM pmu always has to update the counter, so ignore 198 * PERF_EF_UPDATE, see comments in armpmu_start(). 199 */ 200 if (!(hwc->state & PERF_HES_STOPPED)) { 201 armpmu->disable(event); 202 armpmu_event_update(event); 203 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 204 } 205 } 206 207 static void armpmu_start(struct perf_event *event, int flags) 208 { 209 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 210 struct hw_perf_event *hwc = &event->hw; 211 212 /* 213 * ARM pmu always has to reprogram the period, so ignore 214 * PERF_EF_RELOAD, see the comment below. 215 */ 216 if (flags & PERF_EF_RELOAD) 217 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 218 219 hwc->state = 0; 220 /* 221 * Set the period again. Some counters can't be stopped, so when we 222 * were stopped we simply disabled the IRQ source and the counter 223 * may have been left counting. If we don't do this step then we may 224 * get an interrupt too soon or *way* too late if the overflow has 225 * happened since disabling. 226 */ 227 armpmu_event_set_period(event); 228 armpmu->enable(event); 229 } 230 231 static void 232 armpmu_del(struct perf_event *event, int flags) 233 { 234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 235 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 236 struct hw_perf_event *hwc = &event->hw; 237 int idx = hwc->idx; 238 239 armpmu_stop(event, PERF_EF_UPDATE); 240 hw_events->events[idx] = NULL; 241 armpmu->clear_event_idx(hw_events, event); 242 perf_event_update_userpage(event); 243 /* Clear the allocated counter */ 244 hwc->idx = -1; 245 } 246 247 static int 248 armpmu_add(struct perf_event *event, int flags) 249 { 250 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 251 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 252 struct hw_perf_event *hwc = &event->hw; 253 int idx; 254 255 /* An event following a process won't be stopped earlier */ 256 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 257 return -ENOENT; 258 259 /* If we don't have a space for the counter then finish early. */ 260 idx = armpmu->get_event_idx(hw_events, event); 261 if (idx < 0) 262 return idx; 263 264 /* 265 * If there is an event in the counter we are going to use then make 266 * sure it is disabled. 267 */ 268 event->hw.idx = idx; 269 armpmu->disable(event); 270 hw_events->events[idx] = event; 271 272 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 273 if (flags & PERF_EF_START) 274 armpmu_start(event, PERF_EF_RELOAD); 275 276 /* Propagate our changes to the userspace mapping. */ 277 perf_event_update_userpage(event); 278 279 return 0; 280 } 281 282 static int 283 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 284 struct perf_event *event) 285 { 286 struct arm_pmu *armpmu; 287 288 if (is_software_event(event)) 289 return 1; 290 291 /* 292 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 293 * core perf code won't check that the pmu->ctx == leader->ctx 294 * until after pmu->event_init(event). 295 */ 296 if (event->pmu != pmu) 297 return 0; 298 299 if (event->state < PERF_EVENT_STATE_OFF) 300 return 1; 301 302 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 303 return 1; 304 305 armpmu = to_arm_pmu(event->pmu); 306 return armpmu->get_event_idx(hw_events, event) >= 0; 307 } 308 309 static int 310 validate_group(struct perf_event *event) 311 { 312 struct perf_event *sibling, *leader = event->group_leader; 313 struct pmu_hw_events fake_pmu; 314 315 /* 316 * Initialise the fake PMU. We only need to populate the 317 * used_mask for the purposes of validation. 318 */ 319 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 320 321 if (!validate_event(event->pmu, &fake_pmu, leader)) 322 return -EINVAL; 323 324 for_each_sibling_event(sibling, leader) { 325 if (!validate_event(event->pmu, &fake_pmu, sibling)) 326 return -EINVAL; 327 } 328 329 if (!validate_event(event->pmu, &fake_pmu, event)) 330 return -EINVAL; 331 332 return 0; 333 } 334 335 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 336 { 337 struct arm_pmu *armpmu; 338 int ret; 339 u64 start_clock, finish_clock; 340 341 /* 342 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 343 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 344 * do any necessary shifting, we just need to perform the first 345 * dereference. 346 */ 347 armpmu = *(void **)dev; 348 if (WARN_ON_ONCE(!armpmu)) 349 return IRQ_NONE; 350 351 start_clock = sched_clock(); 352 ret = armpmu->handle_irq(armpmu); 353 finish_clock = sched_clock(); 354 355 perf_sample_event_took(finish_clock - start_clock); 356 return ret; 357 } 358 359 static int 360 __hw_perf_event_init(struct perf_event *event) 361 { 362 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 363 struct hw_perf_event *hwc = &event->hw; 364 int mapping; 365 366 hwc->flags = 0; 367 mapping = armpmu->map_event(event); 368 369 if (mapping < 0) { 370 pr_debug("event %x:%llx not supported\n", event->attr.type, 371 event->attr.config); 372 return mapping; 373 } 374 375 /* 376 * We don't assign an index until we actually place the event onto 377 * hardware. Use -1 to signify that we haven't decided where to put it 378 * yet. For SMP systems, each core has it's own PMU so we can't do any 379 * clever allocation or constraints checking at this point. 380 */ 381 hwc->idx = -1; 382 hwc->config_base = 0; 383 hwc->config = 0; 384 hwc->event_base = 0; 385 386 /* 387 * Check whether we need to exclude the counter from certain modes. 388 */ 389 if (armpmu->set_event_filter && 390 armpmu->set_event_filter(hwc, &event->attr)) { 391 pr_debug("ARM performance counters do not support " 392 "mode exclusion\n"); 393 return -EOPNOTSUPP; 394 } 395 396 /* 397 * Store the event encoding into the config_base field. 398 */ 399 hwc->config_base |= (unsigned long)mapping; 400 401 if (!is_sampling_event(event)) { 402 /* 403 * For non-sampling runs, limit the sample_period to half 404 * of the counter width. That way, the new counter value 405 * is far less likely to overtake the previous one unless 406 * you have some serious IRQ latency issues. 407 */ 408 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 409 hwc->last_period = hwc->sample_period; 410 local64_set(&hwc->period_left, hwc->sample_period); 411 } 412 413 if (event->group_leader != event) { 414 if (validate_group(event) != 0) 415 return -EINVAL; 416 } 417 418 return 0; 419 } 420 421 static int armpmu_event_init(struct perf_event *event) 422 { 423 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 424 425 /* 426 * Reject CPU-affine events for CPUs that are of a different class to 427 * that which this PMU handles. Process-following events (where 428 * event->cpu == -1) can be migrated between CPUs, and thus we have to 429 * reject them later (in armpmu_add) if they're scheduled on a 430 * different class of CPU. 431 */ 432 if (event->cpu != -1 && 433 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 434 return -ENOENT; 435 436 /* does not support taken branch sampling */ 437 if (has_branch_stack(event)) 438 return -EOPNOTSUPP; 439 440 if (armpmu->map_event(event) == -ENOENT) 441 return -ENOENT; 442 443 return __hw_perf_event_init(event); 444 } 445 446 static void armpmu_enable(struct pmu *pmu) 447 { 448 struct arm_pmu *armpmu = to_arm_pmu(pmu); 449 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 450 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 451 452 /* For task-bound events we may be called on other CPUs */ 453 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 454 return; 455 456 if (enabled) 457 armpmu->start(armpmu); 458 } 459 460 static void armpmu_disable(struct pmu *pmu) 461 { 462 struct arm_pmu *armpmu = to_arm_pmu(pmu); 463 464 /* For task-bound events we may be called on other CPUs */ 465 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 466 return; 467 468 armpmu->stop(armpmu); 469 } 470 471 /* 472 * In heterogeneous systems, events are specific to a particular 473 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 474 * the same microarchitecture. 475 */ 476 static int armpmu_filter_match(struct perf_event *event) 477 { 478 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 479 unsigned int cpu = smp_processor_id(); 480 int ret; 481 482 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); 483 if (ret && armpmu->filter_match) 484 return armpmu->filter_match(event); 485 486 return ret; 487 } 488 489 static ssize_t armpmu_cpumask_show(struct device *dev, 490 struct device_attribute *attr, char *buf) 491 { 492 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 493 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 494 } 495 496 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 497 498 static struct attribute *armpmu_common_attrs[] = { 499 &dev_attr_cpus.attr, 500 NULL, 501 }; 502 503 static struct attribute_group armpmu_common_attr_group = { 504 .attrs = armpmu_common_attrs, 505 }; 506 507 /* Set at runtime when we know what CPU type we are. */ 508 static struct arm_pmu *__oprofile_cpu_pmu; 509 510 /* 511 * Despite the names, these two functions are CPU-specific and are used 512 * by the OProfile/perf code. 513 */ 514 const char *perf_pmu_name(void) 515 { 516 if (!__oprofile_cpu_pmu) 517 return NULL; 518 519 return __oprofile_cpu_pmu->name; 520 } 521 EXPORT_SYMBOL_GPL(perf_pmu_name); 522 523 int perf_num_counters(void) 524 { 525 int max_events = 0; 526 527 if (__oprofile_cpu_pmu != NULL) 528 max_events = __oprofile_cpu_pmu->num_events; 529 530 return max_events; 531 } 532 EXPORT_SYMBOL_GPL(perf_num_counters); 533 534 static int armpmu_count_irq_users(const int irq) 535 { 536 int cpu, count = 0; 537 538 for_each_possible_cpu(cpu) { 539 if (per_cpu(cpu_irq, cpu) == irq) 540 count++; 541 } 542 543 return count; 544 } 545 546 void armpmu_free_irq(int irq, int cpu) 547 { 548 if (per_cpu(cpu_irq, cpu) == 0) 549 return; 550 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 551 return; 552 553 if (!irq_is_percpu_devid(irq)) 554 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu)); 555 else if (armpmu_count_irq_users(irq) == 1) 556 free_percpu_irq(irq, &cpu_armpmu); 557 558 per_cpu(cpu_irq, cpu) = 0; 559 } 560 561 int armpmu_request_irq(int irq, int cpu) 562 { 563 int err = 0; 564 const irq_handler_t handler = armpmu_dispatch_irq; 565 if (!irq) 566 return 0; 567 568 if (!irq_is_percpu_devid(irq)) { 569 unsigned long irq_flags; 570 571 err = irq_force_affinity(irq, cpumask_of(cpu)); 572 573 if (err && num_possible_cpus() > 1) { 574 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 575 irq, cpu); 576 goto err_out; 577 } 578 579 irq_flags = IRQF_PERCPU | 580 IRQF_NOBALANCING | 581 IRQF_NO_THREAD; 582 583 irq_set_status_flags(irq, IRQ_NOAUTOEN); 584 err = request_irq(irq, handler, irq_flags, "arm-pmu", 585 per_cpu_ptr(&cpu_armpmu, cpu)); 586 } else if (armpmu_count_irq_users(irq) == 0) { 587 err = request_percpu_irq(irq, handler, "arm-pmu", 588 &cpu_armpmu); 589 } 590 591 if (err) 592 goto err_out; 593 594 per_cpu(cpu_irq, cpu) = irq; 595 return 0; 596 597 err_out: 598 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 599 return err; 600 } 601 602 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 603 { 604 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 605 return per_cpu(hw_events->irq, cpu); 606 } 607 608 /* 609 * PMU hardware loses all context when a CPU goes offline. 610 * When a CPU is hotplugged back in, since some hardware registers are 611 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 612 * junk values out of them. 613 */ 614 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 615 { 616 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 617 int irq; 618 619 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 620 return 0; 621 if (pmu->reset) 622 pmu->reset(pmu); 623 624 per_cpu(cpu_armpmu, cpu) = pmu; 625 626 irq = armpmu_get_cpu_irq(pmu, cpu); 627 if (irq) { 628 if (irq_is_percpu_devid(irq)) 629 enable_percpu_irq(irq, IRQ_TYPE_NONE); 630 else 631 enable_irq(irq); 632 } 633 634 return 0; 635 } 636 637 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 638 { 639 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 640 int irq; 641 642 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 643 return 0; 644 645 irq = armpmu_get_cpu_irq(pmu, cpu); 646 if (irq) { 647 if (irq_is_percpu_devid(irq)) 648 disable_percpu_irq(irq); 649 else 650 disable_irq_nosync(irq); 651 } 652 653 per_cpu(cpu_armpmu, cpu) = NULL; 654 655 return 0; 656 } 657 658 #ifdef CONFIG_CPU_PM 659 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 660 { 661 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 662 struct perf_event *event; 663 int idx; 664 665 for (idx = 0; idx < armpmu->num_events; idx++) { 666 event = hw_events->events[idx]; 667 if (!event) 668 continue; 669 670 switch (cmd) { 671 case CPU_PM_ENTER: 672 /* 673 * Stop and update the counter 674 */ 675 armpmu_stop(event, PERF_EF_UPDATE); 676 break; 677 case CPU_PM_EXIT: 678 case CPU_PM_ENTER_FAILED: 679 /* 680 * Restore and enable the counter. 681 * armpmu_start() indirectly calls 682 * 683 * perf_event_update_userpage() 684 * 685 * that requires RCU read locking to be functional, 686 * wrap the call within RCU_NONIDLE to make the 687 * RCU subsystem aware this cpu is not idle from 688 * an RCU perspective for the armpmu_start() call 689 * duration. 690 */ 691 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 692 break; 693 default: 694 break; 695 } 696 } 697 } 698 699 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 700 void *v) 701 { 702 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 703 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 704 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 705 706 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 707 return NOTIFY_DONE; 708 709 /* 710 * Always reset the PMU registers on power-up even if 711 * there are no events running. 712 */ 713 if (cmd == CPU_PM_EXIT && armpmu->reset) 714 armpmu->reset(armpmu); 715 716 if (!enabled) 717 return NOTIFY_OK; 718 719 switch (cmd) { 720 case CPU_PM_ENTER: 721 armpmu->stop(armpmu); 722 cpu_pm_pmu_setup(armpmu, cmd); 723 break; 724 case CPU_PM_EXIT: 725 cpu_pm_pmu_setup(armpmu, cmd); 726 case CPU_PM_ENTER_FAILED: 727 armpmu->start(armpmu); 728 break; 729 default: 730 return NOTIFY_DONE; 731 } 732 733 return NOTIFY_OK; 734 } 735 736 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 737 { 738 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 739 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 740 } 741 742 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 743 { 744 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 745 } 746 #else 747 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 748 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 749 #endif 750 751 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 752 { 753 int err; 754 755 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 756 &cpu_pmu->node); 757 if (err) 758 goto out; 759 760 err = cpu_pm_pmu_register(cpu_pmu); 761 if (err) 762 goto out_unregister; 763 764 return 0; 765 766 out_unregister: 767 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 768 &cpu_pmu->node); 769 out: 770 return err; 771 } 772 773 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 774 { 775 cpu_pm_pmu_unregister(cpu_pmu); 776 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 777 &cpu_pmu->node); 778 } 779 780 static struct arm_pmu *__armpmu_alloc(gfp_t flags) 781 { 782 struct arm_pmu *pmu; 783 int cpu; 784 785 pmu = kzalloc(sizeof(*pmu), flags); 786 if (!pmu) { 787 pr_info("failed to allocate PMU device!\n"); 788 goto out; 789 } 790 791 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); 792 if (!pmu->hw_events) { 793 pr_info("failed to allocate per-cpu PMU data.\n"); 794 goto out_free_pmu; 795 } 796 797 pmu->pmu = (struct pmu) { 798 .pmu_enable = armpmu_enable, 799 .pmu_disable = armpmu_disable, 800 .event_init = armpmu_event_init, 801 .add = armpmu_add, 802 .del = armpmu_del, 803 .start = armpmu_start, 804 .stop = armpmu_stop, 805 .read = armpmu_read, 806 .filter_match = armpmu_filter_match, 807 .attr_groups = pmu->attr_groups, 808 /* 809 * This is a CPU PMU potentially in a heterogeneous 810 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 811 * and we have taken ctx sharing into account (e.g. with our 812 * pmu::filter_match callback and pmu::event_init group 813 * validation). 814 */ 815 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 816 }; 817 818 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 819 &armpmu_common_attr_group; 820 821 for_each_possible_cpu(cpu) { 822 struct pmu_hw_events *events; 823 824 events = per_cpu_ptr(pmu->hw_events, cpu); 825 raw_spin_lock_init(&events->pmu_lock); 826 events->percpu_pmu = pmu; 827 } 828 829 return pmu; 830 831 out_free_pmu: 832 kfree(pmu); 833 out: 834 return NULL; 835 } 836 837 struct arm_pmu *armpmu_alloc(void) 838 { 839 return __armpmu_alloc(GFP_KERNEL); 840 } 841 842 struct arm_pmu *armpmu_alloc_atomic(void) 843 { 844 return __armpmu_alloc(GFP_ATOMIC); 845 } 846 847 848 void armpmu_free(struct arm_pmu *pmu) 849 { 850 free_percpu(pmu->hw_events); 851 kfree(pmu); 852 } 853 854 int armpmu_register(struct arm_pmu *pmu) 855 { 856 int ret; 857 858 ret = cpu_pmu_init(pmu); 859 if (ret) 860 return ret; 861 862 if (!pmu->set_event_filter) 863 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 864 865 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 866 if (ret) 867 goto out_destroy; 868 869 if (!__oprofile_cpu_pmu) 870 __oprofile_cpu_pmu = pmu; 871 872 pr_info("enabled with %s PMU driver, %d counters available\n", 873 pmu->name, pmu->num_events); 874 875 return 0; 876 877 out_destroy: 878 cpu_pmu_destroy(pmu); 879 return ret; 880 } 881 882 static int arm_pmu_hp_init(void) 883 { 884 int ret; 885 886 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 887 "perf/arm/pmu:starting", 888 arm_perf_starting_cpu, 889 arm_perf_teardown_cpu); 890 if (ret) 891 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 892 ret); 893 return ret; 894 } 895 subsys_initcall(arm_pmu_hp_init); 896