xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision bbdd33769d319d1e7bb8fec09124a49b3573a2d3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
113 		return GENMASK_ULL(46, 0);
114 	else
115 		return GENMASK_ULL(31, 0);
116 }
117 
118 static int
119 armpmu_map_cache_event(const unsigned (*cache_map)
120 				      [PERF_COUNT_HW_CACHE_MAX]
121 				      [PERF_COUNT_HW_CACHE_OP_MAX]
122 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
123 		       u64 config)
124 {
125 	unsigned int cache_type, cache_op, cache_result, ret;
126 
127 	cache_type = (config >>  0) & 0xff;
128 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129 		return -EINVAL;
130 
131 	cache_op = (config >>  8) & 0xff;
132 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133 		return -EINVAL;
134 
135 	cache_result = (config >> 16) & 0xff;
136 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137 		return -EINVAL;
138 
139 	if (!cache_map)
140 		return -ENOENT;
141 
142 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143 
144 	if (ret == CACHE_OP_UNSUPPORTED)
145 		return -ENOENT;
146 
147 	return ret;
148 }
149 
150 static int
151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153 	int mapping;
154 
155 	if (config >= PERF_COUNT_HW_MAX)
156 		return -EINVAL;
157 
158 	if (!event_map)
159 		return -ENOENT;
160 
161 	mapping = (*event_map)[config];
162 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164 
165 static int
166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168 	return (int)(config & raw_event_mask);
169 }
170 
171 int
172 armpmu_map_event(struct perf_event *event,
173 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174 		 const unsigned (*cache_map)
175 				[PERF_COUNT_HW_CACHE_MAX]
176 				[PERF_COUNT_HW_CACHE_OP_MAX]
177 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
178 		 u32 raw_event_mask)
179 {
180 	u64 config = event->attr.config;
181 	int type = event->attr.type;
182 
183 	if (type == event->pmu->type)
184 		return armpmu_map_raw_event(raw_event_mask, config);
185 
186 	switch (type) {
187 	case PERF_TYPE_HARDWARE:
188 		return armpmu_map_hw_event(event_map, config);
189 	case PERF_TYPE_HW_CACHE:
190 		return armpmu_map_cache_event(cache_map, config);
191 	case PERF_TYPE_RAW:
192 		return armpmu_map_raw_event(raw_event_mask, config);
193 	}
194 
195 	return -ENOENT;
196 }
197 
198 int armpmu_event_set_period(struct perf_event *event)
199 {
200 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 	struct hw_perf_event *hwc = &event->hw;
202 	s64 left = local64_read(&hwc->period_left);
203 	s64 period = hwc->sample_period;
204 	u64 max_period;
205 	int ret = 0;
206 
207 	max_period = arm_pmu_event_max_period(event);
208 	if (unlikely(left <= -period)) {
209 		left = period;
210 		local64_set(&hwc->period_left, left);
211 		hwc->last_period = period;
212 		ret = 1;
213 	}
214 
215 	if (unlikely(left <= 0)) {
216 		left += period;
217 		local64_set(&hwc->period_left, left);
218 		hwc->last_period = period;
219 		ret = 1;
220 	}
221 
222 	/*
223 	 * Limit the maximum period to prevent the counter value
224 	 * from overtaking the one we are about to program. In
225 	 * effect we are reducing max_period to account for
226 	 * interrupt latency (and we are being very conservative).
227 	 */
228 	if (left > (max_period >> 1))
229 		left = (max_period >> 1);
230 
231 	local64_set(&hwc->prev_count, (u64)-left);
232 
233 	armpmu->write_counter(event, (u64)(-left) & max_period);
234 
235 	perf_event_update_userpage(event);
236 
237 	return ret;
238 }
239 
240 u64 armpmu_event_update(struct perf_event *event)
241 {
242 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 	struct hw_perf_event *hwc = &event->hw;
244 	u64 delta, prev_raw_count, new_raw_count;
245 	u64 max_period = arm_pmu_event_max_period(event);
246 
247 again:
248 	prev_raw_count = local64_read(&hwc->prev_count);
249 	new_raw_count = armpmu->read_counter(event);
250 
251 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252 			     new_raw_count) != prev_raw_count)
253 		goto again;
254 
255 	delta = (new_raw_count - prev_raw_count) & max_period;
256 
257 	local64_add(delta, &event->count);
258 	local64_sub(delta, &hwc->period_left);
259 
260 	return new_raw_count;
261 }
262 
263 static void
264 armpmu_read(struct perf_event *event)
265 {
266 	armpmu_event_update(event);
267 }
268 
269 static void
270 armpmu_stop(struct perf_event *event, int flags)
271 {
272 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273 	struct hw_perf_event *hwc = &event->hw;
274 
275 	/*
276 	 * ARM pmu always has to update the counter, so ignore
277 	 * PERF_EF_UPDATE, see comments in armpmu_start().
278 	 */
279 	if (!(hwc->state & PERF_HES_STOPPED)) {
280 		armpmu->disable(event);
281 		armpmu_event_update(event);
282 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283 	}
284 }
285 
286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289 	struct hw_perf_event *hwc = &event->hw;
290 
291 	/*
292 	 * ARM pmu always has to reprogram the period, so ignore
293 	 * PERF_EF_RELOAD, see the comment below.
294 	 */
295 	if (flags & PERF_EF_RELOAD)
296 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297 
298 	hwc->state = 0;
299 	/*
300 	 * Set the period again. Some counters can't be stopped, so when we
301 	 * were stopped we simply disabled the IRQ source and the counter
302 	 * may have been left counting. If we don't do this step then we may
303 	 * get an interrupt too soon or *way* too late if the overflow has
304 	 * happened since disabling.
305 	 */
306 	armpmu_event_set_period(event);
307 	armpmu->enable(event);
308 }
309 
310 static void
311 armpmu_del(struct perf_event *event, int flags)
312 {
313 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315 	struct hw_perf_event *hwc = &event->hw;
316 	int idx = hwc->idx;
317 
318 	armpmu_stop(event, PERF_EF_UPDATE);
319 	hw_events->events[idx] = NULL;
320 	armpmu->clear_event_idx(hw_events, event);
321 	perf_event_update_userpage(event);
322 	/* Clear the allocated counter */
323 	hwc->idx = -1;
324 }
325 
326 static int
327 armpmu_add(struct perf_event *event, int flags)
328 {
329 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331 	struct hw_perf_event *hwc = &event->hw;
332 	int idx;
333 
334 	/* An event following a process won't be stopped earlier */
335 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336 		return -ENOENT;
337 
338 	/* If we don't have a space for the counter then finish early. */
339 	idx = armpmu->get_event_idx(hw_events, event);
340 	if (idx < 0)
341 		return idx;
342 
343 	/*
344 	 * If there is an event in the counter we are going to use then make
345 	 * sure it is disabled.
346 	 */
347 	event->hw.idx = idx;
348 	armpmu->disable(event);
349 	hw_events->events[idx] = event;
350 
351 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 	if (flags & PERF_EF_START)
353 		armpmu_start(event, PERF_EF_RELOAD);
354 
355 	/* Propagate our changes to the userspace mapping. */
356 	perf_event_update_userpage(event);
357 
358 	return 0;
359 }
360 
361 static int
362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 			       struct perf_event *event)
364 {
365 	struct arm_pmu *armpmu;
366 
367 	if (is_software_event(event))
368 		return 1;
369 
370 	/*
371 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 	 * core perf code won't check that the pmu->ctx == leader->ctx
373 	 * until after pmu->event_init(event).
374 	 */
375 	if (event->pmu != pmu)
376 		return 0;
377 
378 	if (event->state < PERF_EVENT_STATE_OFF)
379 		return 1;
380 
381 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 		return 1;
383 
384 	armpmu = to_arm_pmu(event->pmu);
385 	return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387 
388 static int
389 validate_group(struct perf_event *event)
390 {
391 	struct perf_event *sibling, *leader = event->group_leader;
392 	struct pmu_hw_events fake_pmu;
393 
394 	/*
395 	 * Initialise the fake PMU. We only need to populate the
396 	 * used_mask for the purposes of validation.
397 	 */
398 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399 
400 	if (!validate_event(event->pmu, &fake_pmu, leader))
401 		return -EINVAL;
402 
403 	if (event == leader)
404 		return 0;
405 
406 	for_each_sibling_event(sibling, leader) {
407 		if (!validate_event(event->pmu, &fake_pmu, sibling))
408 			return -EINVAL;
409 	}
410 
411 	if (!validate_event(event->pmu, &fake_pmu, event))
412 		return -EINVAL;
413 
414 	return 0;
415 }
416 
417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419 	struct arm_pmu *armpmu;
420 	int ret;
421 	u64 start_clock, finish_clock;
422 
423 	/*
424 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426 	 * do any necessary shifting, we just need to perform the first
427 	 * dereference.
428 	 */
429 	armpmu = *(void **)dev;
430 	if (WARN_ON_ONCE(!armpmu))
431 		return IRQ_NONE;
432 
433 	start_clock = sched_clock();
434 	ret = armpmu->handle_irq(armpmu);
435 	finish_clock = sched_clock();
436 
437 	perf_sample_event_took(finish_clock - start_clock);
438 	return ret;
439 }
440 
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 	struct hw_perf_event *hwc = &event->hw;
446 	int mapping;
447 
448 	hwc->flags = 0;
449 	mapping = armpmu->map_event(event);
450 
451 	if (mapping < 0) {
452 		pr_debug("event %x:%llx not supported\n", event->attr.type,
453 			 event->attr.config);
454 		return mapping;
455 	}
456 
457 	/*
458 	 * We don't assign an index until we actually place the event onto
459 	 * hardware. Use -1 to signify that we haven't decided where to put it
460 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
461 	 * clever allocation or constraints checking at this point.
462 	 */
463 	hwc->idx		= -1;
464 	hwc->config_base	= 0;
465 	hwc->config		= 0;
466 	hwc->event_base		= 0;
467 
468 	/*
469 	 * Check whether we need to exclude the counter from certain modes.
470 	 */
471 	if (armpmu->set_event_filter &&
472 	    armpmu->set_event_filter(hwc, &event->attr)) {
473 		pr_debug("ARM performance counters do not support "
474 			 "mode exclusion\n");
475 		return -EOPNOTSUPP;
476 	}
477 
478 	/*
479 	 * Store the event encoding into the config_base field.
480 	 */
481 	hwc->config_base	    |= (unsigned long)mapping;
482 
483 	if (!is_sampling_event(event)) {
484 		/*
485 		 * For non-sampling runs, limit the sample_period to half
486 		 * of the counter width. That way, the new counter value
487 		 * is far less likely to overtake the previous one unless
488 		 * you have some serious IRQ latency issues.
489 		 */
490 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
491 		hwc->last_period    = hwc->sample_period;
492 		local64_set(&hwc->period_left, hwc->sample_period);
493 	}
494 
495 	return validate_group(event);
496 }
497 
498 static int armpmu_event_init(struct perf_event *event)
499 {
500 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501 
502 	/*
503 	 * Reject CPU-affine events for CPUs that are of a different class to
504 	 * that which this PMU handles. Process-following events (where
505 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
506 	 * reject them later (in armpmu_add) if they're scheduled on a
507 	 * different class of CPU.
508 	 */
509 	if (event->cpu != -1 &&
510 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511 		return -ENOENT;
512 
513 	/* does not support taken branch sampling */
514 	if (has_branch_stack(event))
515 		return -EOPNOTSUPP;
516 
517 	return __hw_perf_event_init(event);
518 }
519 
520 static void armpmu_enable(struct pmu *pmu)
521 {
522 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
523 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
524 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
525 
526 	/* For task-bound events we may be called on other CPUs */
527 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
528 		return;
529 
530 	if (enabled)
531 		armpmu->start(armpmu);
532 }
533 
534 static void armpmu_disable(struct pmu *pmu)
535 {
536 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
537 
538 	/* For task-bound events we may be called on other CPUs */
539 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
540 		return;
541 
542 	armpmu->stop(armpmu);
543 }
544 
545 /*
546  * In heterogeneous systems, events are specific to a particular
547  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
548  * the same microarchitecture.
549  */
550 static bool armpmu_filter(struct pmu *pmu, int cpu)
551 {
552 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
553 	return !cpumask_test_cpu(cpu, &armpmu->supported_cpus);
554 }
555 
556 static ssize_t cpus_show(struct device *dev,
557 			 struct device_attribute *attr, char *buf)
558 {
559 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
560 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
561 }
562 
563 static DEVICE_ATTR_RO(cpus);
564 
565 static struct attribute *armpmu_common_attrs[] = {
566 	&dev_attr_cpus.attr,
567 	NULL,
568 };
569 
570 static const struct attribute_group armpmu_common_attr_group = {
571 	.attrs = armpmu_common_attrs,
572 };
573 
574 static int armpmu_count_irq_users(const int irq)
575 {
576 	int cpu, count = 0;
577 
578 	for_each_possible_cpu(cpu) {
579 		if (per_cpu(cpu_irq, cpu) == irq)
580 			count++;
581 	}
582 
583 	return count;
584 }
585 
586 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
587 {
588 	const struct pmu_irq_ops *ops = NULL;
589 	int cpu;
590 
591 	for_each_possible_cpu(cpu) {
592 		if (per_cpu(cpu_irq, cpu) != irq)
593 			continue;
594 
595 		ops = per_cpu(cpu_irq_ops, cpu);
596 		if (ops)
597 			break;
598 	}
599 
600 	return ops;
601 }
602 
603 void armpmu_free_irq(int irq, int cpu)
604 {
605 	if (per_cpu(cpu_irq, cpu) == 0)
606 		return;
607 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
608 		return;
609 
610 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
611 
612 	per_cpu(cpu_irq, cpu) = 0;
613 	per_cpu(cpu_irq_ops, cpu) = NULL;
614 }
615 
616 int armpmu_request_irq(int irq, int cpu)
617 {
618 	int err = 0;
619 	const irq_handler_t handler = armpmu_dispatch_irq;
620 	const struct pmu_irq_ops *irq_ops;
621 
622 	if (!irq)
623 		return 0;
624 
625 	if (!irq_is_percpu_devid(irq)) {
626 		unsigned long irq_flags;
627 
628 		err = irq_force_affinity(irq, cpumask_of(cpu));
629 
630 		if (err && num_possible_cpus() > 1) {
631 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
632 				irq, cpu);
633 			goto err_out;
634 		}
635 
636 		irq_flags = IRQF_PERCPU |
637 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
638 			    IRQF_NO_THREAD;
639 
640 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
641 				  per_cpu_ptr(&cpu_armpmu, cpu));
642 
643 		/* If cannot get an NMI, get a normal interrupt */
644 		if (err) {
645 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
646 					  per_cpu_ptr(&cpu_armpmu, cpu));
647 			irq_ops = &pmuirq_ops;
648 		} else {
649 			has_nmi = true;
650 			irq_ops = &pmunmi_ops;
651 		}
652 	} else if (armpmu_count_irq_users(irq) == 0) {
653 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
654 
655 		/* If cannot get an NMI, get a normal interrupt */
656 		if (err) {
657 			err = request_percpu_irq(irq, handler, "arm-pmu",
658 						 &cpu_armpmu);
659 			irq_ops = &percpu_pmuirq_ops;
660 		} else {
661 			has_nmi = true;
662 			irq_ops = &percpu_pmunmi_ops;
663 		}
664 	} else {
665 		/* Per cpudevid irq was already requested by another CPU */
666 		irq_ops = armpmu_find_irq_ops(irq);
667 
668 		if (WARN_ON(!irq_ops))
669 			err = -EINVAL;
670 	}
671 
672 	if (err)
673 		goto err_out;
674 
675 	per_cpu(cpu_irq, cpu) = irq;
676 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
677 	return 0;
678 
679 err_out:
680 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
681 	return err;
682 }
683 
684 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
685 {
686 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
687 	return per_cpu(hw_events->irq, cpu);
688 }
689 
690 /*
691  * PMU hardware loses all context when a CPU goes offline.
692  * When a CPU is hotplugged back in, since some hardware registers are
693  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
694  * junk values out of them.
695  */
696 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
697 {
698 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
699 	int irq;
700 
701 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
702 		return 0;
703 	if (pmu->reset)
704 		pmu->reset(pmu);
705 
706 	per_cpu(cpu_armpmu, cpu) = pmu;
707 
708 	irq = armpmu_get_cpu_irq(pmu, cpu);
709 	if (irq)
710 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
711 
712 	return 0;
713 }
714 
715 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
716 {
717 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
718 	int irq;
719 
720 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
721 		return 0;
722 
723 	irq = armpmu_get_cpu_irq(pmu, cpu);
724 	if (irq)
725 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
726 
727 	per_cpu(cpu_armpmu, cpu) = NULL;
728 
729 	return 0;
730 }
731 
732 #ifdef CONFIG_CPU_PM
733 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
734 {
735 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
736 	struct perf_event *event;
737 	int idx;
738 
739 	for (idx = 0; idx < armpmu->num_events; idx++) {
740 		event = hw_events->events[idx];
741 		if (!event)
742 			continue;
743 
744 		switch (cmd) {
745 		case CPU_PM_ENTER:
746 			/*
747 			 * Stop and update the counter
748 			 */
749 			armpmu_stop(event, PERF_EF_UPDATE);
750 			break;
751 		case CPU_PM_EXIT:
752 		case CPU_PM_ENTER_FAILED:
753 			 /*
754 			  * Restore and enable the counter.
755 			  */
756 			armpmu_start(event, PERF_EF_RELOAD);
757 			break;
758 		default:
759 			break;
760 		}
761 	}
762 }
763 
764 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
765 			     void *v)
766 {
767 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
768 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
769 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
770 
771 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
772 		return NOTIFY_DONE;
773 
774 	/*
775 	 * Always reset the PMU registers on power-up even if
776 	 * there are no events running.
777 	 */
778 	if (cmd == CPU_PM_EXIT && armpmu->reset)
779 		armpmu->reset(armpmu);
780 
781 	if (!enabled)
782 		return NOTIFY_OK;
783 
784 	switch (cmd) {
785 	case CPU_PM_ENTER:
786 		armpmu->stop(armpmu);
787 		cpu_pm_pmu_setup(armpmu, cmd);
788 		break;
789 	case CPU_PM_EXIT:
790 	case CPU_PM_ENTER_FAILED:
791 		cpu_pm_pmu_setup(armpmu, cmd);
792 		armpmu->start(armpmu);
793 		break;
794 	default:
795 		return NOTIFY_DONE;
796 	}
797 
798 	return NOTIFY_OK;
799 }
800 
801 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
802 {
803 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
804 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
805 }
806 
807 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
808 {
809 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
810 }
811 #else
812 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
813 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
814 #endif
815 
816 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
817 {
818 	int err;
819 
820 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
821 				       &cpu_pmu->node);
822 	if (err)
823 		goto out;
824 
825 	err = cpu_pm_pmu_register(cpu_pmu);
826 	if (err)
827 		goto out_unregister;
828 
829 	return 0;
830 
831 out_unregister:
832 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
833 					    &cpu_pmu->node);
834 out:
835 	return err;
836 }
837 
838 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
839 {
840 	cpu_pm_pmu_unregister(cpu_pmu);
841 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
842 					    &cpu_pmu->node);
843 }
844 
845 struct arm_pmu *armpmu_alloc(void)
846 {
847 	struct arm_pmu *pmu;
848 	int cpu;
849 
850 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
851 	if (!pmu)
852 		goto out;
853 
854 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, GFP_KERNEL);
855 	if (!pmu->hw_events) {
856 		pr_info("failed to allocate per-cpu PMU data.\n");
857 		goto out_free_pmu;
858 	}
859 
860 	pmu->pmu = (struct pmu) {
861 		.pmu_enable	= armpmu_enable,
862 		.pmu_disable	= armpmu_disable,
863 		.event_init	= armpmu_event_init,
864 		.add		= armpmu_add,
865 		.del		= armpmu_del,
866 		.start		= armpmu_start,
867 		.stop		= armpmu_stop,
868 		.read		= armpmu_read,
869 		.filter		= armpmu_filter,
870 		.attr_groups	= pmu->attr_groups,
871 		/*
872 		 * This is a CPU PMU potentially in a heterogeneous
873 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
874 		 * and we have taken ctx sharing into account (e.g. with our
875 		 * pmu::filter callback and pmu::event_init group validation).
876 		 */
877 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
878 	};
879 
880 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
881 		&armpmu_common_attr_group;
882 
883 	for_each_possible_cpu(cpu) {
884 		struct pmu_hw_events *events;
885 
886 		events = per_cpu_ptr(pmu->hw_events, cpu);
887 		raw_spin_lock_init(&events->pmu_lock);
888 		events->percpu_pmu = pmu;
889 	}
890 
891 	return pmu;
892 
893 out_free_pmu:
894 	kfree(pmu);
895 out:
896 	return NULL;
897 }
898 
899 void armpmu_free(struct arm_pmu *pmu)
900 {
901 	free_percpu(pmu->hw_events);
902 	kfree(pmu);
903 }
904 
905 int armpmu_register(struct arm_pmu *pmu)
906 {
907 	int ret;
908 
909 	ret = cpu_pmu_init(pmu);
910 	if (ret)
911 		return ret;
912 
913 	if (!pmu->set_event_filter)
914 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
915 
916 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
917 	if (ret)
918 		goto out_destroy;
919 
920 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
921 		pmu->name, pmu->num_events,
922 		has_nmi ? ", using NMIs" : "");
923 
924 	kvm_host_pmu_init(pmu);
925 
926 	return 0;
927 
928 out_destroy:
929 	cpu_pmu_destroy(pmu);
930 	return ret;
931 }
932 
933 static int arm_pmu_hp_init(void)
934 {
935 	int ret;
936 
937 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
938 				      "perf/arm/pmu:starting",
939 				      arm_perf_starting_cpu,
940 				      arm_perf_teardown_cpu);
941 	if (ret)
942 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
943 		       ret);
944 	return ret;
945 }
946 subsys_initcall(arm_pmu_hp_init);
947