xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision aac5987a)
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/of_device.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/platform_device.h>
22 #include <linux/slab.h>
23 #include <linux/sched/clock.h>
24 #include <linux/spinlock.h>
25 #include <linux/irq.h>
26 #include <linux/irqdesc.h>
27 
28 #include <asm/cputype.h>
29 #include <asm/irq_regs.h>
30 
31 static int
32 armpmu_map_cache_event(const unsigned (*cache_map)
33 				      [PERF_COUNT_HW_CACHE_MAX]
34 				      [PERF_COUNT_HW_CACHE_OP_MAX]
35 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
36 		       u64 config)
37 {
38 	unsigned int cache_type, cache_op, cache_result, ret;
39 
40 	cache_type = (config >>  0) & 0xff;
41 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
42 		return -EINVAL;
43 
44 	cache_op = (config >>  8) & 0xff;
45 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
46 		return -EINVAL;
47 
48 	cache_result = (config >> 16) & 0xff;
49 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
50 		return -EINVAL;
51 
52 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
53 
54 	if (ret == CACHE_OP_UNSUPPORTED)
55 		return -ENOENT;
56 
57 	return ret;
58 }
59 
60 static int
61 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
62 {
63 	int mapping;
64 
65 	if (config >= PERF_COUNT_HW_MAX)
66 		return -EINVAL;
67 
68 	mapping = (*event_map)[config];
69 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
70 }
71 
72 static int
73 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
74 {
75 	return (int)(config & raw_event_mask);
76 }
77 
78 int
79 armpmu_map_event(struct perf_event *event,
80 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
81 		 const unsigned (*cache_map)
82 				[PERF_COUNT_HW_CACHE_MAX]
83 				[PERF_COUNT_HW_CACHE_OP_MAX]
84 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
85 		 u32 raw_event_mask)
86 {
87 	u64 config = event->attr.config;
88 	int type = event->attr.type;
89 
90 	if (type == event->pmu->type)
91 		return armpmu_map_raw_event(raw_event_mask, config);
92 
93 	switch (type) {
94 	case PERF_TYPE_HARDWARE:
95 		return armpmu_map_hw_event(event_map, config);
96 	case PERF_TYPE_HW_CACHE:
97 		return armpmu_map_cache_event(cache_map, config);
98 	case PERF_TYPE_RAW:
99 		return armpmu_map_raw_event(raw_event_mask, config);
100 	}
101 
102 	return -ENOENT;
103 }
104 
105 int armpmu_event_set_period(struct perf_event *event)
106 {
107 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
108 	struct hw_perf_event *hwc = &event->hw;
109 	s64 left = local64_read(&hwc->period_left);
110 	s64 period = hwc->sample_period;
111 	int ret = 0;
112 
113 	if (unlikely(left <= -period)) {
114 		left = period;
115 		local64_set(&hwc->period_left, left);
116 		hwc->last_period = period;
117 		ret = 1;
118 	}
119 
120 	if (unlikely(left <= 0)) {
121 		left += period;
122 		local64_set(&hwc->period_left, left);
123 		hwc->last_period = period;
124 		ret = 1;
125 	}
126 
127 	/*
128 	 * Limit the maximum period to prevent the counter value
129 	 * from overtaking the one we are about to program. In
130 	 * effect we are reducing max_period to account for
131 	 * interrupt latency (and we are being very conservative).
132 	 */
133 	if (left > (armpmu->max_period >> 1))
134 		left = armpmu->max_period >> 1;
135 
136 	local64_set(&hwc->prev_count, (u64)-left);
137 
138 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
139 
140 	perf_event_update_userpage(event);
141 
142 	return ret;
143 }
144 
145 u64 armpmu_event_update(struct perf_event *event)
146 {
147 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
148 	struct hw_perf_event *hwc = &event->hw;
149 	u64 delta, prev_raw_count, new_raw_count;
150 
151 again:
152 	prev_raw_count = local64_read(&hwc->prev_count);
153 	new_raw_count = armpmu->read_counter(event);
154 
155 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
156 			     new_raw_count) != prev_raw_count)
157 		goto again;
158 
159 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
160 
161 	local64_add(delta, &event->count);
162 	local64_sub(delta, &hwc->period_left);
163 
164 	return new_raw_count;
165 }
166 
167 static void
168 armpmu_read(struct perf_event *event)
169 {
170 	armpmu_event_update(event);
171 }
172 
173 static void
174 armpmu_stop(struct perf_event *event, int flags)
175 {
176 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
177 	struct hw_perf_event *hwc = &event->hw;
178 
179 	/*
180 	 * ARM pmu always has to update the counter, so ignore
181 	 * PERF_EF_UPDATE, see comments in armpmu_start().
182 	 */
183 	if (!(hwc->state & PERF_HES_STOPPED)) {
184 		armpmu->disable(event);
185 		armpmu_event_update(event);
186 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
187 	}
188 }
189 
190 static void armpmu_start(struct perf_event *event, int flags)
191 {
192 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 	struct hw_perf_event *hwc = &event->hw;
194 
195 	/*
196 	 * ARM pmu always has to reprogram the period, so ignore
197 	 * PERF_EF_RELOAD, see the comment below.
198 	 */
199 	if (flags & PERF_EF_RELOAD)
200 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
201 
202 	hwc->state = 0;
203 	/*
204 	 * Set the period again. Some counters can't be stopped, so when we
205 	 * were stopped we simply disabled the IRQ source and the counter
206 	 * may have been left counting. If we don't do this step then we may
207 	 * get an interrupt too soon or *way* too late if the overflow has
208 	 * happened since disabling.
209 	 */
210 	armpmu_event_set_period(event);
211 	armpmu->enable(event);
212 }
213 
214 static void
215 armpmu_del(struct perf_event *event, int flags)
216 {
217 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
218 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
219 	struct hw_perf_event *hwc = &event->hw;
220 	int idx = hwc->idx;
221 
222 	armpmu_stop(event, PERF_EF_UPDATE);
223 	hw_events->events[idx] = NULL;
224 	clear_bit(idx, hw_events->used_mask);
225 	if (armpmu->clear_event_idx)
226 		armpmu->clear_event_idx(hw_events, event);
227 
228 	perf_event_update_userpage(event);
229 }
230 
231 static int
232 armpmu_add(struct perf_event *event, int flags)
233 {
234 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
236 	struct hw_perf_event *hwc = &event->hw;
237 	int idx;
238 	int err = 0;
239 
240 	/* An event following a process won't be stopped earlier */
241 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
242 		return -ENOENT;
243 
244 	perf_pmu_disable(event->pmu);
245 
246 	/* If we don't have a space for the counter then finish early. */
247 	idx = armpmu->get_event_idx(hw_events, event);
248 	if (idx < 0) {
249 		err = idx;
250 		goto out;
251 	}
252 
253 	/*
254 	 * If there is an event in the counter we are going to use then make
255 	 * sure it is disabled.
256 	 */
257 	event->hw.idx = idx;
258 	armpmu->disable(event);
259 	hw_events->events[idx] = event;
260 
261 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
262 	if (flags & PERF_EF_START)
263 		armpmu_start(event, PERF_EF_RELOAD);
264 
265 	/* Propagate our changes to the userspace mapping. */
266 	perf_event_update_userpage(event);
267 
268 out:
269 	perf_pmu_enable(event->pmu);
270 	return err;
271 }
272 
273 static int
274 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
275 			       struct perf_event *event)
276 {
277 	struct arm_pmu *armpmu;
278 
279 	if (is_software_event(event))
280 		return 1;
281 
282 	/*
283 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
284 	 * core perf code won't check that the pmu->ctx == leader->ctx
285 	 * until after pmu->event_init(event).
286 	 */
287 	if (event->pmu != pmu)
288 		return 0;
289 
290 	if (event->state < PERF_EVENT_STATE_OFF)
291 		return 1;
292 
293 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
294 		return 1;
295 
296 	armpmu = to_arm_pmu(event->pmu);
297 	return armpmu->get_event_idx(hw_events, event) >= 0;
298 }
299 
300 static int
301 validate_group(struct perf_event *event)
302 {
303 	struct perf_event *sibling, *leader = event->group_leader;
304 	struct pmu_hw_events fake_pmu;
305 
306 	/*
307 	 * Initialise the fake PMU. We only need to populate the
308 	 * used_mask for the purposes of validation.
309 	 */
310 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
311 
312 	if (!validate_event(event->pmu, &fake_pmu, leader))
313 		return -EINVAL;
314 
315 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
316 		if (!validate_event(event->pmu, &fake_pmu, sibling))
317 			return -EINVAL;
318 	}
319 
320 	if (!validate_event(event->pmu, &fake_pmu, event))
321 		return -EINVAL;
322 
323 	return 0;
324 }
325 
326 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
327 {
328 	struct arm_pmu *armpmu;
329 	struct platform_device *plat_device;
330 	struct arm_pmu_platdata *plat;
331 	int ret;
332 	u64 start_clock, finish_clock;
333 
334 	/*
335 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
336 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
337 	 * do any necessary shifting, we just need to perform the first
338 	 * dereference.
339 	 */
340 	armpmu = *(void **)dev;
341 	plat_device = armpmu->plat_device;
342 	plat = dev_get_platdata(&plat_device->dev);
343 
344 	start_clock = sched_clock();
345 	if (plat && plat->handle_irq)
346 		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
347 	else
348 		ret = armpmu->handle_irq(irq, armpmu);
349 	finish_clock = sched_clock();
350 
351 	perf_sample_event_took(finish_clock - start_clock);
352 	return ret;
353 }
354 
355 static void
356 armpmu_release_hardware(struct arm_pmu *armpmu)
357 {
358 	armpmu->free_irq(armpmu);
359 }
360 
361 static int
362 armpmu_reserve_hardware(struct arm_pmu *armpmu)
363 {
364 	int err = armpmu->request_irq(armpmu, armpmu_dispatch_irq);
365 	if (err) {
366 		armpmu_release_hardware(armpmu);
367 		return err;
368 	}
369 
370 	return 0;
371 }
372 
373 static void
374 hw_perf_event_destroy(struct perf_event *event)
375 {
376 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
377 	atomic_t *active_events	 = &armpmu->active_events;
378 	struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
379 
380 	if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
381 		armpmu_release_hardware(armpmu);
382 		mutex_unlock(pmu_reserve_mutex);
383 	}
384 }
385 
386 static int
387 event_requires_mode_exclusion(struct perf_event_attr *attr)
388 {
389 	return attr->exclude_idle || attr->exclude_user ||
390 	       attr->exclude_kernel || attr->exclude_hv;
391 }
392 
393 static int
394 __hw_perf_event_init(struct perf_event *event)
395 {
396 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
397 	struct hw_perf_event *hwc = &event->hw;
398 	int mapping;
399 
400 	mapping = armpmu->map_event(event);
401 
402 	if (mapping < 0) {
403 		pr_debug("event %x:%llx not supported\n", event->attr.type,
404 			 event->attr.config);
405 		return mapping;
406 	}
407 
408 	/*
409 	 * We don't assign an index until we actually place the event onto
410 	 * hardware. Use -1 to signify that we haven't decided where to put it
411 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
412 	 * clever allocation or constraints checking at this point.
413 	 */
414 	hwc->idx		= -1;
415 	hwc->config_base	= 0;
416 	hwc->config		= 0;
417 	hwc->event_base		= 0;
418 
419 	/*
420 	 * Check whether we need to exclude the counter from certain modes.
421 	 */
422 	if ((!armpmu->set_event_filter ||
423 	     armpmu->set_event_filter(hwc, &event->attr)) &&
424 	     event_requires_mode_exclusion(&event->attr)) {
425 		pr_debug("ARM performance counters do not support "
426 			 "mode exclusion\n");
427 		return -EOPNOTSUPP;
428 	}
429 
430 	/*
431 	 * Store the event encoding into the config_base field.
432 	 */
433 	hwc->config_base	    |= (unsigned long)mapping;
434 
435 	if (!is_sampling_event(event)) {
436 		/*
437 		 * For non-sampling runs, limit the sample_period to half
438 		 * of the counter width. That way, the new counter value
439 		 * is far less likely to overtake the previous one unless
440 		 * you have some serious IRQ latency issues.
441 		 */
442 		hwc->sample_period  = armpmu->max_period >> 1;
443 		hwc->last_period    = hwc->sample_period;
444 		local64_set(&hwc->period_left, hwc->sample_period);
445 	}
446 
447 	if (event->group_leader != event) {
448 		if (validate_group(event) != 0)
449 			return -EINVAL;
450 	}
451 
452 	return 0;
453 }
454 
455 static int armpmu_event_init(struct perf_event *event)
456 {
457 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
458 	int err = 0;
459 	atomic_t *active_events = &armpmu->active_events;
460 
461 	/*
462 	 * Reject CPU-affine events for CPUs that are of a different class to
463 	 * that which this PMU handles. Process-following events (where
464 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
465 	 * reject them later (in armpmu_add) if they're scheduled on a
466 	 * different class of CPU.
467 	 */
468 	if (event->cpu != -1 &&
469 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
470 		return -ENOENT;
471 
472 	/* does not support taken branch sampling */
473 	if (has_branch_stack(event))
474 		return -EOPNOTSUPP;
475 
476 	if (armpmu->map_event(event) == -ENOENT)
477 		return -ENOENT;
478 
479 	event->destroy = hw_perf_event_destroy;
480 
481 	if (!atomic_inc_not_zero(active_events)) {
482 		mutex_lock(&armpmu->reserve_mutex);
483 		if (atomic_read(active_events) == 0)
484 			err = armpmu_reserve_hardware(armpmu);
485 
486 		if (!err)
487 			atomic_inc(active_events);
488 		mutex_unlock(&armpmu->reserve_mutex);
489 	}
490 
491 	if (err)
492 		return err;
493 
494 	err = __hw_perf_event_init(event);
495 	if (err)
496 		hw_perf_event_destroy(event);
497 
498 	return err;
499 }
500 
501 static void armpmu_enable(struct pmu *pmu)
502 {
503 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
504 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
505 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
506 
507 	/* For task-bound events we may be called on other CPUs */
508 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
509 		return;
510 
511 	if (enabled)
512 		armpmu->start(armpmu);
513 }
514 
515 static void armpmu_disable(struct pmu *pmu)
516 {
517 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
518 
519 	/* For task-bound events we may be called on other CPUs */
520 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
521 		return;
522 
523 	armpmu->stop(armpmu);
524 }
525 
526 /*
527  * In heterogeneous systems, events are specific to a particular
528  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
529  * the same microarchitecture.
530  */
531 static int armpmu_filter_match(struct perf_event *event)
532 {
533 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
534 	unsigned int cpu = smp_processor_id();
535 	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
536 }
537 
538 static ssize_t armpmu_cpumask_show(struct device *dev,
539 				   struct device_attribute *attr, char *buf)
540 {
541 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
542 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
543 }
544 
545 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
546 
547 static struct attribute *armpmu_common_attrs[] = {
548 	&dev_attr_cpus.attr,
549 	NULL,
550 };
551 
552 static struct attribute_group armpmu_common_attr_group = {
553 	.attrs = armpmu_common_attrs,
554 };
555 
556 static void armpmu_init(struct arm_pmu *armpmu)
557 {
558 	atomic_set(&armpmu->active_events, 0);
559 	mutex_init(&armpmu->reserve_mutex);
560 
561 	armpmu->pmu = (struct pmu) {
562 		.pmu_enable	= armpmu_enable,
563 		.pmu_disable	= armpmu_disable,
564 		.event_init	= armpmu_event_init,
565 		.add		= armpmu_add,
566 		.del		= armpmu_del,
567 		.start		= armpmu_start,
568 		.stop		= armpmu_stop,
569 		.read		= armpmu_read,
570 		.filter_match	= armpmu_filter_match,
571 		.attr_groups	= armpmu->attr_groups,
572 	};
573 	armpmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
574 		&armpmu_common_attr_group;
575 }
576 
577 /* Set at runtime when we know what CPU type we are. */
578 static struct arm_pmu *__oprofile_cpu_pmu;
579 
580 /*
581  * Despite the names, these two functions are CPU-specific and are used
582  * by the OProfile/perf code.
583  */
584 const char *perf_pmu_name(void)
585 {
586 	if (!__oprofile_cpu_pmu)
587 		return NULL;
588 
589 	return __oprofile_cpu_pmu->name;
590 }
591 EXPORT_SYMBOL_GPL(perf_pmu_name);
592 
593 int perf_num_counters(void)
594 {
595 	int max_events = 0;
596 
597 	if (__oprofile_cpu_pmu != NULL)
598 		max_events = __oprofile_cpu_pmu->num_events;
599 
600 	return max_events;
601 }
602 EXPORT_SYMBOL_GPL(perf_num_counters);
603 
604 static void cpu_pmu_enable_percpu_irq(void *data)
605 {
606 	int irq = *(int *)data;
607 
608 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
609 }
610 
611 static void cpu_pmu_disable_percpu_irq(void *data)
612 {
613 	int irq = *(int *)data;
614 
615 	disable_percpu_irq(irq);
616 }
617 
618 static void cpu_pmu_free_irq(struct arm_pmu *cpu_pmu)
619 {
620 	int i, irq, irqs;
621 	struct platform_device *pmu_device = cpu_pmu->plat_device;
622 	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
623 
624 	irqs = min(pmu_device->num_resources, num_possible_cpus());
625 
626 	irq = platform_get_irq(pmu_device, 0);
627 	if (irq > 0 && irq_is_percpu(irq)) {
628 		on_each_cpu_mask(&cpu_pmu->supported_cpus,
629 				 cpu_pmu_disable_percpu_irq, &irq, 1);
630 		free_percpu_irq(irq, &hw_events->percpu_pmu);
631 	} else {
632 		for (i = 0; i < irqs; ++i) {
633 			int cpu = i;
634 
635 			if (cpu_pmu->irq_affinity)
636 				cpu = cpu_pmu->irq_affinity[i];
637 
638 			if (!cpumask_test_and_clear_cpu(cpu, &cpu_pmu->active_irqs))
639 				continue;
640 			irq = platform_get_irq(pmu_device, i);
641 			if (irq > 0)
642 				free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
643 		}
644 	}
645 }
646 
647 static int cpu_pmu_request_irq(struct arm_pmu *cpu_pmu, irq_handler_t handler)
648 {
649 	int i, err, irq, irqs;
650 	struct platform_device *pmu_device = cpu_pmu->plat_device;
651 	struct pmu_hw_events __percpu *hw_events = cpu_pmu->hw_events;
652 
653 	if (!pmu_device)
654 		return -ENODEV;
655 
656 	irqs = min(pmu_device->num_resources, num_possible_cpus());
657 	if (irqs < 1) {
658 		pr_warn_once("perf/ARM: No irqs for PMU defined, sampling events not supported\n");
659 		return 0;
660 	}
661 
662 	irq = platform_get_irq(pmu_device, 0);
663 	if (irq > 0 && irq_is_percpu(irq)) {
664 		err = request_percpu_irq(irq, handler, "arm-pmu",
665 					 &hw_events->percpu_pmu);
666 		if (err) {
667 			pr_err("unable to request IRQ%d for ARM PMU counters\n",
668 				irq);
669 			return err;
670 		}
671 
672 		on_each_cpu_mask(&cpu_pmu->supported_cpus,
673 				 cpu_pmu_enable_percpu_irq, &irq, 1);
674 	} else {
675 		for (i = 0; i < irqs; ++i) {
676 			int cpu = i;
677 
678 			err = 0;
679 			irq = platform_get_irq(pmu_device, i);
680 			if (irq < 0)
681 				continue;
682 
683 			if (cpu_pmu->irq_affinity)
684 				cpu = cpu_pmu->irq_affinity[i];
685 
686 			/*
687 			 * If we have a single PMU interrupt that we can't shift,
688 			 * assume that we're running on a uniprocessor machine and
689 			 * continue. Otherwise, continue without this interrupt.
690 			 */
691 			if (irq_set_affinity(irq, cpumask_of(cpu)) && irqs > 1) {
692 				pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
693 					irq, cpu);
694 				continue;
695 			}
696 
697 			err = request_irq(irq, handler,
698 					  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
699 					  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
700 			if (err) {
701 				pr_err("unable to request IRQ%d for ARM PMU counters\n",
702 					irq);
703 				return err;
704 			}
705 
706 			cpumask_set_cpu(cpu, &cpu_pmu->active_irqs);
707 		}
708 	}
709 
710 	return 0;
711 }
712 
713 /*
714  * PMU hardware loses all context when a CPU goes offline.
715  * When a CPU is hotplugged back in, since some hardware registers are
716  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
717  * junk values out of them.
718  */
719 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
720 {
721 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
722 
723 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
724 		return 0;
725 	if (pmu->reset)
726 		pmu->reset(pmu);
727 	return 0;
728 }
729 
730 #ifdef CONFIG_CPU_PM
731 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
732 {
733 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
734 	struct perf_event *event;
735 	int idx;
736 
737 	for (idx = 0; idx < armpmu->num_events; idx++) {
738 		/*
739 		 * If the counter is not used skip it, there is no
740 		 * need of stopping/restarting it.
741 		 */
742 		if (!test_bit(idx, hw_events->used_mask))
743 			continue;
744 
745 		event = hw_events->events[idx];
746 
747 		switch (cmd) {
748 		case CPU_PM_ENTER:
749 			/*
750 			 * Stop and update the counter
751 			 */
752 			armpmu_stop(event, PERF_EF_UPDATE);
753 			break;
754 		case CPU_PM_EXIT:
755 		case CPU_PM_ENTER_FAILED:
756 			 /*
757 			  * Restore and enable the counter.
758 			  * armpmu_start() indirectly calls
759 			  *
760 			  * perf_event_update_userpage()
761 			  *
762 			  * that requires RCU read locking to be functional,
763 			  * wrap the call within RCU_NONIDLE to make the
764 			  * RCU subsystem aware this cpu is not idle from
765 			  * an RCU perspective for the armpmu_start() call
766 			  * duration.
767 			  */
768 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
769 			break;
770 		default:
771 			break;
772 		}
773 	}
774 }
775 
776 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
777 			     void *v)
778 {
779 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
780 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
781 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
782 
783 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
784 		return NOTIFY_DONE;
785 
786 	/*
787 	 * Always reset the PMU registers on power-up even if
788 	 * there are no events running.
789 	 */
790 	if (cmd == CPU_PM_EXIT && armpmu->reset)
791 		armpmu->reset(armpmu);
792 
793 	if (!enabled)
794 		return NOTIFY_OK;
795 
796 	switch (cmd) {
797 	case CPU_PM_ENTER:
798 		armpmu->stop(armpmu);
799 		cpu_pm_pmu_setup(armpmu, cmd);
800 		break;
801 	case CPU_PM_EXIT:
802 		cpu_pm_pmu_setup(armpmu, cmd);
803 	case CPU_PM_ENTER_FAILED:
804 		armpmu->start(armpmu);
805 		break;
806 	default:
807 		return NOTIFY_DONE;
808 	}
809 
810 	return NOTIFY_OK;
811 }
812 
813 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
814 {
815 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
816 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
817 }
818 
819 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
820 {
821 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
822 }
823 #else
824 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
825 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
826 #endif
827 
828 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
829 {
830 	int err;
831 	int cpu;
832 	struct pmu_hw_events __percpu *cpu_hw_events;
833 
834 	cpu_hw_events = alloc_percpu(struct pmu_hw_events);
835 	if (!cpu_hw_events)
836 		return -ENOMEM;
837 
838 	err = cpuhp_state_add_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
839 					       &cpu_pmu->node);
840 	if (err)
841 		goto out_free;
842 
843 	err = cpu_pm_pmu_register(cpu_pmu);
844 	if (err)
845 		goto out_unregister;
846 
847 	for_each_possible_cpu(cpu) {
848 		struct pmu_hw_events *events = per_cpu_ptr(cpu_hw_events, cpu);
849 		raw_spin_lock_init(&events->pmu_lock);
850 		events->percpu_pmu = cpu_pmu;
851 	}
852 
853 	cpu_pmu->hw_events	= cpu_hw_events;
854 	cpu_pmu->request_irq	= cpu_pmu_request_irq;
855 	cpu_pmu->free_irq	= cpu_pmu_free_irq;
856 
857 	/* Ensure the PMU has sane values out of reset. */
858 	if (cpu_pmu->reset)
859 		on_each_cpu_mask(&cpu_pmu->supported_cpus, cpu_pmu->reset,
860 			 cpu_pmu, 1);
861 
862 	/* If no interrupts available, set the corresponding capability flag */
863 	if (!platform_get_irq(cpu_pmu->plat_device, 0))
864 		cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
865 
866 	/*
867 	 * This is a CPU PMU potentially in a heterogeneous configuration (e.g.
868 	 * big.LITTLE). This is not an uncore PMU, and we have taken ctx
869 	 * sharing into account (e.g. with our pmu::filter_match callback and
870 	 * pmu::event_init group validation).
871 	 */
872 	cpu_pmu->pmu.capabilities |= PERF_PMU_CAP_HETEROGENEOUS_CPUS;
873 
874 	return 0;
875 
876 out_unregister:
877 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
878 					    &cpu_pmu->node);
879 out_free:
880 	free_percpu(cpu_hw_events);
881 	return err;
882 }
883 
884 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
885 {
886 	cpu_pm_pmu_unregister(cpu_pmu);
887 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
888 					    &cpu_pmu->node);
889 	free_percpu(cpu_pmu->hw_events);
890 }
891 
892 /*
893  * CPU PMU identification and probing.
894  */
895 static int probe_current_pmu(struct arm_pmu *pmu,
896 			     const struct pmu_probe_info *info)
897 {
898 	int cpu = get_cpu();
899 	unsigned int cpuid = read_cpuid_id();
900 	int ret = -ENODEV;
901 
902 	pr_info("probing PMU on CPU %d\n", cpu);
903 
904 	for (; info->init != NULL; info++) {
905 		if ((cpuid & info->mask) != info->cpuid)
906 			continue;
907 		ret = info->init(pmu);
908 		break;
909 	}
910 
911 	put_cpu();
912 	return ret;
913 }
914 
915 static int of_pmu_irq_cfg(struct arm_pmu *pmu)
916 {
917 	int *irqs, i = 0;
918 	bool using_spi = false;
919 	struct platform_device *pdev = pmu->plat_device;
920 
921 	irqs = kcalloc(pdev->num_resources, sizeof(*irqs), GFP_KERNEL);
922 	if (!irqs)
923 		return -ENOMEM;
924 
925 	do {
926 		struct device_node *dn;
927 		int cpu, irq;
928 
929 		/* See if we have an affinity entry */
930 		dn = of_parse_phandle(pdev->dev.of_node, "interrupt-affinity", i);
931 		if (!dn)
932 			break;
933 
934 		/* Check the IRQ type and prohibit a mix of PPIs and SPIs */
935 		irq = platform_get_irq(pdev, i);
936 		if (irq > 0) {
937 			bool spi = !irq_is_percpu(irq);
938 
939 			if (i > 0 && spi != using_spi) {
940 				pr_err("PPI/SPI IRQ type mismatch for %s!\n",
941 					dn->name);
942 				of_node_put(dn);
943 				kfree(irqs);
944 				return -EINVAL;
945 			}
946 
947 			using_spi = spi;
948 		}
949 
950 		/* Now look up the logical CPU number */
951 		for_each_possible_cpu(cpu) {
952 			struct device_node *cpu_dn;
953 
954 			cpu_dn = of_cpu_device_node_get(cpu);
955 			of_node_put(cpu_dn);
956 
957 			if (dn == cpu_dn)
958 				break;
959 		}
960 
961 		if (cpu >= nr_cpu_ids) {
962 			pr_warn("Failed to find logical CPU for %s\n",
963 				dn->name);
964 			of_node_put(dn);
965 			cpumask_setall(&pmu->supported_cpus);
966 			break;
967 		}
968 		of_node_put(dn);
969 
970 		/* For SPIs, we need to track the affinity per IRQ */
971 		if (using_spi) {
972 			if (i >= pdev->num_resources)
973 				break;
974 
975 			irqs[i] = cpu;
976 		}
977 
978 		/* Keep track of the CPUs containing this PMU type */
979 		cpumask_set_cpu(cpu, &pmu->supported_cpus);
980 		i++;
981 	} while (1);
982 
983 	/* If we didn't manage to parse anything, try the interrupt affinity */
984 	if (cpumask_weight(&pmu->supported_cpus) == 0) {
985 		int irq = platform_get_irq(pdev, 0);
986 
987 		if (irq > 0 && irq_is_percpu(irq)) {
988 			/* If using PPIs, check the affinity of the partition */
989 			int ret;
990 
991 			ret = irq_get_percpu_devid_partition(irq, &pmu->supported_cpus);
992 			if (ret) {
993 				kfree(irqs);
994 				return ret;
995 			}
996 		} else {
997 			/* Otherwise default to all CPUs */
998 			cpumask_setall(&pmu->supported_cpus);
999 		}
1000 	}
1001 
1002 	/* If we matched up the IRQ affinities, use them to route the SPIs */
1003 	if (using_spi && i == pdev->num_resources)
1004 		pmu->irq_affinity = irqs;
1005 	else
1006 		kfree(irqs);
1007 
1008 	return 0;
1009 }
1010 
1011 int arm_pmu_device_probe(struct platform_device *pdev,
1012 			 const struct of_device_id *of_table,
1013 			 const struct pmu_probe_info *probe_table)
1014 {
1015 	const struct of_device_id *of_id;
1016 	const int (*init_fn)(struct arm_pmu *);
1017 	struct device_node *node = pdev->dev.of_node;
1018 	struct arm_pmu *pmu;
1019 	int ret = -ENODEV;
1020 
1021 	pmu = kzalloc(sizeof(struct arm_pmu), GFP_KERNEL);
1022 	if (!pmu) {
1023 		pr_info("failed to allocate PMU device!\n");
1024 		return -ENOMEM;
1025 	}
1026 
1027 	armpmu_init(pmu);
1028 
1029 	pmu->plat_device = pdev;
1030 
1031 	if (node && (of_id = of_match_node(of_table, pdev->dev.of_node))) {
1032 		init_fn = of_id->data;
1033 
1034 		pmu->secure_access = of_property_read_bool(pdev->dev.of_node,
1035 							   "secure-reg-access");
1036 
1037 		/* arm64 systems boot only as non-secure */
1038 		if (IS_ENABLED(CONFIG_ARM64) && pmu->secure_access) {
1039 			pr_warn("ignoring \"secure-reg-access\" property for arm64\n");
1040 			pmu->secure_access = false;
1041 		}
1042 
1043 		ret = of_pmu_irq_cfg(pmu);
1044 		if (!ret)
1045 			ret = init_fn(pmu);
1046 	} else if (probe_table) {
1047 		cpumask_setall(&pmu->supported_cpus);
1048 		ret = probe_current_pmu(pmu, probe_table);
1049 	}
1050 
1051 	if (ret) {
1052 		pr_info("%s: failed to probe PMU!\n", of_node_full_name(node));
1053 		goto out_free;
1054 	}
1055 
1056 
1057 	ret = cpu_pmu_init(pmu);
1058 	if (ret)
1059 		goto out_free;
1060 
1061 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
1062 	if (ret)
1063 		goto out_destroy;
1064 
1065 	if (!__oprofile_cpu_pmu)
1066 		__oprofile_cpu_pmu = pmu;
1067 
1068 	pr_info("enabled with %s PMU driver, %d counters available\n",
1069 			pmu->name, pmu->num_events);
1070 
1071 	return 0;
1072 
1073 out_destroy:
1074 	cpu_pmu_destroy(pmu);
1075 out_free:
1076 	pr_info("%s: failed to register PMU devices!\n",
1077 		of_node_full_name(node));
1078 	kfree(pmu->irq_affinity);
1079 	kfree(pmu);
1080 	return ret;
1081 }
1082 
1083 static int arm_pmu_hp_init(void)
1084 {
1085 	int ret;
1086 
1087 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
1088 				      "perf/arm/pmu:starting",
1089 				      arm_perf_starting_cpu, NULL);
1090 	if (ret)
1091 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
1092 		       ret);
1093 	return ret;
1094 }
1095 subsys_initcall(arm_pmu_hp_init);
1096