1 // SPDX-License-Identifier: GPL-2.0-only 2 #undef DEBUG 3 4 /* 5 * ARM performance counter support. 6 * 7 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles 8 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com> 9 * 10 * This code is based on the sparc64 perf event code, which is in turn based 11 * on the x86 code. 12 */ 13 #define pr_fmt(fmt) "hw perfevents: " fmt 14 15 #include <linux/bitmap.h> 16 #include <linux/cpumask.h> 17 #include <linux/cpu_pm.h> 18 #include <linux/export.h> 19 #include <linux/kernel.h> 20 #include <linux/perf/arm_pmu.h> 21 #include <linux/slab.h> 22 #include <linux/sched/clock.h> 23 #include <linux/spinlock.h> 24 #include <linux/irq.h> 25 #include <linux/irqdesc.h> 26 27 #include <asm/irq_regs.h> 28 29 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu); 30 static DEFINE_PER_CPU(int, cpu_irq); 31 32 static inline u64 arm_pmu_event_max_period(struct perf_event *event) 33 { 34 if (event->hw.flags & ARMPMU_EVT_64BIT) 35 return GENMASK_ULL(63, 0); 36 else 37 return GENMASK_ULL(31, 0); 38 } 39 40 static int 41 armpmu_map_cache_event(const unsigned (*cache_map) 42 [PERF_COUNT_HW_CACHE_MAX] 43 [PERF_COUNT_HW_CACHE_OP_MAX] 44 [PERF_COUNT_HW_CACHE_RESULT_MAX], 45 u64 config) 46 { 47 unsigned int cache_type, cache_op, cache_result, ret; 48 49 cache_type = (config >> 0) & 0xff; 50 if (cache_type >= PERF_COUNT_HW_CACHE_MAX) 51 return -EINVAL; 52 53 cache_op = (config >> 8) & 0xff; 54 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX) 55 return -EINVAL; 56 57 cache_result = (config >> 16) & 0xff; 58 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX) 59 return -EINVAL; 60 61 if (!cache_map) 62 return -ENOENT; 63 64 ret = (int)(*cache_map)[cache_type][cache_op][cache_result]; 65 66 if (ret == CACHE_OP_UNSUPPORTED) 67 return -ENOENT; 68 69 return ret; 70 } 71 72 static int 73 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config) 74 { 75 int mapping; 76 77 if (config >= PERF_COUNT_HW_MAX) 78 return -EINVAL; 79 80 if (!event_map) 81 return -ENOENT; 82 83 mapping = (*event_map)[config]; 84 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping; 85 } 86 87 static int 88 armpmu_map_raw_event(u32 raw_event_mask, u64 config) 89 { 90 return (int)(config & raw_event_mask); 91 } 92 93 int 94 armpmu_map_event(struct perf_event *event, 95 const unsigned (*event_map)[PERF_COUNT_HW_MAX], 96 const unsigned (*cache_map) 97 [PERF_COUNT_HW_CACHE_MAX] 98 [PERF_COUNT_HW_CACHE_OP_MAX] 99 [PERF_COUNT_HW_CACHE_RESULT_MAX], 100 u32 raw_event_mask) 101 { 102 u64 config = event->attr.config; 103 int type = event->attr.type; 104 105 if (type == event->pmu->type) 106 return armpmu_map_raw_event(raw_event_mask, config); 107 108 switch (type) { 109 case PERF_TYPE_HARDWARE: 110 return armpmu_map_hw_event(event_map, config); 111 case PERF_TYPE_HW_CACHE: 112 return armpmu_map_cache_event(cache_map, config); 113 case PERF_TYPE_RAW: 114 return armpmu_map_raw_event(raw_event_mask, config); 115 } 116 117 return -ENOENT; 118 } 119 120 int armpmu_event_set_period(struct perf_event *event) 121 { 122 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 123 struct hw_perf_event *hwc = &event->hw; 124 s64 left = local64_read(&hwc->period_left); 125 s64 period = hwc->sample_period; 126 u64 max_period; 127 int ret = 0; 128 129 max_period = arm_pmu_event_max_period(event); 130 if (unlikely(left <= -period)) { 131 left = period; 132 local64_set(&hwc->period_left, left); 133 hwc->last_period = period; 134 ret = 1; 135 } 136 137 if (unlikely(left <= 0)) { 138 left += period; 139 local64_set(&hwc->period_left, left); 140 hwc->last_period = period; 141 ret = 1; 142 } 143 144 /* 145 * Limit the maximum period to prevent the counter value 146 * from overtaking the one we are about to program. In 147 * effect we are reducing max_period to account for 148 * interrupt latency (and we are being very conservative). 149 */ 150 if (left > (max_period >> 1)) 151 left = (max_period >> 1); 152 153 local64_set(&hwc->prev_count, (u64)-left); 154 155 armpmu->write_counter(event, (u64)(-left) & max_period); 156 157 perf_event_update_userpage(event); 158 159 return ret; 160 } 161 162 u64 armpmu_event_update(struct perf_event *event) 163 { 164 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 165 struct hw_perf_event *hwc = &event->hw; 166 u64 delta, prev_raw_count, new_raw_count; 167 u64 max_period = arm_pmu_event_max_period(event); 168 169 again: 170 prev_raw_count = local64_read(&hwc->prev_count); 171 new_raw_count = armpmu->read_counter(event); 172 173 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count, 174 new_raw_count) != prev_raw_count) 175 goto again; 176 177 delta = (new_raw_count - prev_raw_count) & max_period; 178 179 local64_add(delta, &event->count); 180 local64_sub(delta, &hwc->period_left); 181 182 return new_raw_count; 183 } 184 185 static void 186 armpmu_read(struct perf_event *event) 187 { 188 armpmu_event_update(event); 189 } 190 191 static void 192 armpmu_stop(struct perf_event *event, int flags) 193 { 194 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 195 struct hw_perf_event *hwc = &event->hw; 196 197 /* 198 * ARM pmu always has to update the counter, so ignore 199 * PERF_EF_UPDATE, see comments in armpmu_start(). 200 */ 201 if (!(hwc->state & PERF_HES_STOPPED)) { 202 armpmu->disable(event); 203 armpmu_event_update(event); 204 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE; 205 } 206 } 207 208 static void armpmu_start(struct perf_event *event, int flags) 209 { 210 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 211 struct hw_perf_event *hwc = &event->hw; 212 213 /* 214 * ARM pmu always has to reprogram the period, so ignore 215 * PERF_EF_RELOAD, see the comment below. 216 */ 217 if (flags & PERF_EF_RELOAD) 218 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE)); 219 220 hwc->state = 0; 221 /* 222 * Set the period again. Some counters can't be stopped, so when we 223 * were stopped we simply disabled the IRQ source and the counter 224 * may have been left counting. If we don't do this step then we may 225 * get an interrupt too soon or *way* too late if the overflow has 226 * happened since disabling. 227 */ 228 armpmu_event_set_period(event); 229 armpmu->enable(event); 230 } 231 232 static void 233 armpmu_del(struct perf_event *event, int flags) 234 { 235 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 236 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 237 struct hw_perf_event *hwc = &event->hw; 238 int idx = hwc->idx; 239 240 armpmu_stop(event, PERF_EF_UPDATE); 241 hw_events->events[idx] = NULL; 242 armpmu->clear_event_idx(hw_events, event); 243 perf_event_update_userpage(event); 244 /* Clear the allocated counter */ 245 hwc->idx = -1; 246 } 247 248 static int 249 armpmu_add(struct perf_event *event, int flags) 250 { 251 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 252 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 253 struct hw_perf_event *hwc = &event->hw; 254 int idx; 255 256 /* An event following a process won't be stopped earlier */ 257 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 258 return -ENOENT; 259 260 /* If we don't have a space for the counter then finish early. */ 261 idx = armpmu->get_event_idx(hw_events, event); 262 if (idx < 0) 263 return idx; 264 265 /* 266 * If there is an event in the counter we are going to use then make 267 * sure it is disabled. 268 */ 269 event->hw.idx = idx; 270 armpmu->disable(event); 271 hw_events->events[idx] = event; 272 273 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE; 274 if (flags & PERF_EF_START) 275 armpmu_start(event, PERF_EF_RELOAD); 276 277 /* Propagate our changes to the userspace mapping. */ 278 perf_event_update_userpage(event); 279 280 return 0; 281 } 282 283 static int 284 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events, 285 struct perf_event *event) 286 { 287 struct arm_pmu *armpmu; 288 289 if (is_software_event(event)) 290 return 1; 291 292 /* 293 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The 294 * core perf code won't check that the pmu->ctx == leader->ctx 295 * until after pmu->event_init(event). 296 */ 297 if (event->pmu != pmu) 298 return 0; 299 300 if (event->state < PERF_EVENT_STATE_OFF) 301 return 1; 302 303 if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec) 304 return 1; 305 306 armpmu = to_arm_pmu(event->pmu); 307 return armpmu->get_event_idx(hw_events, event) >= 0; 308 } 309 310 static int 311 validate_group(struct perf_event *event) 312 { 313 struct perf_event *sibling, *leader = event->group_leader; 314 struct pmu_hw_events fake_pmu; 315 316 /* 317 * Initialise the fake PMU. We only need to populate the 318 * used_mask for the purposes of validation. 319 */ 320 memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask)); 321 322 if (!validate_event(event->pmu, &fake_pmu, leader)) 323 return -EINVAL; 324 325 for_each_sibling_event(sibling, leader) { 326 if (!validate_event(event->pmu, &fake_pmu, sibling)) 327 return -EINVAL; 328 } 329 330 if (!validate_event(event->pmu, &fake_pmu, event)) 331 return -EINVAL; 332 333 return 0; 334 } 335 336 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev) 337 { 338 struct arm_pmu *armpmu; 339 int ret; 340 u64 start_clock, finish_clock; 341 342 /* 343 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but 344 * the handlers expect a struct arm_pmu*. The percpu_irq framework will 345 * do any necessary shifting, we just need to perform the first 346 * dereference. 347 */ 348 armpmu = *(void **)dev; 349 if (WARN_ON_ONCE(!armpmu)) 350 return IRQ_NONE; 351 352 start_clock = sched_clock(); 353 ret = armpmu->handle_irq(armpmu); 354 finish_clock = sched_clock(); 355 356 perf_sample_event_took(finish_clock - start_clock); 357 return ret; 358 } 359 360 static int 361 __hw_perf_event_init(struct perf_event *event) 362 { 363 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 364 struct hw_perf_event *hwc = &event->hw; 365 int mapping; 366 367 hwc->flags = 0; 368 mapping = armpmu->map_event(event); 369 370 if (mapping < 0) { 371 pr_debug("event %x:%llx not supported\n", event->attr.type, 372 event->attr.config); 373 return mapping; 374 } 375 376 /* 377 * We don't assign an index until we actually place the event onto 378 * hardware. Use -1 to signify that we haven't decided where to put it 379 * yet. For SMP systems, each core has it's own PMU so we can't do any 380 * clever allocation or constraints checking at this point. 381 */ 382 hwc->idx = -1; 383 hwc->config_base = 0; 384 hwc->config = 0; 385 hwc->event_base = 0; 386 387 /* 388 * Check whether we need to exclude the counter from certain modes. 389 */ 390 if (armpmu->set_event_filter && 391 armpmu->set_event_filter(hwc, &event->attr)) { 392 pr_debug("ARM performance counters do not support " 393 "mode exclusion\n"); 394 return -EOPNOTSUPP; 395 } 396 397 /* 398 * Store the event encoding into the config_base field. 399 */ 400 hwc->config_base |= (unsigned long)mapping; 401 402 if (!is_sampling_event(event)) { 403 /* 404 * For non-sampling runs, limit the sample_period to half 405 * of the counter width. That way, the new counter value 406 * is far less likely to overtake the previous one unless 407 * you have some serious IRQ latency issues. 408 */ 409 hwc->sample_period = arm_pmu_event_max_period(event) >> 1; 410 hwc->last_period = hwc->sample_period; 411 local64_set(&hwc->period_left, hwc->sample_period); 412 } 413 414 if (event->group_leader != event) { 415 if (validate_group(event) != 0) 416 return -EINVAL; 417 } 418 419 return 0; 420 } 421 422 static int armpmu_event_init(struct perf_event *event) 423 { 424 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 425 426 /* 427 * Reject CPU-affine events for CPUs that are of a different class to 428 * that which this PMU handles. Process-following events (where 429 * event->cpu == -1) can be migrated between CPUs, and thus we have to 430 * reject them later (in armpmu_add) if they're scheduled on a 431 * different class of CPU. 432 */ 433 if (event->cpu != -1 && 434 !cpumask_test_cpu(event->cpu, &armpmu->supported_cpus)) 435 return -ENOENT; 436 437 /* does not support taken branch sampling */ 438 if (has_branch_stack(event)) 439 return -EOPNOTSUPP; 440 441 if (armpmu->map_event(event) == -ENOENT) 442 return -ENOENT; 443 444 return __hw_perf_event_init(event); 445 } 446 447 static void armpmu_enable(struct pmu *pmu) 448 { 449 struct arm_pmu *armpmu = to_arm_pmu(pmu); 450 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 451 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 452 453 /* For task-bound events we may be called on other CPUs */ 454 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 455 return; 456 457 if (enabled) 458 armpmu->start(armpmu); 459 } 460 461 static void armpmu_disable(struct pmu *pmu) 462 { 463 struct arm_pmu *armpmu = to_arm_pmu(pmu); 464 465 /* For task-bound events we may be called on other CPUs */ 466 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 467 return; 468 469 armpmu->stop(armpmu); 470 } 471 472 /* 473 * In heterogeneous systems, events are specific to a particular 474 * microarchitecture, and aren't suitable for another. Thus, only match CPUs of 475 * the same microarchitecture. 476 */ 477 static int armpmu_filter_match(struct perf_event *event) 478 { 479 struct arm_pmu *armpmu = to_arm_pmu(event->pmu); 480 unsigned int cpu = smp_processor_id(); 481 int ret; 482 483 ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus); 484 if (ret && armpmu->filter_match) 485 return armpmu->filter_match(event); 486 487 return ret; 488 } 489 490 static ssize_t armpmu_cpumask_show(struct device *dev, 491 struct device_attribute *attr, char *buf) 492 { 493 struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev)); 494 return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus); 495 } 496 497 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL); 498 499 static struct attribute *armpmu_common_attrs[] = { 500 &dev_attr_cpus.attr, 501 NULL, 502 }; 503 504 static struct attribute_group armpmu_common_attr_group = { 505 .attrs = armpmu_common_attrs, 506 }; 507 508 /* Set at runtime when we know what CPU type we are. */ 509 static struct arm_pmu *__oprofile_cpu_pmu; 510 511 /* 512 * Despite the names, these two functions are CPU-specific and are used 513 * by the OProfile/perf code. 514 */ 515 const char *perf_pmu_name(void) 516 { 517 if (!__oprofile_cpu_pmu) 518 return NULL; 519 520 return __oprofile_cpu_pmu->name; 521 } 522 EXPORT_SYMBOL_GPL(perf_pmu_name); 523 524 int perf_num_counters(void) 525 { 526 int max_events = 0; 527 528 if (__oprofile_cpu_pmu != NULL) 529 max_events = __oprofile_cpu_pmu->num_events; 530 531 return max_events; 532 } 533 EXPORT_SYMBOL_GPL(perf_num_counters); 534 535 static int armpmu_count_irq_users(const int irq) 536 { 537 int cpu, count = 0; 538 539 for_each_possible_cpu(cpu) { 540 if (per_cpu(cpu_irq, cpu) == irq) 541 count++; 542 } 543 544 return count; 545 } 546 547 void armpmu_free_irq(int irq, int cpu) 548 { 549 if (per_cpu(cpu_irq, cpu) == 0) 550 return; 551 if (WARN_ON(irq != per_cpu(cpu_irq, cpu))) 552 return; 553 554 if (!irq_is_percpu_devid(irq)) 555 free_irq(irq, per_cpu_ptr(&cpu_armpmu, cpu)); 556 else if (armpmu_count_irq_users(irq) == 1) 557 free_percpu_irq(irq, &cpu_armpmu); 558 559 per_cpu(cpu_irq, cpu) = 0; 560 } 561 562 int armpmu_request_irq(int irq, int cpu) 563 { 564 int err = 0; 565 const irq_handler_t handler = armpmu_dispatch_irq; 566 if (!irq) 567 return 0; 568 569 if (!irq_is_percpu_devid(irq)) { 570 unsigned long irq_flags; 571 572 err = irq_force_affinity(irq, cpumask_of(cpu)); 573 574 if (err && num_possible_cpus() > 1) { 575 pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n", 576 irq, cpu); 577 goto err_out; 578 } 579 580 irq_flags = IRQF_PERCPU | 581 IRQF_NOBALANCING | 582 IRQF_NO_THREAD; 583 584 irq_set_status_flags(irq, IRQ_NOAUTOEN); 585 err = request_irq(irq, handler, irq_flags, "arm-pmu", 586 per_cpu_ptr(&cpu_armpmu, cpu)); 587 } else if (armpmu_count_irq_users(irq) == 0) { 588 err = request_percpu_irq(irq, handler, "arm-pmu", 589 &cpu_armpmu); 590 } 591 592 if (err) 593 goto err_out; 594 595 per_cpu(cpu_irq, cpu) = irq; 596 return 0; 597 598 err_out: 599 pr_err("unable to request IRQ%d for ARM PMU counters\n", irq); 600 return err; 601 } 602 603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu) 604 { 605 struct pmu_hw_events __percpu *hw_events = pmu->hw_events; 606 return per_cpu(hw_events->irq, cpu); 607 } 608 609 /* 610 * PMU hardware loses all context when a CPU goes offline. 611 * When a CPU is hotplugged back in, since some hardware registers are 612 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading 613 * junk values out of them. 614 */ 615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node) 616 { 617 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 618 int irq; 619 620 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 621 return 0; 622 if (pmu->reset) 623 pmu->reset(pmu); 624 625 per_cpu(cpu_armpmu, cpu) = pmu; 626 627 irq = armpmu_get_cpu_irq(pmu, cpu); 628 if (irq) { 629 if (irq_is_percpu_devid(irq)) 630 enable_percpu_irq(irq, IRQ_TYPE_NONE); 631 else 632 enable_irq(irq); 633 } 634 635 return 0; 636 } 637 638 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node) 639 { 640 struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node); 641 int irq; 642 643 if (!cpumask_test_cpu(cpu, &pmu->supported_cpus)) 644 return 0; 645 646 irq = armpmu_get_cpu_irq(pmu, cpu); 647 if (irq) { 648 if (irq_is_percpu_devid(irq)) 649 disable_percpu_irq(irq); 650 else 651 disable_irq_nosync(irq); 652 } 653 654 per_cpu(cpu_armpmu, cpu) = NULL; 655 656 return 0; 657 } 658 659 #ifdef CONFIG_CPU_PM 660 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd) 661 { 662 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 663 struct perf_event *event; 664 int idx; 665 666 for (idx = 0; idx < armpmu->num_events; idx++) { 667 event = hw_events->events[idx]; 668 if (!event) 669 continue; 670 671 switch (cmd) { 672 case CPU_PM_ENTER: 673 /* 674 * Stop and update the counter 675 */ 676 armpmu_stop(event, PERF_EF_UPDATE); 677 break; 678 case CPU_PM_EXIT: 679 case CPU_PM_ENTER_FAILED: 680 /* 681 * Restore and enable the counter. 682 * armpmu_start() indirectly calls 683 * 684 * perf_event_update_userpage() 685 * 686 * that requires RCU read locking to be functional, 687 * wrap the call within RCU_NONIDLE to make the 688 * RCU subsystem aware this cpu is not idle from 689 * an RCU perspective for the armpmu_start() call 690 * duration. 691 */ 692 RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD)); 693 break; 694 default: 695 break; 696 } 697 } 698 } 699 700 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd, 701 void *v) 702 { 703 struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb); 704 struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events); 705 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events); 706 707 if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus)) 708 return NOTIFY_DONE; 709 710 /* 711 * Always reset the PMU registers on power-up even if 712 * there are no events running. 713 */ 714 if (cmd == CPU_PM_EXIT && armpmu->reset) 715 armpmu->reset(armpmu); 716 717 if (!enabled) 718 return NOTIFY_OK; 719 720 switch (cmd) { 721 case CPU_PM_ENTER: 722 armpmu->stop(armpmu); 723 cpu_pm_pmu_setup(armpmu, cmd); 724 break; 725 case CPU_PM_EXIT: 726 case CPU_PM_ENTER_FAILED: 727 cpu_pm_pmu_setup(armpmu, cmd); 728 armpmu->start(armpmu); 729 break; 730 default: 731 return NOTIFY_DONE; 732 } 733 734 return NOTIFY_OK; 735 } 736 737 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) 738 { 739 cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify; 740 return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb); 741 } 742 743 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) 744 { 745 cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb); 746 } 747 #else 748 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; } 749 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { } 750 #endif 751 752 static int cpu_pmu_init(struct arm_pmu *cpu_pmu) 753 { 754 int err; 755 756 err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING, 757 &cpu_pmu->node); 758 if (err) 759 goto out; 760 761 err = cpu_pm_pmu_register(cpu_pmu); 762 if (err) 763 goto out_unregister; 764 765 return 0; 766 767 out_unregister: 768 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 769 &cpu_pmu->node); 770 out: 771 return err; 772 } 773 774 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu) 775 { 776 cpu_pm_pmu_unregister(cpu_pmu); 777 cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING, 778 &cpu_pmu->node); 779 } 780 781 static struct arm_pmu *__armpmu_alloc(gfp_t flags) 782 { 783 struct arm_pmu *pmu; 784 int cpu; 785 786 pmu = kzalloc(sizeof(*pmu), flags); 787 if (!pmu) { 788 pr_info("failed to allocate PMU device!\n"); 789 goto out; 790 } 791 792 pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags); 793 if (!pmu->hw_events) { 794 pr_info("failed to allocate per-cpu PMU data.\n"); 795 goto out_free_pmu; 796 } 797 798 pmu->pmu = (struct pmu) { 799 .pmu_enable = armpmu_enable, 800 .pmu_disable = armpmu_disable, 801 .event_init = armpmu_event_init, 802 .add = armpmu_add, 803 .del = armpmu_del, 804 .start = armpmu_start, 805 .stop = armpmu_stop, 806 .read = armpmu_read, 807 .filter_match = armpmu_filter_match, 808 .attr_groups = pmu->attr_groups, 809 /* 810 * This is a CPU PMU potentially in a heterogeneous 811 * configuration (e.g. big.LITTLE). This is not an uncore PMU, 812 * and we have taken ctx sharing into account (e.g. with our 813 * pmu::filter_match callback and pmu::event_init group 814 * validation). 815 */ 816 .capabilities = PERF_PMU_CAP_HETEROGENEOUS_CPUS, 817 }; 818 819 pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] = 820 &armpmu_common_attr_group; 821 822 for_each_possible_cpu(cpu) { 823 struct pmu_hw_events *events; 824 825 events = per_cpu_ptr(pmu->hw_events, cpu); 826 raw_spin_lock_init(&events->pmu_lock); 827 events->percpu_pmu = pmu; 828 } 829 830 return pmu; 831 832 out_free_pmu: 833 kfree(pmu); 834 out: 835 return NULL; 836 } 837 838 struct arm_pmu *armpmu_alloc(void) 839 { 840 return __armpmu_alloc(GFP_KERNEL); 841 } 842 843 struct arm_pmu *armpmu_alloc_atomic(void) 844 { 845 return __armpmu_alloc(GFP_ATOMIC); 846 } 847 848 849 void armpmu_free(struct arm_pmu *pmu) 850 { 851 free_percpu(pmu->hw_events); 852 kfree(pmu); 853 } 854 855 int armpmu_register(struct arm_pmu *pmu) 856 { 857 int ret; 858 859 ret = cpu_pmu_init(pmu); 860 if (ret) 861 return ret; 862 863 if (!pmu->set_event_filter) 864 pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE; 865 866 ret = perf_pmu_register(&pmu->pmu, pmu->name, -1); 867 if (ret) 868 goto out_destroy; 869 870 if (!__oprofile_cpu_pmu) 871 __oprofile_cpu_pmu = pmu; 872 873 pr_info("enabled with %s PMU driver, %d counters available\n", 874 pmu->name, pmu->num_events); 875 876 return 0; 877 878 out_destroy: 879 cpu_pmu_destroy(pmu); 880 return ret; 881 } 882 883 static int arm_pmu_hp_init(void) 884 { 885 int ret; 886 887 ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING, 888 "perf/arm/pmu:starting", 889 arm_perf_starting_cpu, 890 arm_perf_teardown_cpu); 891 if (ret) 892 pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n", 893 ret); 894 return ret; 895 } 896 subsys_initcall(arm_pmu_hp_init); 897