xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision b85d4594)
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/export.h>
17 #include <linux/kernel.h>
18 #include <linux/of_device.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/spinlock.h>
23 #include <linux/irq.h>
24 #include <linux/irqdesc.h>
25 
26 #include <asm/cputype.h>
27 #include <asm/irq_regs.h>
28 
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 				      [PERF_COUNT_HW_CACHE_MAX]
32 				      [PERF_COUNT_HW_CACHE_OP_MAX]
33 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 		       u64 config)
35 {
36 	unsigned int cache_type, cache_op, cache_result, ret;
37 
38 	cache_type = (config >>  0) & 0xff;
39 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 		return -EINVAL;
41 
42 	cache_op = (config >>  8) & 0xff;
43 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 		return -EINVAL;
45 
46 	cache_result = (config >> 16) & 0xff;
47 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 		return -EINVAL;
49 
50 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51 
52 	if (ret == CACHE_OP_UNSUPPORTED)
53 		return -ENOENT;
54 
55 	return ret;
56 }
57 
58 static int
59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60 {
61 	int mapping;
62 
63 	if (config >= PERF_COUNT_HW_MAX)
64 		return -EINVAL;
65 
66 	mapping = (*event_map)[config];
67 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68 }
69 
70 static int
71 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72 {
73 	return (int)(config & raw_event_mask);
74 }
75 
76 int
77 armpmu_map_event(struct perf_event *event,
78 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79 		 const unsigned (*cache_map)
80 				[PERF_COUNT_HW_CACHE_MAX]
81 				[PERF_COUNT_HW_CACHE_OP_MAX]
82 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
83 		 u32 raw_event_mask)
84 {
85 	u64 config = event->attr.config;
86 	int type = event->attr.type;
87 
88 	if (type == event->pmu->type)
89 		return armpmu_map_raw_event(raw_event_mask, config);
90 
91 	switch (type) {
92 	case PERF_TYPE_HARDWARE:
93 		return armpmu_map_hw_event(event_map, config);
94 	case PERF_TYPE_HW_CACHE:
95 		return armpmu_map_cache_event(cache_map, config);
96 	case PERF_TYPE_RAW:
97 		return armpmu_map_raw_event(raw_event_mask, config);
98 	}
99 
100 	return -ENOENT;
101 }
102 
103 int armpmu_event_set_period(struct perf_event *event)
104 {
105 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106 	struct hw_perf_event *hwc = &event->hw;
107 	s64 left = local64_read(&hwc->period_left);
108 	s64 period = hwc->sample_period;
109 	int ret = 0;
110 
111 	if (unlikely(left <= -period)) {
112 		left = period;
113 		local64_set(&hwc->period_left, left);
114 		hwc->last_period = period;
115 		ret = 1;
116 	}
117 
118 	if (unlikely(left <= 0)) {
119 		left += period;
120 		local64_set(&hwc->period_left, left);
121 		hwc->last_period = period;
122 		ret = 1;
123 	}
124 
125 	/*
126 	 * Limit the maximum period to prevent the counter value
127 	 * from overtaking the one we are about to program. In
128 	 * effect we are reducing max_period to account for
129 	 * interrupt latency (and we are being very conservative).
130 	 */
131 	if (left > (armpmu->max_period >> 1))
132 		left = armpmu->max_period >> 1;
133 
134 	local64_set(&hwc->prev_count, (u64)-left);
135 
136 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137 
138 	perf_event_update_userpage(event);
139 
140 	return ret;
141 }
142 
143 u64 armpmu_event_update(struct perf_event *event)
144 {
145 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146 	struct hw_perf_event *hwc = &event->hw;
147 	u64 delta, prev_raw_count, new_raw_count;
148 
149 again:
150 	prev_raw_count = local64_read(&hwc->prev_count);
151 	new_raw_count = armpmu->read_counter(event);
152 
153 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154 			     new_raw_count) != prev_raw_count)
155 		goto again;
156 
157 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158 
159 	local64_add(delta, &event->count);
160 	local64_sub(delta, &hwc->period_left);
161 
162 	return new_raw_count;
163 }
164 
165 static void
166 armpmu_read(struct perf_event *event)
167 {
168 	armpmu_event_update(event);
169 }
170 
171 static void
172 armpmu_stop(struct perf_event *event, int flags)
173 {
174 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175 	struct hw_perf_event *hwc = &event->hw;
176 
177 	/*
178 	 * ARM pmu always has to update the counter, so ignore
179 	 * PERF_EF_UPDATE, see comments in armpmu_start().
180 	 */
181 	if (!(hwc->state & PERF_HES_STOPPED)) {
182 		armpmu->disable(event);
183 		armpmu_event_update(event);
184 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185 	}
186 }
187 
188 static void armpmu_start(struct perf_event *event, int flags)
189 {
190 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191 	struct hw_perf_event *hwc = &event->hw;
192 
193 	/*
194 	 * ARM pmu always has to reprogram the period, so ignore
195 	 * PERF_EF_RELOAD, see the comment below.
196 	 */
197 	if (flags & PERF_EF_RELOAD)
198 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199 
200 	hwc->state = 0;
201 	/*
202 	 * Set the period again. Some counters can't be stopped, so when we
203 	 * were stopped we simply disabled the IRQ source and the counter
204 	 * may have been left counting. If we don't do this step then we may
205 	 * get an interrupt too soon or *way* too late if the overflow has
206 	 * happened since disabling.
207 	 */
208 	armpmu_event_set_period(event);
209 	armpmu->enable(event);
210 }
211 
212 static void
213 armpmu_del(struct perf_event *event, int flags)
214 {
215 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217 	struct hw_perf_event *hwc = &event->hw;
218 	int idx = hwc->idx;
219 
220 	armpmu_stop(event, PERF_EF_UPDATE);
221 	hw_events->events[idx] = NULL;
222 	clear_bit(idx, hw_events->used_mask);
223 	if (armpmu->clear_event_idx)
224 		armpmu->clear_event_idx(hw_events, event);
225 
226 	perf_event_update_userpage(event);
227 }
228 
229 static int
230 armpmu_add(struct perf_event *event, int flags)
231 {
232 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234 	struct hw_perf_event *hwc = &event->hw;
235 	int idx;
236 	int err = 0;
237 
238 	/* An event following a process won't be stopped earlier */
239 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
240 		return -ENOENT;
241 
242 	perf_pmu_disable(event->pmu);
243 
244 	/* If we don't have a space for the counter then finish early. */
245 	idx = armpmu->get_event_idx(hw_events, event);
246 	if (idx < 0) {
247 		err = idx;
248 		goto out;
249 	}
250 
251 	/*
252 	 * If there is an event in the counter we are going to use then make
253 	 * sure it is disabled.
254 	 */
255 	event->hw.idx = idx;
256 	armpmu->disable(event);
257 	hw_events->events[idx] = event;
258 
259 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
260 	if (flags & PERF_EF_START)
261 		armpmu_start(event, PERF_EF_RELOAD);
262 
263 	/* Propagate our changes to the userspace mapping. */
264 	perf_event_update_userpage(event);
265 
266 out:
267 	perf_pmu_enable(event->pmu);
268 	return err;
269 }
270 
271 static int
272 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
273 			       struct perf_event *event)
274 {
275 	struct arm_pmu *armpmu;
276 
277 	if (is_software_event(event))
278 		return 1;
279 
280 	/*
281 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
282 	 * core perf code won't check that the pmu->ctx == leader->ctx
283 	 * until after pmu->event_init(event).
284 	 */
285 	if (event->pmu != pmu)
286 		return 0;
287 
288 	if (event->state < PERF_EVENT_STATE_OFF)
289 		return 1;
290 
291 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
292 		return 1;
293 
294 	armpmu = to_arm_pmu(event->pmu);
295 	return armpmu->get_event_idx(hw_events, event) >= 0;
296 }
297 
298 static int
299 validate_group(struct perf_event *event)
300 {
301 	struct perf_event *sibling, *leader = event->group_leader;
302 	struct pmu_hw_events fake_pmu;
303 
304 	/*
305 	 * Initialise the fake PMU. We only need to populate the
306 	 * used_mask for the purposes of validation.
307 	 */
308 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
309 
310 	if (!validate_event(event->pmu, &fake_pmu, leader))
311 		return -EINVAL;
312 
313 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
314 		if (!validate_event(event->pmu, &fake_pmu, sibling))
315 			return -EINVAL;
316 	}
317 
318 	if (!validate_event(event->pmu, &fake_pmu, event))
319 		return -EINVAL;
320 
321 	return 0;
322 }
323 
324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325 {
326 	struct arm_pmu *armpmu;
327 	struct platform_device *plat_device;
328 	struct arm_pmu_platdata *plat;
329 	int ret;
330 	u64 start_clock, finish_clock;
331 
332 	/*
333 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
334 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
335 	 * do any necessary shifting, we just need to perform the first
336 	 * dereference.
337 	 */
338 	armpmu = *(void **)dev;
339 	plat_device = armpmu->plat_device;
340 	plat = dev_get_platdata(&plat_device->dev);
341 
342 	start_clock = sched_clock();
343 	if (plat && plat->handle_irq)
344 		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
345 	else
346 		ret = armpmu->handle_irq(irq, armpmu);
347 	finish_clock = sched_clock();
348 
349 	perf_sample_event_took(finish_clock - start_clock);
350 	return ret;
351 }
352 
353 static void
354 armpmu_release_hardware(struct arm_pmu *armpmu)
355 {
356 	armpmu->free_irq(armpmu);
357 }
358 
359 static int
360 armpmu_reserve_hardware(struct arm_pmu *armpmu)
361 {
362 	int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
363 	if (err) {
364 		armpmu_release_hardware(armpmu);
365 		return err;
366 	}
367 
368 	return 0;
369 }
370 
371 static void
372 hw_perf_event_destroy(struct perf_event *event)
373 {
374 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
375 	atomic_t *active_events	 = &armpmu->active_events;
376 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
377 
378 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
379 		armpmu_release_hardware(armpmu);
380 		mutex_unlock(pmu_reserve_mutex);
381 	}
382 }
383 
384 static int
385 event_requires_mode_exclusion(struct perf_event_attr *attr)
386 {
387 	return attr->exclude_idle || attr->exclude_user ||
388 	       attr->exclude_kernel || attr->exclude_hv;
389 }
390 
391 static int
392 __hw_perf_event_init(struct perf_event *event)
393 {
394 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
395 	struct hw_perf_event *hwc = &event->hw;
396 	int mapping;
397 
398 	mapping = armpmu->map_event(event);
399 
400 	if (mapping < 0) {
401 		pr_debug("event %x:%llx not supported\n", event->attr.type,
402 			 event->attr.config);
403 		return mapping;
404 	}
405 
406 	/*
407 	 * We don't assign an index until we actually place the event onto
408 	 * hardware. Use -1 to signify that we haven't decided where to put it
409 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
410 	 * clever allocation or constraints checking at this point.
411 	 */
412 	hwc->idx		= -1;
413 	hwc->config_base	= 0;
414 	hwc->config		= 0;
415 	hwc->event_base		= 0;
416 
417 	/*
418 	 * Check whether we need to exclude the counter from certain modes.
419 	 */
420 	if ((!armpmu->set_event_filter ||
421 	     armpmu->set_event_filter(hwc, &event->attr)) &&
422 	     event_requires_mode_exclusion(&event->attr)) {
423 		pr_debug("ARM performance counters do not support "
424 			 "mode exclusion\n");
425 		return -EOPNOTSUPP;
426 	}
427 
428 	/*
429 	 * Store the event encoding into the config_base field.
430 	 */
431 	hwc->config_base	    |= (unsigned long)mapping;
432 
433 	if (!is_sampling_event(event)) {
434 		/*
435 		 * For non-sampling runs, limit the sample_period to half
436 		 * of the counter width. That way, the new counter value
437 		 * is far less likely to overtake the previous one unless
438 		 * you have some serious IRQ latency issues.
439 		 */
440 		hwc->sample_period  = armpmu->max_period >> 1;
441 		hwc->last_period    = hwc->sample_period;
442 		local64_set(&hwc->period_left, hwc->sample_period);
443 	}
444 
445 	if (event->group_leader != event) {
446 		if (validate_group(event) != 0)
447 			return -EINVAL;
448 	}
449 
450 	return 0;
451 }
452 
453 static int armpmu_event_init(struct perf_event *event)
454 {
455 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
456 	int err = 0;
457 	atomic_t *active_events = &armpmu->active_events;
458 
459 	/*
460 	 * Reject CPU-affine events for CPUs that are of a different class to
461 	 * that which this PMU handles. Process-following events (where
462 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
463 	 * reject them later (in armpmu_add) if they're scheduled on a
464 	 * different class of CPU.
465 	 */
466 	if (event->cpu != -1 &&
467 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
468 		return -ENOENT;
469 
470 	/* does not support taken branch sampling */
471 	if (has_branch_stack(event))
472 		return -EOPNOTSUPP;
473 
474 	if (armpmu->map_event(event) == -ENOENT)
475 		return -ENOENT;
476 
477 	event->destroy = hw_perf_event_destroy;
478 
479 	if (!atomic_inc_not_zero(active_events)) {
480 		mutex_lock(&armpmu->reserve_mutex);
481 		if (atomic_read(active_events) == 0)
482 			err = armpmu_reserve_hardware(armpmu);
483 
484 		if (!err)
485 			atomic_inc(active_events);
486 		mutex_unlock(&armpmu->reserve_mutex);
487 	}
488 
489 	if (err)
490 		return err;
491 
492 	err = __hw_perf_event_init(event);
493 	if (err)
494 		hw_perf_event_destroy(event);
495 
496 	return err;
497 }
498 
499 static void armpmu_enable(struct pmu *pmu)
500 {
501 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
502 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
503 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
504 
505 	/* For task-bound events we may be called on other CPUs */
506 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
507 		return;
508 
509 	if (enabled)
510 		armpmu->start(armpmu);
511 }
512 
513 static void armpmu_disable(struct pmu *pmu)
514 {
515 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
516 
517 	/* For task-bound events we may be called on other CPUs */
518 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
519 		return;
520 
521 	armpmu->stop(armpmu);
522 }
523 
524 /*
525  * In heterogeneous systems, events are specific to a particular
526  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
527  * the same microarchitecture.
528  */
529 static int armpmu_filter_match(struct perf_event *event)
530 {
531 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
532 	unsigned int cpu = smp_processor_id();
533 	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
534 }
535 
536 static void armpmu_init(struct arm_pmu *armpmu)
537 {
538 	atomic_set(&armpmu->active_events, 0);
539 	mutex_init(&armpmu->reserve_mutex);
540 
541 	armpmu->pmu = (struct pmu) {
542 		.pmu_enable	= armpmu_enable,
543 		.pmu_disable	= armpmu_disable,
544 		.event_init	= armpmu_event_init,
545 		.add		= armpmu_add,
546 		.del		= armpmu_del,
547 		.start		= armpmu_start,
548 		.stop		= armpmu_stop,
549 		.read		= armpmu_read,
550 		.filter_match	= armpmu_filter_match,
551 	};
552 }
553 
554 int armpmu_register(struct arm_pmu *armpmu, int type)
555 {
556 	armpmu_init(armpmu);
557 	pr_info("enabled with %s PMU driver, %d counters available\n",
558 			armpmu->name, armpmu->num_events);
559 	return perf_pmu_register(&armpmu->pmu, armpmu->name, type);
560 }
561 
562 /* Set at runtime when we know what CPU type we are. */
563 static struct arm_pmu *__oprofile_cpu_pmu;
564 
565 /*
566  * Despite the names, these two functions are CPU-specific and are used
567  * by the OProfile/perf code.
568  */
569 const char *perf_pmu_name(void)
570 {
571 	if (!__oprofile_cpu_pmu)
572 		return NULL;
573 
574 	return __oprofile_cpu_pmu->name;
575 }
576 EXPORT_SYMBOL_GPL(perf_pmu_name);
577 
578 int perf_num_counters(void)
579 {
580 	int max_events = 0;
581 
582 	if (__oprofile_cpu_pmu != NULL)
583 		max_events = __oprofile_cpu_pmu->num_events;
584 
585 	return max_events;
586 }
587 EXPORT_SYMBOL_GPL(perf_num_counters);
588 
589 static void cpu_pmu_enable_percpu_irq(void *data)
590 {
591 	int irq = *(int *)data;
592 
593 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
594 }
595 
596 static void cpu_pmu_disable_percpu_irq(void *data)
597 {
598 	int irq = *(int *)data;
599 
600 	disable_percpu_irq(irq);
601 }
602 
603 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
604 {
605 	int i, irq, irqs;
606 	struct platform_device *pmu_device = cpu_pmu->plat_device;
607 	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
608 
609 	irqs = min(pmu_device->num_resources, num_possible_cpus());
610 
611 	irq = platform_get_irq(pmu_device, 0);
612 	if (irq >= 0 && irq_is_percpu(irq)) {
613 		on_each_cpu(cpu_pmu_disable_percpu_irq, &irq, 1);
614 		free_percpu_irq(irq, &hw_events->percpu_pmu);
615 	} else {
616 		for (i = 0; i < irqs; ++i) {
617 			int cpu = i;
618 
619 			if (cpu_pmu->irq_affinity)
620 				cpu = cpu_pmu->irq_affinity[i];
621 
622 			if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
623 				continue;
624 			irq = platform_get_irq(pmu_device, i);
625 			if (irq >= 0)
626 				free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
627 		}
628 	}
629 }
630 
631 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
632 {
633 	int i, err, irq, irqs;
634 	struct platform_device *pmu_device = cpu_pmu->plat_device;
635 	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
636 
637 	if (!pmu_device)
638 		return -ENODEV;
639 
640 	irqs = min(pmu_device->num_resources, num_possible_cpus());
641 	if (irqs < 1) {
642 		pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
643 		return 0;
644 	}
645 
646 	irq = platform_get_irq(pmu_device, 0);
647 	if (irq >= 0 && irq_is_percpu(irq)) {
648 		err = request_percpu_irq(irq, handler, "arm-pmu",
649 					 &hw_events->percpu_pmu);
650 		if (err) {
651 			pr_err("unable to request IRQ%d for ARM PMU counters\n",
652 				irq);
653 			return err;
654 		}
655 		on_each_cpu(cpu_pmu_enable_percpu_irq, &irq, 1);
656 	} else {
657 		for (i = 0; i < irqs; ++i) {
658 			int cpu = i;
659 
660 			err = 0;
661 			irq = platform_get_irq(pmu_device, i);
662 			if (irq < 0)
663 				continue;
664 
665 			if (cpu_pmu->irq_affinity)
666 				cpu = cpu_pmu->irq_affinity[i];
667 
668 			/*
669 			 * If we have a single PMU interrupt that we can't shift,
670 			 * assume that we're running on a uniprocessor machine and
671 			 * continue. Otherwise, continue without this interrupt.
672 			 */
673 			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
674 				pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
675 					irq, cpu);
676 				continue;
677 			}
678 
679 			err = request_irq(irq, handler,
680 					  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
681 					  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
682 			if (err) {
683 				pr_err("unable to request IRQ%d for ARM PMU counters\n",
684 					irq);
685 				return err;
686 			}
687 
688 			cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
689 		}
690 	}
691 
692 	return 0;
693 }
694 
695 /*
696  * PMU hardware loses all context when a CPU goes offline.
697  * When a CPU is hotplugged back in, since some hardware registers are
698  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
699  * junk values out of them.
700  */
701 static int cpu_pmu_notify(struct notifier_block *b, unsigned long action,
702 			  void *hcpu)
703 {
704 	int cpu = (unsigned long)hcpu;
705 	struct arm_pmu *pmu = container_of(b, struct arm_pmu, hotplug_nb);
706 
707 	if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
708 		return NOTIFY_DONE;
709 
710 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
711 		return NOTIFY_DONE;
712 
713 	if (pmu->reset)
714 		pmu->reset(pmu);
715 	else
716 		return NOTIFY_DONE;
717 
718 	return NOTIFY_OK;
719 }
720 
721 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
722 {
723 	int err;
724 	int cpu;
725 	struct pmu_hw_events __percpu *cpu_hw_events;
726 
727 	cpu_hw_events = alloc_percpu(struct pmu_hw_events);
728 	if (!cpu_hw_events)
729 		return -ENOMEM;
730 
731 	cpu_pmu->hotplug_nb.notifier_call = cpu_pmu_notify;
732 	err = register_cpu_notifier(&cpu_pmu->hotplug_nb);
733 	if (err)
734 		goto out_hw_events;
735 
736 	for_each_possible_cpu(cpu) {
737 		struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
738 		raw_spin_lock_init(&events->pmu_lock);
739 		events->percpu_pmu = cpu_pmu;
740 	}
741 
742 	cpu_pmu->hw_events	= cpu_hw_events;
743 	cpu_pmu->request_irq	= cpu_pmu_request_irq;
744 	cpu_pmu->free_irq	= cpu_pmu_free_irq;
745 
746 	/* Ensure the PMU has sane values out of reset. */
747 	if (cpu_pmu->reset)
748 		on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
749 			 cpu_pmu, 1);
750 
751 	/* If no interrupts available, set the corresponding capability flag */
752 	if (!platform_get_irq(cpu_pmu->plat_device, 0))
753 		cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
754 
755 	return 0;
756 
757 out_hw_events:
758 	free_percpu(cpu_hw_events);
759 	return err;
760 }
761 
762 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
763 {
764 	unregister_cpu_notifier(&cpu_pmu->hotplug_nb);
765 	free_percpu(cpu_pmu->hw_events);
766 }
767 
768 /*
769  * CPU PMU identification and probing.
770  */
771 static int probe_current_pmu(struct arm_pmu *pmu,
772 			     const struct pmu_probe_info *info)
773 {
774 	int cpu = get_cpu();
775 	unsigned int cpuid = read_cpuid_id();
776 	int ret = -ENODEV;
777 
778 	pr_info("probing PMU on CPU %d\n", cpu);
779 
780 	for (; info->init != NULL; info++) {
781 		if ((cpuid & info->mask) != info->cpuid)
782 			continue;
783 		ret = info->init(pmu);
784 		break;
785 	}
786 
787 	put_cpu();
788 	return ret;
789 }
790 
791 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
792 {
793 	int *irqs, i = 0;
794 	bool using_spi = false;
795 	struct platform_device *pdev = pmu->plat_device;
796 
797 	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
798 	if (!irqs)
799 		return -ENOMEM;
800 
801 	do {
802 		struct device_node *dn;
803 		int cpu, irq;
804 
805 		/* See if we have an affinity entry */
806 		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
807 		if (!dn)
808 			break;
809 
810 		/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
811 		irq = platform_get_irq(pdev, i);
812 		if (irq >= 0) {
813 			bool spi = !irq_is_percpu(irq);
814 
815 			if (i > 0 && spi != using_spi) {
816 				pr_err("PPI/SPI IRQ type mismatch for %s!\n",
817 					dn->name);
818 				kfree(irqs);
819 				return -EINVAL;
820 			}
821 
822 			using_spi = spi;
823 		}
824 
825 		/* Now look up the logical CPU number */
826 		for_each_possible_cpu(cpu) {
827 			struct device_node *cpu_dn;
828 
829 			cpu_dn = of_cpu_device_node_get(cpu);
830 			of_node_put(cpu_dn);
831 
832 			if (dn == cpu_dn)
833 				break;
834 		}
835 
836 		if (cpu >= nr_cpu_ids) {
837 			pr_warn("Failed to find logical CPU for %s\n",
838 				dn->name);
839 			of_node_put(dn);
840 			cpumask_setall(&pmu->supported_cpus);
841 			break;
842 		}
843 		of_node_put(dn);
844 
845 		/* For SPIs, we need to track the affinity per IRQ */
846 		if (using_spi) {
847 			if (i >= pdev->num_resources) {
848 				of_node_put(dn);
849 				break;
850 			}
851 
852 			irqs[i] = cpu;
853 		}
854 
855 		/* Keep track of the CPUs containing this PMU type */
856 		cpumask_set_cpu(cpu, &pmu->supported_cpus);
857 		of_node_put(dn);
858 		i++;
859 	} while (1);
860 
861 	/* If we didn't manage to parse anything, claim to support all CPUs */
862 	if (cpumask_weight(&pmu->supported_cpus) == 0)
863 		cpumask_setall(&pmu->supported_cpus);
864 
865 	/* If we matched up the IRQ affinities, use them to route the SPIs */
866 	if (using_spi && i == pdev->num_resources)
867 		pmu->irq_affinity = irqs;
868 	else
869 		kfree(irqs);
870 
871 	return 0;
872 }
873 
874 int arm_pmu_device_probe(struct platform_device *pdev,
875 			 const struct of_device_id *of_table,
876 			 const struct pmu_probe_info *probe_table)
877 {
878 	const struct of_device_id *of_id;
879 	const int (*init_fn)(struct arm_pmu *);
880 	struct device_node *node = pdev->dev.of_node;
881 	struct arm_pmu *pmu;
882 	int ret = -ENODEV;
883 
884 	pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
885 	if (!pmu) {
886 		pr_info("failed to allocate PMU device!\n");
887 		return -ENOMEM;
888 	}
889 
890 	if (!__oprofile_cpu_pmu)
891 		__oprofile_cpu_pmu = pmu;
892 
893 	pmu->plat_device = pdev;
894 
895 	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
896 		init_fn = of_id->data;
897 
898 		ret = of_pmu_irq_cfg(pmu);
899 		if (!ret)
900 			ret = init_fn(pmu);
901 	} else {
902 		ret = probe_current_pmu(pmu, probe_table);
903 		cpumask_setall(&pmu->supported_cpus);
904 	}
905 
906 	if (ret) {
907 		pr_info("failed to probe PMU!\n");
908 		goto out_free;
909 	}
910 
911 	ret = cpu_pmu_init(pmu);
912 	if (ret)
913 		goto out_free;
914 
915 	ret = armpmu_register(pmu, -1);
916 	if (ret)
917 		goto out_destroy;
918 
919 	return 0;
920 
921 out_destroy:
922 	cpu_pmu_destroy(pmu);
923 out_free:
924 	pr_info("failed to register PMU devices!\n");
925 	kfree(pmu);
926 	return ret;
927 }
928