xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision a36954f5)
1 #undef DEBUG
2 
3 /*
4  * ARM performance counter support.
5  *
6  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8  *
9  * This code is based on the sparc64 perf event code, which is in turn based
10  * on the x86 code.
11  */
12 #define pr_fmt(fmt) "hw perfevents: " fmt
13 
14 #include <linux/bitmap.h>
15 #include <linux/cpumask.h>
16 #include <linux/cpu_pm.h>
17 #include <linux/export.h>
18 #include <linux/kernel.h>
19 #include <linux/perf/arm_pmu.h>
20 #include <linux/platform_device.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int
30 armpmu_map_cache_event(const unsigned (*cache_map)
31 				      [PERF_COUNT_HW_CACHE_MAX]
32 				      [PERF_COUNT_HW_CACHE_OP_MAX]
33 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
34 		       u64 config)
35 {
36 	unsigned int cache_type, cache_op, cache_result, ret;
37 
38 	cache_type = (config >>  0) & 0xff;
39 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
40 		return -EINVAL;
41 
42 	cache_op = (config >>  8) & 0xff;
43 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
44 		return -EINVAL;
45 
46 	cache_result = (config >> 16) & 0xff;
47 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
48 		return -EINVAL;
49 
50 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
51 
52 	if (ret == CACHE_OP_UNSUPPORTED)
53 		return -ENOENT;
54 
55 	return ret;
56 }
57 
58 static int
59 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
60 {
61 	int mapping;
62 
63 	if (config >= PERF_COUNT_HW_MAX)
64 		return -EINVAL;
65 
66 	mapping = (*event_map)[config];
67 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
68 }
69 
70 static int
71 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
72 {
73 	return (int)(config & raw_event_mask);
74 }
75 
76 int
77 armpmu_map_event(struct perf_event *event,
78 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
79 		 const unsigned (*cache_map)
80 				[PERF_COUNT_HW_CACHE_MAX]
81 				[PERF_COUNT_HW_CACHE_OP_MAX]
82 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
83 		 u32 raw_event_mask)
84 {
85 	u64 config = event->attr.config;
86 	int type = event->attr.type;
87 
88 	if (type == event->pmu->type)
89 		return armpmu_map_raw_event(raw_event_mask, config);
90 
91 	switch (type) {
92 	case PERF_TYPE_HARDWARE:
93 		return armpmu_map_hw_event(event_map, config);
94 	case PERF_TYPE_HW_CACHE:
95 		return armpmu_map_cache_event(cache_map, config);
96 	case PERF_TYPE_RAW:
97 		return armpmu_map_raw_event(raw_event_mask, config);
98 	}
99 
100 	return -ENOENT;
101 }
102 
103 int armpmu_event_set_period(struct perf_event *event)
104 {
105 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
106 	struct hw_perf_event *hwc = &event->hw;
107 	s64 left = local64_read(&hwc->period_left);
108 	s64 period = hwc->sample_period;
109 	int ret = 0;
110 
111 	if (unlikely(left <= -period)) {
112 		left = period;
113 		local64_set(&hwc->period_left, left);
114 		hwc->last_period = period;
115 		ret = 1;
116 	}
117 
118 	if (unlikely(left <= 0)) {
119 		left += period;
120 		local64_set(&hwc->period_left, left);
121 		hwc->last_period = period;
122 		ret = 1;
123 	}
124 
125 	/*
126 	 * Limit the maximum period to prevent the counter value
127 	 * from overtaking the one we are about to program. In
128 	 * effect we are reducing max_period to account for
129 	 * interrupt latency (and we are being very conservative).
130 	 */
131 	if (left > (armpmu->max_period >> 1))
132 		left = armpmu->max_period >> 1;
133 
134 	local64_set(&hwc->prev_count, (u64)-left);
135 
136 	armpmu->write_counter(event, (u64)(-left) & 0xffffffff);
137 
138 	perf_event_update_userpage(event);
139 
140 	return ret;
141 }
142 
143 u64 armpmu_event_update(struct perf_event *event)
144 {
145 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
146 	struct hw_perf_event *hwc = &event->hw;
147 	u64 delta, prev_raw_count, new_raw_count;
148 
149 again:
150 	prev_raw_count = local64_read(&hwc->prev_count);
151 	new_raw_count = armpmu->read_counter(event);
152 
153 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
154 			     new_raw_count) != prev_raw_count)
155 		goto again;
156 
157 	delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
158 
159 	local64_add(delta, &event->count);
160 	local64_sub(delta, &hwc->period_left);
161 
162 	return new_raw_count;
163 }
164 
165 static void
166 armpmu_read(struct perf_event *event)
167 {
168 	armpmu_event_update(event);
169 }
170 
171 static void
172 armpmu_stop(struct perf_event *event, int flags)
173 {
174 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
175 	struct hw_perf_event *hwc = &event->hw;
176 
177 	/*
178 	 * ARM pmu always has to update the counter, so ignore
179 	 * PERF_EF_UPDATE, see comments in armpmu_start().
180 	 */
181 	if (!(hwc->state & PERF_HES_STOPPED)) {
182 		armpmu->disable(event);
183 		armpmu_event_update(event);
184 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
185 	}
186 }
187 
188 static void armpmu_start(struct perf_event *event, int flags)
189 {
190 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
191 	struct hw_perf_event *hwc = &event->hw;
192 
193 	/*
194 	 * ARM pmu always has to reprogram the period, so ignore
195 	 * PERF_EF_RELOAD, see the comment below.
196 	 */
197 	if (flags & PERF_EF_RELOAD)
198 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
199 
200 	hwc->state = 0;
201 	/*
202 	 * Set the period again. Some counters can't be stopped, so when we
203 	 * were stopped we simply disabled the IRQ source and the counter
204 	 * may have been left counting. If we don't do this step then we may
205 	 * get an interrupt too soon or *way* too late if the overflow has
206 	 * happened since disabling.
207 	 */
208 	armpmu_event_set_period(event);
209 	armpmu->enable(event);
210 }
211 
212 static void
213 armpmu_del(struct perf_event *event, int flags)
214 {
215 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
216 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
217 	struct hw_perf_event *hwc = &event->hw;
218 	int idx = hwc->idx;
219 
220 	armpmu_stop(event, PERF_EF_UPDATE);
221 	hw_events->events[idx] = NULL;
222 	clear_bit(idx, hw_events->used_mask);
223 	if (armpmu->clear_event_idx)
224 		armpmu->clear_event_idx(hw_events, event);
225 
226 	perf_event_update_userpage(event);
227 }
228 
229 static int
230 armpmu_add(struct perf_event *event, int flags)
231 {
232 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
234 	struct hw_perf_event *hwc = &event->hw;
235 	int idx;
236 
237 	/* An event following a process won't be stopped earlier */
238 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
239 		return -ENOENT;
240 
241 	/* If we don't have a space for the counter then finish early. */
242 	idx = armpmu->get_event_idx(hw_events, event);
243 	if (idx < 0)
244 		return idx;
245 
246 	/*
247 	 * If there is an event in the counter we are going to use then make
248 	 * sure it is disabled.
249 	 */
250 	event->hw.idx = idx;
251 	armpmu->disable(event);
252 	hw_events->events[idx] = event;
253 
254 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
255 	if (flags & PERF_EF_START)
256 		armpmu_start(event, PERF_EF_RELOAD);
257 
258 	/* Propagate our changes to the userspace mapping. */
259 	perf_event_update_userpage(event);
260 
261 	return 0;
262 }
263 
264 static int
265 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
266 			       struct perf_event *event)
267 {
268 	struct arm_pmu *armpmu;
269 
270 	if (is_software_event(event))
271 		return 1;
272 
273 	/*
274 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
275 	 * core perf code won't check that the pmu->ctx == leader->ctx
276 	 * until after pmu->event_init(event).
277 	 */
278 	if (event->pmu != pmu)
279 		return 0;
280 
281 	if (event->state < PERF_EVENT_STATE_OFF)
282 		return 1;
283 
284 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
285 		return 1;
286 
287 	armpmu = to_arm_pmu(event->pmu);
288 	return armpmu->get_event_idx(hw_events, event) >= 0;
289 }
290 
291 static int
292 validate_group(struct perf_event *event)
293 {
294 	struct perf_event *sibling, *leader = event->group_leader;
295 	struct pmu_hw_events fake_pmu;
296 
297 	/*
298 	 * Initialise the fake PMU. We only need to populate the
299 	 * used_mask for the purposes of validation.
300 	 */
301 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
302 
303 	if (!validate_event(event->pmu, &fake_pmu, leader))
304 		return -EINVAL;
305 
306 	list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
307 		if (!validate_event(event->pmu, &fake_pmu, sibling))
308 			return -EINVAL;
309 	}
310 
311 	if (!validate_event(event->pmu, &fake_pmu, event))
312 		return -EINVAL;
313 
314 	return 0;
315 }
316 
317 static struct arm_pmu_platdata *armpmu_get_platdata(struct arm_pmu *armpmu)
318 {
319 	struct platform_device *pdev = armpmu->plat_device;
320 
321 	return pdev ? dev_get_platdata(&pdev->dev) : NULL;
322 }
323 
324 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
325 {
326 	struct arm_pmu *armpmu;
327 	struct arm_pmu_platdata *plat;
328 	int ret;
329 	u64 start_clock, finish_clock;
330 
331 	/*
332 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
333 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
334 	 * do any necessary shifting, we just need to perform the first
335 	 * dereference.
336 	 */
337 	armpmu = *(void **)dev;
338 
339 	plat = armpmu_get_platdata(armpmu);
340 
341 	start_clock = sched_clock();
342 	if (plat && plat->handle_irq)
343 		ret = plat->handle_irq(irq, armpmu, armpmu->handle_irq);
344 	else
345 		ret = armpmu->handle_irq(irq, armpmu);
346 	finish_clock = sched_clock();
347 
348 	perf_sample_event_took(finish_clock - start_clock);
349 	return ret;
350 }
351 
352 static int
353 event_requires_mode_exclusion(struct perf_event_attr *attr)
354 {
355 	return attr->exclude_idle || attr->exclude_user ||
356 	       attr->exclude_kernel || attr->exclude_hv;
357 }
358 
359 static int
360 __hw_perf_event_init(struct perf_event *event)
361 {
362 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
363 	struct hw_perf_event *hwc = &event->hw;
364 	int mapping;
365 
366 	mapping = armpmu->map_event(event);
367 
368 	if (mapping < 0) {
369 		pr_debug("event %x:%llx not supported\n", event->attr.type,
370 			 event->attr.config);
371 		return mapping;
372 	}
373 
374 	/*
375 	 * We don't assign an index until we actually place the event onto
376 	 * hardware. Use -1 to signify that we haven't decided where to put it
377 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
378 	 * clever allocation or constraints checking at this point.
379 	 */
380 	hwc->idx		= -1;
381 	hwc->config_base	= 0;
382 	hwc->config		= 0;
383 	hwc->event_base		= 0;
384 
385 	/*
386 	 * Check whether we need to exclude the counter from certain modes.
387 	 */
388 	if ((!armpmu->set_event_filter ||
389 	     armpmu->set_event_filter(hwc, &event->attr)) &&
390 	     event_requires_mode_exclusion(&event->attr)) {
391 		pr_debug("ARM performance counters do not support "
392 			 "mode exclusion\n");
393 		return -EOPNOTSUPP;
394 	}
395 
396 	/*
397 	 * Store the event encoding into the config_base field.
398 	 */
399 	hwc->config_base	    |= (unsigned long)mapping;
400 
401 	if (!is_sampling_event(event)) {
402 		/*
403 		 * For non-sampling runs, limit the sample_period to half
404 		 * of the counter width. That way, the new counter value
405 		 * is far less likely to overtake the previous one unless
406 		 * you have some serious IRQ latency issues.
407 		 */
408 		hwc->sample_period  = armpmu->max_period >> 1;
409 		hwc->last_period    = hwc->sample_period;
410 		local64_set(&hwc->period_left, hwc->sample_period);
411 	}
412 
413 	if (event->group_leader != event) {
414 		if (validate_group(event) != 0)
415 			return -EINVAL;
416 	}
417 
418 	return 0;
419 }
420 
421 static int armpmu_event_init(struct perf_event *event)
422 {
423 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
424 
425 	/*
426 	 * Reject CPU-affine events for CPUs that are of a different class to
427 	 * that which this PMU handles. Process-following events (where
428 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
429 	 * reject them later (in armpmu_add) if they're scheduled on a
430 	 * different class of CPU.
431 	 */
432 	if (event->cpu != -1 &&
433 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
434 		return -ENOENT;
435 
436 	/* does not support taken branch sampling */
437 	if (has_branch_stack(event))
438 		return -EOPNOTSUPP;
439 
440 	if (armpmu->map_event(event) == -ENOENT)
441 		return -ENOENT;
442 
443 	return __hw_perf_event_init(event);
444 }
445 
446 static void armpmu_enable(struct pmu *pmu)
447 {
448 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
449 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
450 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
451 
452 	/* For task-bound events we may be called on other CPUs */
453 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
454 		return;
455 
456 	if (enabled)
457 		armpmu->start(armpmu);
458 }
459 
460 static void armpmu_disable(struct pmu *pmu)
461 {
462 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
463 
464 	/* For task-bound events we may be called on other CPUs */
465 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
466 		return;
467 
468 	armpmu->stop(armpmu);
469 }
470 
471 /*
472  * In heterogeneous systems, events are specific to a particular
473  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
474  * the same microarchitecture.
475  */
476 static int armpmu_filter_match(struct perf_event *event)
477 {
478 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
479 	unsigned int cpu = smp_processor_id();
480 	return cpumask_test_cpu(cpu, &armpmu->supported_cpus);
481 }
482 
483 static ssize_t armpmu_cpumask_show(struct device *dev,
484 				   struct device_attribute *attr, char *buf)
485 {
486 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
487 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
488 }
489 
490 static DEVICE_ATTR(cpus, S_IRUGO, armpmu_cpumask_show, NULL);
491 
492 static struct attribute *armpmu_common_attrs[] = {
493 	&dev_attr_cpus.attr,
494 	NULL,
495 };
496 
497 static struct attribute_group armpmu_common_attr_group = {
498 	.attrs = armpmu_common_attrs,
499 };
500 
501 /* Set at runtime when we know what CPU type we are. */
502 static struct arm_pmu *__oprofile_cpu_pmu;
503 
504 /*
505  * Despite the names, these two functions are CPU-specific and are used
506  * by the OProfile/perf code.
507  */
508 const char *perf_pmu_name(void)
509 {
510 	if (!__oprofile_cpu_pmu)
511 		return NULL;
512 
513 	return __oprofile_cpu_pmu->name;
514 }
515 EXPORT_SYMBOL_GPL(perf_pmu_name);
516 
517 int perf_num_counters(void)
518 {
519 	int max_events = 0;
520 
521 	if (__oprofile_cpu_pmu != NULL)
522 		max_events = __oprofile_cpu_pmu->num_events;
523 
524 	return max_events;
525 }
526 EXPORT_SYMBOL_GPL(perf_num_counters);
527 
528 void armpmu_free_irq(struct arm_pmu *armpmu, int cpu)
529 {
530 	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
531 	int irq = per_cpu(hw_events->irq, cpu);
532 
533 	if (!cpumask_test_and_clear_cpu(cpu, &armpmu->active_irqs))
534 		return;
535 
536 	if (irq_is_percpu(irq)) {
537 		free_percpu_irq(irq, &hw_events->percpu_pmu);
538 		cpumask_clear(&armpmu->active_irqs);
539 		return;
540 	}
541 
542 	free_irq(irq, per_cpu_ptr(&hw_events->percpu_pmu, cpu));
543 }
544 
545 void armpmu_free_irqs(struct arm_pmu *armpmu)
546 {
547 	int cpu;
548 
549 	for_each_cpu(cpu, &armpmu->supported_cpus)
550 		armpmu_free_irq(armpmu, cpu);
551 }
552 
553 int armpmu_request_irq(struct arm_pmu *armpmu, int cpu)
554 {
555 	int err = 0;
556 	struct pmu_hw_events __percpu *hw_events = armpmu->hw_events;
557 	const irq_handler_t handler = armpmu_dispatch_irq;
558 	int irq = per_cpu(hw_events->irq, cpu);
559 	if (!irq)
560 		return 0;
561 
562 	if (irq_is_percpu(irq) && cpumask_empty(&armpmu->active_irqs)) {
563 		err = request_percpu_irq(irq, handler, "arm-pmu",
564 					 &hw_events->percpu_pmu);
565 	} else if (irq_is_percpu(irq)) {
566 		int other_cpu = cpumask_first(&armpmu->active_irqs);
567 		int other_irq = per_cpu(hw_events->irq, other_cpu);
568 
569 		if (irq != other_irq) {
570 			pr_warn("mismatched PPIs detected.\n");
571 			err = -EINVAL;
572 		}
573 	} else {
574 		err = request_irq(irq, handler,
575 				  IRQF_NOBALANCING | IRQF_NO_THREAD, "arm-pmu",
576 				  per_cpu_ptr(&hw_events->percpu_pmu, cpu));
577 	}
578 
579 	if (err) {
580 		pr_err("unable to request IRQ%d for ARM PMU counters\n",
581 			irq);
582 		return err;
583 	}
584 
585 	cpumask_set_cpu(cpu, &armpmu->active_irqs);
586 
587 	return 0;
588 }
589 
590 int armpmu_request_irqs(struct arm_pmu *armpmu)
591 {
592 	int cpu, err;
593 
594 	for_each_cpu(cpu, &armpmu->supported_cpus) {
595 		err = armpmu_request_irq(armpmu, cpu);
596 		if (err)
597 			break;
598 	}
599 
600 	return err;
601 }
602 
603 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
604 {
605 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
606 	return per_cpu(hw_events->irq, cpu);
607 }
608 
609 /*
610  * PMU hardware loses all context when a CPU goes offline.
611  * When a CPU is hotplugged back in, since some hardware registers are
612  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
613  * junk values out of them.
614  */
615 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
616 {
617 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
618 	int irq;
619 
620 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
621 		return 0;
622 	if (pmu->reset)
623 		pmu->reset(pmu);
624 
625 	irq = armpmu_get_cpu_irq(pmu, cpu);
626 	if (irq) {
627 		if (irq_is_percpu(irq)) {
628 			enable_percpu_irq(irq, IRQ_TYPE_NONE);
629 			return 0;
630 		}
631 
632 		if (irq_force_affinity(irq, cpumask_of(cpu)) &&
633 		    num_possible_cpus() > 1) {
634 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
635 				irq, cpu);
636 		}
637 	}
638 
639 	return 0;
640 }
641 
642 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
643 {
644 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
645 	int irq;
646 
647 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
648 		return 0;
649 
650 	irq = armpmu_get_cpu_irq(pmu, cpu);
651 	if (irq && irq_is_percpu(irq))
652 		disable_percpu_irq(irq);
653 
654 	return 0;
655 }
656 
657 #ifdef CONFIG_CPU_PM
658 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
659 {
660 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
661 	struct perf_event *event;
662 	int idx;
663 
664 	for (idx = 0; idx < armpmu->num_events; idx++) {
665 		/*
666 		 * If the counter is not used skip it, there is no
667 		 * need of stopping/restarting it.
668 		 */
669 		if (!test_bit(idx, hw_events->used_mask))
670 			continue;
671 
672 		event = hw_events->events[idx];
673 
674 		switch (cmd) {
675 		case CPU_PM_ENTER:
676 			/*
677 			 * Stop and update the counter
678 			 */
679 			armpmu_stop(event, PERF_EF_UPDATE);
680 			break;
681 		case CPU_PM_EXIT:
682 		case CPU_PM_ENTER_FAILED:
683 			 /*
684 			  * Restore and enable the counter.
685 			  * armpmu_start() indirectly calls
686 			  *
687 			  * perf_event_update_userpage()
688 			  *
689 			  * that requires RCU read locking to be functional,
690 			  * wrap the call within RCU_NONIDLE to make the
691 			  * RCU subsystem aware this cpu is not idle from
692 			  * an RCU perspective for the armpmu_start() call
693 			  * duration.
694 			  */
695 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
696 			break;
697 		default:
698 			break;
699 		}
700 	}
701 }
702 
703 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
704 			     void *v)
705 {
706 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
707 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
708 	int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
709 
710 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
711 		return NOTIFY_DONE;
712 
713 	/*
714 	 * Always reset the PMU registers on power-up even if
715 	 * there are no events running.
716 	 */
717 	if (cmd == CPU_PM_EXIT && armpmu->reset)
718 		armpmu->reset(armpmu);
719 
720 	if (!enabled)
721 		return NOTIFY_OK;
722 
723 	switch (cmd) {
724 	case CPU_PM_ENTER:
725 		armpmu->stop(armpmu);
726 		cpu_pm_pmu_setup(armpmu, cmd);
727 		break;
728 	case CPU_PM_EXIT:
729 		cpu_pm_pmu_setup(armpmu, cmd);
730 	case CPU_PM_ENTER_FAILED:
731 		armpmu->start(armpmu);
732 		break;
733 	default:
734 		return NOTIFY_DONE;
735 	}
736 
737 	return NOTIFY_OK;
738 }
739 
740 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
741 {
742 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
743 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
744 }
745 
746 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
747 {
748 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
749 }
750 #else
751 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
752 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
753 #endif
754 
755 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
756 {
757 	int err;
758 
759 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
760 				       &cpu_pmu->node);
761 	if (err)
762 		goto out;
763 
764 	err = cpu_pm_pmu_register(cpu_pmu);
765 	if (err)
766 		goto out_unregister;
767 
768 	return 0;
769 
770 out_unregister:
771 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
772 					    &cpu_pmu->node);
773 out:
774 	return err;
775 }
776 
777 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
778 {
779 	cpu_pm_pmu_unregister(cpu_pmu);
780 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
781 					    &cpu_pmu->node);
782 }
783 
784 struct arm_pmu *armpmu_alloc(void)
785 {
786 	struct arm_pmu *pmu;
787 	int cpu;
788 
789 	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
790 	if (!pmu) {
791 		pr_info("failed to allocate PMU device!\n");
792 		goto out;
793 	}
794 
795 	pmu->hw_events = alloc_percpu(struct pmu_hw_events);
796 	if (!pmu->hw_events) {
797 		pr_info("failed to allocate per-cpu PMU data.\n");
798 		goto out_free_pmu;
799 	}
800 
801 	pmu->pmu = (struct pmu) {
802 		.pmu_enable	= armpmu_enable,
803 		.pmu_disable	= armpmu_disable,
804 		.event_init	= armpmu_event_init,
805 		.add		= armpmu_add,
806 		.del		= armpmu_del,
807 		.start		= armpmu_start,
808 		.stop		= armpmu_stop,
809 		.read		= armpmu_read,
810 		.filter_match	= armpmu_filter_match,
811 		.attr_groups	= pmu->attr_groups,
812 		/*
813 		 * This is a CPU PMU potentially in a heterogeneous
814 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
815 		 * and we have taken ctx sharing into account (e.g. with our
816 		 * pmu::filter_match callback and pmu::event_init group
817 		 * validation).
818 		 */
819 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS,
820 	};
821 
822 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
823 		&armpmu_common_attr_group;
824 
825 	for_each_possible_cpu(cpu) {
826 		struct pmu_hw_events *events;
827 
828 		events = per_cpu_ptr(pmu->hw_events, cpu);
829 		raw_spin_lock_init(&events->pmu_lock);
830 		events->percpu_pmu = pmu;
831 	}
832 
833 	return pmu;
834 
835 out_free_pmu:
836 	kfree(pmu);
837 out:
838 	return NULL;
839 }
840 
841 void armpmu_free(struct arm_pmu *pmu)
842 {
843 	free_percpu(pmu->hw_events);
844 	kfree(pmu);
845 }
846 
847 int armpmu_register(struct arm_pmu *pmu)
848 {
849 	int ret;
850 
851 	ret = cpu_pmu_init(pmu);
852 	if (ret)
853 		return ret;
854 
855 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
856 	if (ret)
857 		goto out_destroy;
858 
859 	if (!__oprofile_cpu_pmu)
860 		__oprofile_cpu_pmu = pmu;
861 
862 	pr_info("enabled with %s PMU driver, %d counters available\n",
863 		pmu->name, pmu->num_events);
864 
865 	return 0;
866 
867 out_destroy:
868 	cpu_pmu_destroy(pmu);
869 	return ret;
870 }
871 
872 static int arm_pmu_hp_init(void)
873 {
874 	int ret;
875 
876 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
877 				      "perf/arm/pmu:starting",
878 				      arm_perf_starting_cpu,
879 				      arm_perf_teardown_cpu);
880 	if (ret)
881 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
882 		       ret);
883 	return ret;
884 }
885 subsys_initcall(arm_pmu_hp_init);
886