xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision cbabf03c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
113 		return GENMASK_ULL(46, 0);
114 	else
115 		return GENMASK_ULL(31, 0);
116 }
117 
118 static int
119 armpmu_map_cache_event(const unsigned (*cache_map)
120 				      [PERF_COUNT_HW_CACHE_MAX]
121 				      [PERF_COUNT_HW_CACHE_OP_MAX]
122 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
123 		       u64 config)
124 {
125 	unsigned int cache_type, cache_op, cache_result, ret;
126 
127 	cache_type = (config >>  0) & 0xff;
128 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129 		return -EINVAL;
130 
131 	cache_op = (config >>  8) & 0xff;
132 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133 		return -EINVAL;
134 
135 	cache_result = (config >> 16) & 0xff;
136 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137 		return -EINVAL;
138 
139 	if (!cache_map)
140 		return -ENOENT;
141 
142 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143 
144 	if (ret == CACHE_OP_UNSUPPORTED)
145 		return -ENOENT;
146 
147 	return ret;
148 }
149 
150 static int
151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153 	int mapping;
154 
155 	if (config >= PERF_COUNT_HW_MAX)
156 		return -EINVAL;
157 
158 	if (!event_map)
159 		return -ENOENT;
160 
161 	mapping = (*event_map)[config];
162 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164 
165 static int
166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168 	return (int)(config & raw_event_mask);
169 }
170 
171 int
172 armpmu_map_event(struct perf_event *event,
173 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174 		 const unsigned (*cache_map)
175 				[PERF_COUNT_HW_CACHE_MAX]
176 				[PERF_COUNT_HW_CACHE_OP_MAX]
177 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
178 		 u32 raw_event_mask)
179 {
180 	u64 config = event->attr.config;
181 	int type = event->attr.type;
182 
183 	if (type == event->pmu->type)
184 		return armpmu_map_raw_event(raw_event_mask, config);
185 
186 	switch (type) {
187 	case PERF_TYPE_HARDWARE:
188 		return armpmu_map_hw_event(event_map, config);
189 	case PERF_TYPE_HW_CACHE:
190 		return armpmu_map_cache_event(cache_map, config);
191 	case PERF_TYPE_RAW:
192 		return armpmu_map_raw_event(raw_event_mask, config);
193 	}
194 
195 	return -ENOENT;
196 }
197 
198 int armpmu_event_set_period(struct perf_event *event)
199 {
200 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 	struct hw_perf_event *hwc = &event->hw;
202 	s64 left = local64_read(&hwc->period_left);
203 	s64 period = hwc->sample_period;
204 	u64 max_period;
205 	int ret = 0;
206 
207 	max_period = arm_pmu_event_max_period(event);
208 	if (unlikely(left <= -period)) {
209 		left = period;
210 		local64_set(&hwc->period_left, left);
211 		hwc->last_period = period;
212 		ret = 1;
213 	}
214 
215 	if (unlikely(left <= 0)) {
216 		left += period;
217 		local64_set(&hwc->period_left, left);
218 		hwc->last_period = period;
219 		ret = 1;
220 	}
221 
222 	/*
223 	 * Limit the maximum period to prevent the counter value
224 	 * from overtaking the one we are about to program. In
225 	 * effect we are reducing max_period to account for
226 	 * interrupt latency (and we are being very conservative).
227 	 */
228 	if (left > (max_period >> 1))
229 		left = (max_period >> 1);
230 
231 	local64_set(&hwc->prev_count, (u64)-left);
232 
233 	armpmu->write_counter(event, (u64)(-left) & max_period);
234 
235 	perf_event_update_userpage(event);
236 
237 	return ret;
238 }
239 
240 u64 armpmu_event_update(struct perf_event *event)
241 {
242 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 	struct hw_perf_event *hwc = &event->hw;
244 	u64 delta, prev_raw_count, new_raw_count;
245 	u64 max_period = arm_pmu_event_max_period(event);
246 
247 again:
248 	prev_raw_count = local64_read(&hwc->prev_count);
249 	new_raw_count = armpmu->read_counter(event);
250 
251 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252 			     new_raw_count) != prev_raw_count)
253 		goto again;
254 
255 	delta = (new_raw_count - prev_raw_count) & max_period;
256 
257 	local64_add(delta, &event->count);
258 	local64_sub(delta, &hwc->period_left);
259 
260 	return new_raw_count;
261 }
262 
263 static void
264 armpmu_read(struct perf_event *event)
265 {
266 	armpmu_event_update(event);
267 }
268 
269 static void
270 armpmu_stop(struct perf_event *event, int flags)
271 {
272 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273 	struct hw_perf_event *hwc = &event->hw;
274 
275 	/*
276 	 * ARM pmu always has to update the counter, so ignore
277 	 * PERF_EF_UPDATE, see comments in armpmu_start().
278 	 */
279 	if (!(hwc->state & PERF_HES_STOPPED)) {
280 		armpmu->disable(event);
281 		armpmu_event_update(event);
282 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283 	}
284 }
285 
286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289 	struct hw_perf_event *hwc = &event->hw;
290 
291 	/*
292 	 * ARM pmu always has to reprogram the period, so ignore
293 	 * PERF_EF_RELOAD, see the comment below.
294 	 */
295 	if (flags & PERF_EF_RELOAD)
296 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297 
298 	hwc->state = 0;
299 	/*
300 	 * Set the period again. Some counters can't be stopped, so when we
301 	 * were stopped we simply disabled the IRQ source and the counter
302 	 * may have been left counting. If we don't do this step then we may
303 	 * get an interrupt too soon or *way* too late if the overflow has
304 	 * happened since disabling.
305 	 */
306 	armpmu_event_set_period(event);
307 	armpmu->enable(event);
308 }
309 
310 static void
311 armpmu_del(struct perf_event *event, int flags)
312 {
313 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315 	struct hw_perf_event *hwc = &event->hw;
316 	int idx = hwc->idx;
317 
318 	armpmu_stop(event, PERF_EF_UPDATE);
319 	hw_events->events[idx] = NULL;
320 	armpmu->clear_event_idx(hw_events, event);
321 	perf_event_update_userpage(event);
322 	/* Clear the allocated counter */
323 	hwc->idx = -1;
324 }
325 
326 static int
327 armpmu_add(struct perf_event *event, int flags)
328 {
329 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331 	struct hw_perf_event *hwc = &event->hw;
332 	int idx;
333 
334 	/* An event following a process won't be stopped earlier */
335 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336 		return -ENOENT;
337 
338 	/* If we don't have a space for the counter then finish early. */
339 	idx = armpmu->get_event_idx(hw_events, event);
340 	if (idx < 0)
341 		return idx;
342 
343 	/*
344 	 * If there is an event in the counter we are going to use then make
345 	 * sure it is disabled.
346 	 */
347 	event->hw.idx = idx;
348 	armpmu->disable(event);
349 	hw_events->events[idx] = event;
350 
351 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 	if (flags & PERF_EF_START)
353 		armpmu_start(event, PERF_EF_RELOAD);
354 
355 	/* Propagate our changes to the userspace mapping. */
356 	perf_event_update_userpage(event);
357 
358 	return 0;
359 }
360 
361 static int
362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 			       struct perf_event *event)
364 {
365 	struct arm_pmu *armpmu;
366 
367 	if (is_software_event(event))
368 		return 1;
369 
370 	/*
371 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 	 * core perf code won't check that the pmu->ctx == leader->ctx
373 	 * until after pmu->event_init(event).
374 	 */
375 	if (event->pmu != pmu)
376 		return 0;
377 
378 	if (event->state < PERF_EVENT_STATE_OFF)
379 		return 1;
380 
381 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 		return 1;
383 
384 	armpmu = to_arm_pmu(event->pmu);
385 	return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387 
388 static int
389 validate_group(struct perf_event *event)
390 {
391 	struct perf_event *sibling, *leader = event->group_leader;
392 	struct pmu_hw_events fake_pmu;
393 
394 	/*
395 	 * Initialise the fake PMU. We only need to populate the
396 	 * used_mask for the purposes of validation.
397 	 */
398 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399 
400 	if (!validate_event(event->pmu, &fake_pmu, leader))
401 		return -EINVAL;
402 
403 	for_each_sibling_event(sibling, leader) {
404 		if (!validate_event(event->pmu, &fake_pmu, sibling))
405 			return -EINVAL;
406 	}
407 
408 	if (!validate_event(event->pmu, &fake_pmu, event))
409 		return -EINVAL;
410 
411 	return 0;
412 }
413 
414 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
415 {
416 	struct arm_pmu *armpmu;
417 	int ret;
418 	u64 start_clock, finish_clock;
419 
420 	/*
421 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
422 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
423 	 * do any necessary shifting, we just need to perform the first
424 	 * dereference.
425 	 */
426 	armpmu = *(void **)dev;
427 	if (WARN_ON_ONCE(!armpmu))
428 		return IRQ_NONE;
429 
430 	start_clock = sched_clock();
431 	ret = armpmu->handle_irq(armpmu);
432 	finish_clock = sched_clock();
433 
434 	perf_sample_event_took(finish_clock - start_clock);
435 	return ret;
436 }
437 
438 static int
439 __hw_perf_event_init(struct perf_event *event)
440 {
441 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
442 	struct hw_perf_event *hwc = &event->hw;
443 	int mapping;
444 
445 	hwc->flags = 0;
446 	mapping = armpmu->map_event(event);
447 
448 	if (mapping < 0) {
449 		pr_debug("event %x:%llx not supported\n", event->attr.type,
450 			 event->attr.config);
451 		return mapping;
452 	}
453 
454 	/*
455 	 * We don't assign an index until we actually place the event onto
456 	 * hardware. Use -1 to signify that we haven't decided where to put it
457 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
458 	 * clever allocation or constraints checking at this point.
459 	 */
460 	hwc->idx		= -1;
461 	hwc->config_base	= 0;
462 	hwc->config		= 0;
463 	hwc->event_base		= 0;
464 
465 	/*
466 	 * Check whether we need to exclude the counter from certain modes.
467 	 */
468 	if (armpmu->set_event_filter &&
469 	    armpmu->set_event_filter(hwc, &event->attr)) {
470 		pr_debug("ARM performance counters do not support "
471 			 "mode exclusion\n");
472 		return -EOPNOTSUPP;
473 	}
474 
475 	/*
476 	 * Store the event encoding into the config_base field.
477 	 */
478 	hwc->config_base	    |= (unsigned long)mapping;
479 
480 	if (!is_sampling_event(event)) {
481 		/*
482 		 * For non-sampling runs, limit the sample_period to half
483 		 * of the counter width. That way, the new counter value
484 		 * is far less likely to overtake the previous one unless
485 		 * you have some serious IRQ latency issues.
486 		 */
487 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
488 		hwc->last_period    = hwc->sample_period;
489 		local64_set(&hwc->period_left, hwc->sample_period);
490 	}
491 
492 	if (event->group_leader != event) {
493 		if (validate_group(event) != 0)
494 			return -EINVAL;
495 	}
496 
497 	return 0;
498 }
499 
500 static int armpmu_event_init(struct perf_event *event)
501 {
502 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
503 
504 	/*
505 	 * Reject CPU-affine events for CPUs that are of a different class to
506 	 * that which this PMU handles. Process-following events (where
507 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
508 	 * reject them later (in armpmu_add) if they're scheduled on a
509 	 * different class of CPU.
510 	 */
511 	if (event->cpu != -1 &&
512 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
513 		return -ENOENT;
514 
515 	/* does not support taken branch sampling */
516 	if (has_branch_stack(event))
517 		return -EOPNOTSUPP;
518 
519 	if (armpmu->map_event(event) == -ENOENT)
520 		return -ENOENT;
521 
522 	return __hw_perf_event_init(event);
523 }
524 
525 static void armpmu_enable(struct pmu *pmu)
526 {
527 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
528 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
529 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
530 
531 	/* For task-bound events we may be called on other CPUs */
532 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
533 		return;
534 
535 	if (enabled)
536 		armpmu->start(armpmu);
537 }
538 
539 static void armpmu_disable(struct pmu *pmu)
540 {
541 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
542 
543 	/* For task-bound events we may be called on other CPUs */
544 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
545 		return;
546 
547 	armpmu->stop(armpmu);
548 }
549 
550 /*
551  * In heterogeneous systems, events are specific to a particular
552  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
553  * the same microarchitecture.
554  */
555 static int armpmu_filter_match(struct perf_event *event)
556 {
557 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
558 	unsigned int cpu = smp_processor_id();
559 	int ret;
560 
561 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
562 	if (ret && armpmu->filter_match)
563 		return armpmu->filter_match(event);
564 
565 	return ret;
566 }
567 
568 static ssize_t cpus_show(struct device *dev,
569 			 struct device_attribute *attr, char *buf)
570 {
571 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
572 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
573 }
574 
575 static DEVICE_ATTR_RO(cpus);
576 
577 static struct attribute *armpmu_common_attrs[] = {
578 	&dev_attr_cpus.attr,
579 	NULL,
580 };
581 
582 static const struct attribute_group armpmu_common_attr_group = {
583 	.attrs = armpmu_common_attrs,
584 };
585 
586 static int armpmu_count_irq_users(const int irq)
587 {
588 	int cpu, count = 0;
589 
590 	for_each_possible_cpu(cpu) {
591 		if (per_cpu(cpu_irq, cpu) == irq)
592 			count++;
593 	}
594 
595 	return count;
596 }
597 
598 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
599 {
600 	const struct pmu_irq_ops *ops = NULL;
601 	int cpu;
602 
603 	for_each_possible_cpu(cpu) {
604 		if (per_cpu(cpu_irq, cpu) != irq)
605 			continue;
606 
607 		ops = per_cpu(cpu_irq_ops, cpu);
608 		if (ops)
609 			break;
610 	}
611 
612 	return ops;
613 }
614 
615 void armpmu_free_irq(int irq, int cpu)
616 {
617 	if (per_cpu(cpu_irq, cpu) == 0)
618 		return;
619 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
620 		return;
621 
622 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
623 
624 	per_cpu(cpu_irq, cpu) = 0;
625 	per_cpu(cpu_irq_ops, cpu) = NULL;
626 }
627 
628 int armpmu_request_irq(int irq, int cpu)
629 {
630 	int err = 0;
631 	const irq_handler_t handler = armpmu_dispatch_irq;
632 	const struct pmu_irq_ops *irq_ops;
633 
634 	if (!irq)
635 		return 0;
636 
637 	if (!irq_is_percpu_devid(irq)) {
638 		unsigned long irq_flags;
639 
640 		err = irq_force_affinity(irq, cpumask_of(cpu));
641 
642 		if (err && num_possible_cpus() > 1) {
643 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
644 				irq, cpu);
645 			goto err_out;
646 		}
647 
648 		irq_flags = IRQF_PERCPU |
649 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
650 			    IRQF_NO_THREAD;
651 
652 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
653 				  per_cpu_ptr(&cpu_armpmu, cpu));
654 
655 		/* If cannot get an NMI, get a normal interrupt */
656 		if (err) {
657 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
658 					  per_cpu_ptr(&cpu_armpmu, cpu));
659 			irq_ops = &pmuirq_ops;
660 		} else {
661 			has_nmi = true;
662 			irq_ops = &pmunmi_ops;
663 		}
664 	} else if (armpmu_count_irq_users(irq) == 0) {
665 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
666 
667 		/* If cannot get an NMI, get a normal interrupt */
668 		if (err) {
669 			err = request_percpu_irq(irq, handler, "arm-pmu",
670 						 &cpu_armpmu);
671 			irq_ops = &percpu_pmuirq_ops;
672 		} else {
673 			has_nmi = true;
674 			irq_ops = &percpu_pmunmi_ops;
675 		}
676 	} else {
677 		/* Per cpudevid irq was already requested by another CPU */
678 		irq_ops = armpmu_find_irq_ops(irq);
679 
680 		if (WARN_ON(!irq_ops))
681 			err = -EINVAL;
682 	}
683 
684 	if (err)
685 		goto err_out;
686 
687 	per_cpu(cpu_irq, cpu) = irq;
688 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
689 	return 0;
690 
691 err_out:
692 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
693 	return err;
694 }
695 
696 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
697 {
698 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
699 	return per_cpu(hw_events->irq, cpu);
700 }
701 
702 /*
703  * PMU hardware loses all context when a CPU goes offline.
704  * When a CPU is hotplugged back in, since some hardware registers are
705  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
706  * junk values out of them.
707  */
708 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
709 {
710 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
711 	int irq;
712 
713 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
714 		return 0;
715 	if (pmu->reset)
716 		pmu->reset(pmu);
717 
718 	per_cpu(cpu_armpmu, cpu) = pmu;
719 
720 	irq = armpmu_get_cpu_irq(pmu, cpu);
721 	if (irq)
722 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
723 
724 	return 0;
725 }
726 
727 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
728 {
729 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
730 	int irq;
731 
732 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
733 		return 0;
734 
735 	irq = armpmu_get_cpu_irq(pmu, cpu);
736 	if (irq)
737 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
738 
739 	per_cpu(cpu_armpmu, cpu) = NULL;
740 
741 	return 0;
742 }
743 
744 #ifdef CONFIG_CPU_PM
745 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
746 {
747 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
748 	struct perf_event *event;
749 	int idx;
750 
751 	for (idx = 0; idx < armpmu->num_events; idx++) {
752 		event = hw_events->events[idx];
753 		if (!event)
754 			continue;
755 
756 		switch (cmd) {
757 		case CPU_PM_ENTER:
758 			/*
759 			 * Stop and update the counter
760 			 */
761 			armpmu_stop(event, PERF_EF_UPDATE);
762 			break;
763 		case CPU_PM_EXIT:
764 		case CPU_PM_ENTER_FAILED:
765 			 /*
766 			  * Restore and enable the counter.
767 			  * armpmu_start() indirectly calls
768 			  *
769 			  * perf_event_update_userpage()
770 			  *
771 			  * that requires RCU read locking to be functional,
772 			  * wrap the call within RCU_NONIDLE to make the
773 			  * RCU subsystem aware this cpu is not idle from
774 			  * an RCU perspective for the armpmu_start() call
775 			  * duration.
776 			  */
777 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
778 			break;
779 		default:
780 			break;
781 		}
782 	}
783 }
784 
785 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
786 			     void *v)
787 {
788 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
789 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
790 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
791 
792 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
793 		return NOTIFY_DONE;
794 
795 	/*
796 	 * Always reset the PMU registers on power-up even if
797 	 * there are no events running.
798 	 */
799 	if (cmd == CPU_PM_EXIT && armpmu->reset)
800 		armpmu->reset(armpmu);
801 
802 	if (!enabled)
803 		return NOTIFY_OK;
804 
805 	switch (cmd) {
806 	case CPU_PM_ENTER:
807 		armpmu->stop(armpmu);
808 		cpu_pm_pmu_setup(armpmu, cmd);
809 		break;
810 	case CPU_PM_EXIT:
811 	case CPU_PM_ENTER_FAILED:
812 		cpu_pm_pmu_setup(armpmu, cmd);
813 		armpmu->start(armpmu);
814 		break;
815 	default:
816 		return NOTIFY_DONE;
817 	}
818 
819 	return NOTIFY_OK;
820 }
821 
822 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
823 {
824 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
825 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
826 }
827 
828 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
829 {
830 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
831 }
832 #else
833 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
834 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
835 #endif
836 
837 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
838 {
839 	int err;
840 
841 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
842 				       &cpu_pmu->node);
843 	if (err)
844 		goto out;
845 
846 	err = cpu_pm_pmu_register(cpu_pmu);
847 	if (err)
848 		goto out_unregister;
849 
850 	return 0;
851 
852 out_unregister:
853 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
854 					    &cpu_pmu->node);
855 out:
856 	return err;
857 }
858 
859 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
860 {
861 	cpu_pm_pmu_unregister(cpu_pmu);
862 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
863 					    &cpu_pmu->node);
864 }
865 
866 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
867 {
868 	struct arm_pmu *pmu;
869 	int cpu;
870 
871 	pmu = kzalloc(sizeof(*pmu), flags);
872 	if (!pmu)
873 		goto out;
874 
875 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
876 	if (!pmu->hw_events) {
877 		pr_info("failed to allocate per-cpu PMU data.\n");
878 		goto out_free_pmu;
879 	}
880 
881 	pmu->pmu = (struct pmu) {
882 		.pmu_enable	= armpmu_enable,
883 		.pmu_disable	= armpmu_disable,
884 		.event_init	= armpmu_event_init,
885 		.add		= armpmu_add,
886 		.del		= armpmu_del,
887 		.start		= armpmu_start,
888 		.stop		= armpmu_stop,
889 		.read		= armpmu_read,
890 		.filter_match	= armpmu_filter_match,
891 		.attr_groups	= pmu->attr_groups,
892 		/*
893 		 * This is a CPU PMU potentially in a heterogeneous
894 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
895 		 * and we have taken ctx sharing into account (e.g. with our
896 		 * pmu::filter_match callback and pmu::event_init group
897 		 * validation).
898 		 */
899 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
900 	};
901 
902 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
903 		&armpmu_common_attr_group;
904 
905 	for_each_possible_cpu(cpu) {
906 		struct pmu_hw_events *events;
907 
908 		events = per_cpu_ptr(pmu->hw_events, cpu);
909 		raw_spin_lock_init(&events->pmu_lock);
910 		events->percpu_pmu = pmu;
911 	}
912 
913 	return pmu;
914 
915 out_free_pmu:
916 	kfree(pmu);
917 out:
918 	return NULL;
919 }
920 
921 struct arm_pmu *armpmu_alloc(void)
922 {
923 	return __armpmu_alloc(GFP_KERNEL);
924 }
925 
926 struct arm_pmu *armpmu_alloc_atomic(void)
927 {
928 	return __armpmu_alloc(GFP_ATOMIC);
929 }
930 
931 
932 void armpmu_free(struct arm_pmu *pmu)
933 {
934 	free_percpu(pmu->hw_events);
935 	kfree(pmu);
936 }
937 
938 int armpmu_register(struct arm_pmu *pmu)
939 {
940 	int ret;
941 
942 	ret = cpu_pmu_init(pmu);
943 	if (ret)
944 		return ret;
945 
946 	if (!pmu->set_event_filter)
947 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
948 
949 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
950 	if (ret)
951 		goto out_destroy;
952 
953 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
954 		pmu->name, pmu->num_events,
955 		has_nmi ? ", using NMIs" : "");
956 
957 	kvm_host_pmu_init(pmu);
958 
959 	return 0;
960 
961 out_destroy:
962 	cpu_pmu_destroy(pmu);
963 	return ret;
964 }
965 
966 static int arm_pmu_hp_init(void)
967 {
968 	int ret;
969 
970 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
971 				      "perf/arm/pmu:starting",
972 				      arm_perf_starting_cpu,
973 				      arm_perf_teardown_cpu);
974 	if (ret)
975 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
976 		       ret);
977 	return ret;
978 }
979 subsys_initcall(arm_pmu_hp_init);
980