xref: /openbmc/linux/drivers/perf/arm_pmu.c (revision 4f57332d6a551185ba729617f04455e83fbe4e41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 #undef DEBUG
3 
4 /*
5  * ARM performance counter support.
6  *
7  * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
8  * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
9  *
10  * This code is based on the sparc64 perf event code, which is in turn based
11  * on the x86 code.
12  */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14 
15 #include <linux/bitmap.h>
16 #include <linux/cpumask.h>
17 #include <linux/cpu_pm.h>
18 #include <linux/export.h>
19 #include <linux/kernel.h>
20 #include <linux/perf/arm_pmu.h>
21 #include <linux/slab.h>
22 #include <linux/sched/clock.h>
23 #include <linux/spinlock.h>
24 #include <linux/irq.h>
25 #include <linux/irqdesc.h>
26 
27 #include <asm/irq_regs.h>
28 
29 static int armpmu_count_irq_users(const int irq);
30 
31 struct pmu_irq_ops {
32 	void (*enable_pmuirq)(unsigned int irq);
33 	void (*disable_pmuirq)(unsigned int irq);
34 	void (*free_pmuirq)(unsigned int irq, int cpu, void __percpu *devid);
35 };
36 
37 static void armpmu_free_pmuirq(unsigned int irq, int cpu, void __percpu *devid)
38 {
39 	free_irq(irq, per_cpu_ptr(devid, cpu));
40 }
41 
42 static const struct pmu_irq_ops pmuirq_ops = {
43 	.enable_pmuirq = enable_irq,
44 	.disable_pmuirq = disable_irq_nosync,
45 	.free_pmuirq = armpmu_free_pmuirq
46 };
47 
48 static void armpmu_free_pmunmi(unsigned int irq, int cpu, void __percpu *devid)
49 {
50 	free_nmi(irq, per_cpu_ptr(devid, cpu));
51 }
52 
53 static const struct pmu_irq_ops pmunmi_ops = {
54 	.enable_pmuirq = enable_nmi,
55 	.disable_pmuirq = disable_nmi_nosync,
56 	.free_pmuirq = armpmu_free_pmunmi
57 };
58 
59 static void armpmu_enable_percpu_pmuirq(unsigned int irq)
60 {
61 	enable_percpu_irq(irq, IRQ_TYPE_NONE);
62 }
63 
64 static void armpmu_free_percpu_pmuirq(unsigned int irq, int cpu,
65 				   void __percpu *devid)
66 {
67 	if (armpmu_count_irq_users(irq) == 1)
68 		free_percpu_irq(irq, devid);
69 }
70 
71 static const struct pmu_irq_ops percpu_pmuirq_ops = {
72 	.enable_pmuirq = armpmu_enable_percpu_pmuirq,
73 	.disable_pmuirq = disable_percpu_irq,
74 	.free_pmuirq = armpmu_free_percpu_pmuirq
75 };
76 
77 static void armpmu_enable_percpu_pmunmi(unsigned int irq)
78 {
79 	if (!prepare_percpu_nmi(irq))
80 		enable_percpu_nmi(irq, IRQ_TYPE_NONE);
81 }
82 
83 static void armpmu_disable_percpu_pmunmi(unsigned int irq)
84 {
85 	disable_percpu_nmi(irq);
86 	teardown_percpu_nmi(irq);
87 }
88 
89 static void armpmu_free_percpu_pmunmi(unsigned int irq, int cpu,
90 				      void __percpu *devid)
91 {
92 	if (armpmu_count_irq_users(irq) == 1)
93 		free_percpu_nmi(irq, devid);
94 }
95 
96 static const struct pmu_irq_ops percpu_pmunmi_ops = {
97 	.enable_pmuirq = armpmu_enable_percpu_pmunmi,
98 	.disable_pmuirq = armpmu_disable_percpu_pmunmi,
99 	.free_pmuirq = armpmu_free_percpu_pmunmi
100 };
101 
102 static DEFINE_PER_CPU(struct arm_pmu *, cpu_armpmu);
103 static DEFINE_PER_CPU(int, cpu_irq);
104 static DEFINE_PER_CPU(const struct pmu_irq_ops *, cpu_irq_ops);
105 
106 static bool has_nmi;
107 
108 static inline u64 arm_pmu_event_max_period(struct perf_event *event)
109 {
110 	if (event->hw.flags & ARMPMU_EVT_64BIT)
111 		return GENMASK_ULL(63, 0);
112 	else if (event->hw.flags & ARMPMU_EVT_47BIT)
113 		return GENMASK_ULL(46, 0);
114 	else
115 		return GENMASK_ULL(31, 0);
116 }
117 
118 static int
119 armpmu_map_cache_event(const unsigned (*cache_map)
120 				      [PERF_COUNT_HW_CACHE_MAX]
121 				      [PERF_COUNT_HW_CACHE_OP_MAX]
122 				      [PERF_COUNT_HW_CACHE_RESULT_MAX],
123 		       u64 config)
124 {
125 	unsigned int cache_type, cache_op, cache_result, ret;
126 
127 	cache_type = (config >>  0) & 0xff;
128 	if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
129 		return -EINVAL;
130 
131 	cache_op = (config >>  8) & 0xff;
132 	if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
133 		return -EINVAL;
134 
135 	cache_result = (config >> 16) & 0xff;
136 	if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
137 		return -EINVAL;
138 
139 	if (!cache_map)
140 		return -ENOENT;
141 
142 	ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
143 
144 	if (ret == CACHE_OP_UNSUPPORTED)
145 		return -ENOENT;
146 
147 	return ret;
148 }
149 
150 static int
151 armpmu_map_hw_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
152 {
153 	int mapping;
154 
155 	if (config >= PERF_COUNT_HW_MAX)
156 		return -EINVAL;
157 
158 	if (!event_map)
159 		return -ENOENT;
160 
161 	mapping = (*event_map)[config];
162 	return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
163 }
164 
165 static int
166 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
167 {
168 	return (int)(config & raw_event_mask);
169 }
170 
171 int
172 armpmu_map_event(struct perf_event *event,
173 		 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
174 		 const unsigned (*cache_map)
175 				[PERF_COUNT_HW_CACHE_MAX]
176 				[PERF_COUNT_HW_CACHE_OP_MAX]
177 				[PERF_COUNT_HW_CACHE_RESULT_MAX],
178 		 u32 raw_event_mask)
179 {
180 	u64 config = event->attr.config;
181 	int type = event->attr.type;
182 
183 	if (type == event->pmu->type)
184 		return armpmu_map_raw_event(raw_event_mask, config);
185 
186 	switch (type) {
187 	case PERF_TYPE_HARDWARE:
188 		return armpmu_map_hw_event(event_map, config);
189 	case PERF_TYPE_HW_CACHE:
190 		return armpmu_map_cache_event(cache_map, config);
191 	case PERF_TYPE_RAW:
192 		return armpmu_map_raw_event(raw_event_mask, config);
193 	}
194 
195 	return -ENOENT;
196 }
197 
198 int armpmu_event_set_period(struct perf_event *event)
199 {
200 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
201 	struct hw_perf_event *hwc = &event->hw;
202 	s64 left = local64_read(&hwc->period_left);
203 	s64 period = hwc->sample_period;
204 	u64 max_period;
205 	int ret = 0;
206 
207 	max_period = arm_pmu_event_max_period(event);
208 	if (unlikely(left <= -period)) {
209 		left = period;
210 		local64_set(&hwc->period_left, left);
211 		hwc->last_period = period;
212 		ret = 1;
213 	}
214 
215 	if (unlikely(left <= 0)) {
216 		left += period;
217 		local64_set(&hwc->period_left, left);
218 		hwc->last_period = period;
219 		ret = 1;
220 	}
221 
222 	/*
223 	 * Limit the maximum period to prevent the counter value
224 	 * from overtaking the one we are about to program. In
225 	 * effect we are reducing max_period to account for
226 	 * interrupt latency (and we are being very conservative).
227 	 */
228 	if (left > (max_period >> 1))
229 		left = (max_period >> 1);
230 
231 	local64_set(&hwc->prev_count, (u64)-left);
232 
233 	armpmu->write_counter(event, (u64)(-left) & max_period);
234 
235 	perf_event_update_userpage(event);
236 
237 	return ret;
238 }
239 
240 u64 armpmu_event_update(struct perf_event *event)
241 {
242 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
243 	struct hw_perf_event *hwc = &event->hw;
244 	u64 delta, prev_raw_count, new_raw_count;
245 	u64 max_period = arm_pmu_event_max_period(event);
246 
247 again:
248 	prev_raw_count = local64_read(&hwc->prev_count);
249 	new_raw_count = armpmu->read_counter(event);
250 
251 	if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
252 			     new_raw_count) != prev_raw_count)
253 		goto again;
254 
255 	delta = (new_raw_count - prev_raw_count) & max_period;
256 
257 	local64_add(delta, &event->count);
258 	local64_sub(delta, &hwc->period_left);
259 
260 	return new_raw_count;
261 }
262 
263 static void
264 armpmu_read(struct perf_event *event)
265 {
266 	armpmu_event_update(event);
267 }
268 
269 static void
270 armpmu_stop(struct perf_event *event, int flags)
271 {
272 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
273 	struct hw_perf_event *hwc = &event->hw;
274 
275 	/*
276 	 * ARM pmu always has to update the counter, so ignore
277 	 * PERF_EF_UPDATE, see comments in armpmu_start().
278 	 */
279 	if (!(hwc->state & PERF_HES_STOPPED)) {
280 		armpmu->disable(event);
281 		armpmu_event_update(event);
282 		hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
283 	}
284 }
285 
286 static void armpmu_start(struct perf_event *event, int flags)
287 {
288 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
289 	struct hw_perf_event *hwc = &event->hw;
290 
291 	/*
292 	 * ARM pmu always has to reprogram the period, so ignore
293 	 * PERF_EF_RELOAD, see the comment below.
294 	 */
295 	if (flags & PERF_EF_RELOAD)
296 		WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
297 
298 	hwc->state = 0;
299 	/*
300 	 * Set the period again. Some counters can't be stopped, so when we
301 	 * were stopped we simply disabled the IRQ source and the counter
302 	 * may have been left counting. If we don't do this step then we may
303 	 * get an interrupt too soon or *way* too late if the overflow has
304 	 * happened since disabling.
305 	 */
306 	armpmu_event_set_period(event);
307 	armpmu->enable(event);
308 }
309 
310 static void
311 armpmu_del(struct perf_event *event, int flags)
312 {
313 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
314 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
315 	struct hw_perf_event *hwc = &event->hw;
316 	int idx = hwc->idx;
317 
318 	armpmu_stop(event, PERF_EF_UPDATE);
319 	hw_events->events[idx] = NULL;
320 	armpmu->clear_event_idx(hw_events, event);
321 	perf_event_update_userpage(event);
322 	/* Clear the allocated counter */
323 	hwc->idx = -1;
324 }
325 
326 static int
327 armpmu_add(struct perf_event *event, int flags)
328 {
329 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
330 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
331 	struct hw_perf_event *hwc = &event->hw;
332 	int idx;
333 
334 	/* An event following a process won't be stopped earlier */
335 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
336 		return -ENOENT;
337 
338 	/* If we don't have a space for the counter then finish early. */
339 	idx = armpmu->get_event_idx(hw_events, event);
340 	if (idx < 0)
341 		return idx;
342 
343 	/*
344 	 * If there is an event in the counter we are going to use then make
345 	 * sure it is disabled.
346 	 */
347 	event->hw.idx = idx;
348 	armpmu->disable(event);
349 	hw_events->events[idx] = event;
350 
351 	hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
352 	if (flags & PERF_EF_START)
353 		armpmu_start(event, PERF_EF_RELOAD);
354 
355 	/* Propagate our changes to the userspace mapping. */
356 	perf_event_update_userpage(event);
357 
358 	return 0;
359 }
360 
361 static int
362 validate_event(struct pmu *pmu, struct pmu_hw_events *hw_events,
363 			       struct perf_event *event)
364 {
365 	struct arm_pmu *armpmu;
366 
367 	if (is_software_event(event))
368 		return 1;
369 
370 	/*
371 	 * Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
372 	 * core perf code won't check that the pmu->ctx == leader->ctx
373 	 * until after pmu->event_init(event).
374 	 */
375 	if (event->pmu != pmu)
376 		return 0;
377 
378 	if (event->state < PERF_EVENT_STATE_OFF)
379 		return 1;
380 
381 	if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
382 		return 1;
383 
384 	armpmu = to_arm_pmu(event->pmu);
385 	return armpmu->get_event_idx(hw_events, event) >= 0;
386 }
387 
388 static int
389 validate_group(struct perf_event *event)
390 {
391 	struct perf_event *sibling, *leader = event->group_leader;
392 	struct pmu_hw_events fake_pmu;
393 
394 	/*
395 	 * Initialise the fake PMU. We only need to populate the
396 	 * used_mask for the purposes of validation.
397 	 */
398 	memset(&fake_pmu.used_mask, 0, sizeof(fake_pmu.used_mask));
399 
400 	if (!validate_event(event->pmu, &fake_pmu, leader))
401 		return -EINVAL;
402 
403 	if (event == leader)
404 		return 0;
405 
406 	for_each_sibling_event(sibling, leader) {
407 		if (!validate_event(event->pmu, &fake_pmu, sibling))
408 			return -EINVAL;
409 	}
410 
411 	if (!validate_event(event->pmu, &fake_pmu, event))
412 		return -EINVAL;
413 
414 	return 0;
415 }
416 
417 static irqreturn_t armpmu_dispatch_irq(int irq, void *dev)
418 {
419 	struct arm_pmu *armpmu;
420 	int ret;
421 	u64 start_clock, finish_clock;
422 
423 	/*
424 	 * we request the IRQ with a (possibly percpu) struct arm_pmu**, but
425 	 * the handlers expect a struct arm_pmu*. The percpu_irq framework will
426 	 * do any necessary shifting, we just need to perform the first
427 	 * dereference.
428 	 */
429 	armpmu = *(void **)dev;
430 	if (WARN_ON_ONCE(!armpmu))
431 		return IRQ_NONE;
432 
433 	start_clock = sched_clock();
434 	ret = armpmu->handle_irq(armpmu);
435 	finish_clock = sched_clock();
436 
437 	perf_sample_event_took(finish_clock - start_clock);
438 	return ret;
439 }
440 
441 static int
442 __hw_perf_event_init(struct perf_event *event)
443 {
444 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
445 	struct hw_perf_event *hwc = &event->hw;
446 	int mapping;
447 
448 	hwc->flags = 0;
449 	mapping = armpmu->map_event(event);
450 
451 	if (mapping < 0) {
452 		pr_debug("event %x:%llx not supported\n", event->attr.type,
453 			 event->attr.config);
454 		return mapping;
455 	}
456 
457 	/*
458 	 * We don't assign an index until we actually place the event onto
459 	 * hardware. Use -1 to signify that we haven't decided where to put it
460 	 * yet. For SMP systems, each core has it's own PMU so we can't do any
461 	 * clever allocation or constraints checking at this point.
462 	 */
463 	hwc->idx		= -1;
464 	hwc->config_base	= 0;
465 	hwc->config		= 0;
466 	hwc->event_base		= 0;
467 
468 	/*
469 	 * Check whether we need to exclude the counter from certain modes.
470 	 */
471 	if (armpmu->set_event_filter &&
472 	    armpmu->set_event_filter(hwc, &event->attr)) {
473 		pr_debug("ARM performance counters do not support "
474 			 "mode exclusion\n");
475 		return -EOPNOTSUPP;
476 	}
477 
478 	/*
479 	 * Store the event encoding into the config_base field.
480 	 */
481 	hwc->config_base	    |= (unsigned long)mapping;
482 
483 	if (!is_sampling_event(event)) {
484 		/*
485 		 * For non-sampling runs, limit the sample_period to half
486 		 * of the counter width. That way, the new counter value
487 		 * is far less likely to overtake the previous one unless
488 		 * you have some serious IRQ latency issues.
489 		 */
490 		hwc->sample_period  = arm_pmu_event_max_period(event) >> 1;
491 		hwc->last_period    = hwc->sample_period;
492 		local64_set(&hwc->period_left, hwc->sample_period);
493 	}
494 
495 	return validate_group(event);
496 }
497 
498 static int armpmu_event_init(struct perf_event *event)
499 {
500 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
501 
502 	/*
503 	 * Reject CPU-affine events for CPUs that are of a different class to
504 	 * that which this PMU handles. Process-following events (where
505 	 * event->cpu == -1) can be migrated between CPUs, and thus we have to
506 	 * reject them later (in armpmu_add) if they're scheduled on a
507 	 * different class of CPU.
508 	 */
509 	if (event->cpu != -1 &&
510 		!cpumask_test_cpu(event->cpu, &armpmu->supported_cpus))
511 		return -ENOENT;
512 
513 	/* does not support taken branch sampling */
514 	if (has_branch_stack(event))
515 		return -EOPNOTSUPP;
516 
517 	if (armpmu->map_event(event) == -ENOENT)
518 		return -ENOENT;
519 
520 	return __hw_perf_event_init(event);
521 }
522 
523 static void armpmu_enable(struct pmu *pmu)
524 {
525 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
526 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
527 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
528 
529 	/* For task-bound events we may be called on other CPUs */
530 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
531 		return;
532 
533 	if (enabled)
534 		armpmu->start(armpmu);
535 }
536 
537 static void armpmu_disable(struct pmu *pmu)
538 {
539 	struct arm_pmu *armpmu = to_arm_pmu(pmu);
540 
541 	/* For task-bound events we may be called on other CPUs */
542 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
543 		return;
544 
545 	armpmu->stop(armpmu);
546 }
547 
548 /*
549  * In heterogeneous systems, events are specific to a particular
550  * microarchitecture, and aren't suitable for another. Thus, only match CPUs of
551  * the same microarchitecture.
552  */
553 static int armpmu_filter_match(struct perf_event *event)
554 {
555 	struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
556 	unsigned int cpu = smp_processor_id();
557 	int ret;
558 
559 	ret = cpumask_test_cpu(cpu, &armpmu->supported_cpus);
560 	if (ret && armpmu->filter_match)
561 		return armpmu->filter_match(event);
562 
563 	return ret;
564 }
565 
566 static ssize_t cpus_show(struct device *dev,
567 			 struct device_attribute *attr, char *buf)
568 {
569 	struct arm_pmu *armpmu = to_arm_pmu(dev_get_drvdata(dev));
570 	return cpumap_print_to_pagebuf(true, buf, &armpmu->supported_cpus);
571 }
572 
573 static DEVICE_ATTR_RO(cpus);
574 
575 static struct attribute *armpmu_common_attrs[] = {
576 	&dev_attr_cpus.attr,
577 	NULL,
578 };
579 
580 static const struct attribute_group armpmu_common_attr_group = {
581 	.attrs = armpmu_common_attrs,
582 };
583 
584 static int armpmu_count_irq_users(const int irq)
585 {
586 	int cpu, count = 0;
587 
588 	for_each_possible_cpu(cpu) {
589 		if (per_cpu(cpu_irq, cpu) == irq)
590 			count++;
591 	}
592 
593 	return count;
594 }
595 
596 static const struct pmu_irq_ops *armpmu_find_irq_ops(int irq)
597 {
598 	const struct pmu_irq_ops *ops = NULL;
599 	int cpu;
600 
601 	for_each_possible_cpu(cpu) {
602 		if (per_cpu(cpu_irq, cpu) != irq)
603 			continue;
604 
605 		ops = per_cpu(cpu_irq_ops, cpu);
606 		if (ops)
607 			break;
608 	}
609 
610 	return ops;
611 }
612 
613 void armpmu_free_irq(int irq, int cpu)
614 {
615 	if (per_cpu(cpu_irq, cpu) == 0)
616 		return;
617 	if (WARN_ON(irq != per_cpu(cpu_irq, cpu)))
618 		return;
619 
620 	per_cpu(cpu_irq_ops, cpu)->free_pmuirq(irq, cpu, &cpu_armpmu);
621 
622 	per_cpu(cpu_irq, cpu) = 0;
623 	per_cpu(cpu_irq_ops, cpu) = NULL;
624 }
625 
626 int armpmu_request_irq(int irq, int cpu)
627 {
628 	int err = 0;
629 	const irq_handler_t handler = armpmu_dispatch_irq;
630 	const struct pmu_irq_ops *irq_ops;
631 
632 	if (!irq)
633 		return 0;
634 
635 	if (!irq_is_percpu_devid(irq)) {
636 		unsigned long irq_flags;
637 
638 		err = irq_force_affinity(irq, cpumask_of(cpu));
639 
640 		if (err && num_possible_cpus() > 1) {
641 			pr_warn("unable to set irq affinity (irq=%d, cpu=%u)\n",
642 				irq, cpu);
643 			goto err_out;
644 		}
645 
646 		irq_flags = IRQF_PERCPU |
647 			    IRQF_NOBALANCING | IRQF_NO_AUTOEN |
648 			    IRQF_NO_THREAD;
649 
650 		err = request_nmi(irq, handler, irq_flags, "arm-pmu",
651 				  per_cpu_ptr(&cpu_armpmu, cpu));
652 
653 		/* If cannot get an NMI, get a normal interrupt */
654 		if (err) {
655 			err = request_irq(irq, handler, irq_flags, "arm-pmu",
656 					  per_cpu_ptr(&cpu_armpmu, cpu));
657 			irq_ops = &pmuirq_ops;
658 		} else {
659 			has_nmi = true;
660 			irq_ops = &pmunmi_ops;
661 		}
662 	} else if (armpmu_count_irq_users(irq) == 0) {
663 		err = request_percpu_nmi(irq, handler, "arm-pmu", &cpu_armpmu);
664 
665 		/* If cannot get an NMI, get a normal interrupt */
666 		if (err) {
667 			err = request_percpu_irq(irq, handler, "arm-pmu",
668 						 &cpu_armpmu);
669 			irq_ops = &percpu_pmuirq_ops;
670 		} else {
671 			has_nmi = true;
672 			irq_ops = &percpu_pmunmi_ops;
673 		}
674 	} else {
675 		/* Per cpudevid irq was already requested by another CPU */
676 		irq_ops = armpmu_find_irq_ops(irq);
677 
678 		if (WARN_ON(!irq_ops))
679 			err = -EINVAL;
680 	}
681 
682 	if (err)
683 		goto err_out;
684 
685 	per_cpu(cpu_irq, cpu) = irq;
686 	per_cpu(cpu_irq_ops, cpu) = irq_ops;
687 	return 0;
688 
689 err_out:
690 	pr_err("unable to request IRQ%d for ARM PMU counters\n", irq);
691 	return err;
692 }
693 
694 static int armpmu_get_cpu_irq(struct arm_pmu *pmu, int cpu)
695 {
696 	struct pmu_hw_events __percpu *hw_events = pmu->hw_events;
697 	return per_cpu(hw_events->irq, cpu);
698 }
699 
700 /*
701  * PMU hardware loses all context when a CPU goes offline.
702  * When a CPU is hotplugged back in, since some hardware registers are
703  * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
704  * junk values out of them.
705  */
706 static int arm_perf_starting_cpu(unsigned int cpu, struct hlist_node *node)
707 {
708 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
709 	int irq;
710 
711 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
712 		return 0;
713 	if (pmu->reset)
714 		pmu->reset(pmu);
715 
716 	per_cpu(cpu_armpmu, cpu) = pmu;
717 
718 	irq = armpmu_get_cpu_irq(pmu, cpu);
719 	if (irq)
720 		per_cpu(cpu_irq_ops, cpu)->enable_pmuirq(irq);
721 
722 	return 0;
723 }
724 
725 static int arm_perf_teardown_cpu(unsigned int cpu, struct hlist_node *node)
726 {
727 	struct arm_pmu *pmu = hlist_entry_safe(node, struct arm_pmu, node);
728 	int irq;
729 
730 	if (!cpumask_test_cpu(cpu, &pmu->supported_cpus))
731 		return 0;
732 
733 	irq = armpmu_get_cpu_irq(pmu, cpu);
734 	if (irq)
735 		per_cpu(cpu_irq_ops, cpu)->disable_pmuirq(irq);
736 
737 	per_cpu(cpu_armpmu, cpu) = NULL;
738 
739 	return 0;
740 }
741 
742 #ifdef CONFIG_CPU_PM
743 static void cpu_pm_pmu_setup(struct arm_pmu *armpmu, unsigned long cmd)
744 {
745 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
746 	struct perf_event *event;
747 	int idx;
748 
749 	for (idx = 0; idx < armpmu->num_events; idx++) {
750 		event = hw_events->events[idx];
751 		if (!event)
752 			continue;
753 
754 		switch (cmd) {
755 		case CPU_PM_ENTER:
756 			/*
757 			 * Stop and update the counter
758 			 */
759 			armpmu_stop(event, PERF_EF_UPDATE);
760 			break;
761 		case CPU_PM_EXIT:
762 		case CPU_PM_ENTER_FAILED:
763 			 /*
764 			  * Restore and enable the counter.
765 			  * armpmu_start() indirectly calls
766 			  *
767 			  * perf_event_update_userpage()
768 			  *
769 			  * that requires RCU read locking to be functional,
770 			  * wrap the call within RCU_NONIDLE to make the
771 			  * RCU subsystem aware this cpu is not idle from
772 			  * an RCU perspective for the armpmu_start() call
773 			  * duration.
774 			  */
775 			RCU_NONIDLE(armpmu_start(event, PERF_EF_RELOAD));
776 			break;
777 		default:
778 			break;
779 		}
780 	}
781 }
782 
783 static int cpu_pm_pmu_notify(struct notifier_block *b, unsigned long cmd,
784 			     void *v)
785 {
786 	struct arm_pmu *armpmu = container_of(b, struct arm_pmu, cpu_pm_nb);
787 	struct pmu_hw_events *hw_events = this_cpu_ptr(armpmu->hw_events);
788 	bool enabled = !bitmap_empty(hw_events->used_mask, armpmu->num_events);
789 
790 	if (!cpumask_test_cpu(smp_processor_id(), &armpmu->supported_cpus))
791 		return NOTIFY_DONE;
792 
793 	/*
794 	 * Always reset the PMU registers on power-up even if
795 	 * there are no events running.
796 	 */
797 	if (cmd == CPU_PM_EXIT && armpmu->reset)
798 		armpmu->reset(armpmu);
799 
800 	if (!enabled)
801 		return NOTIFY_OK;
802 
803 	switch (cmd) {
804 	case CPU_PM_ENTER:
805 		armpmu->stop(armpmu);
806 		cpu_pm_pmu_setup(armpmu, cmd);
807 		break;
808 	case CPU_PM_EXIT:
809 	case CPU_PM_ENTER_FAILED:
810 		cpu_pm_pmu_setup(armpmu, cmd);
811 		armpmu->start(armpmu);
812 		break;
813 	default:
814 		return NOTIFY_DONE;
815 	}
816 
817 	return NOTIFY_OK;
818 }
819 
820 static int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu)
821 {
822 	cpu_pmu->cpu_pm_nb.notifier_call = cpu_pm_pmu_notify;
823 	return cpu_pm_register_notifier(&cpu_pmu->cpu_pm_nb);
824 }
825 
826 static void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu)
827 {
828 	cpu_pm_unregister_notifier(&cpu_pmu->cpu_pm_nb);
829 }
830 #else
831 static inline int cpu_pm_pmu_register(struct arm_pmu *cpu_pmu) { return 0; }
832 static inline void cpu_pm_pmu_unregister(struct arm_pmu *cpu_pmu) { }
833 #endif
834 
835 static int cpu_pmu_init(struct arm_pmu *cpu_pmu)
836 {
837 	int err;
838 
839 	err = cpuhp_state_add_instance(CPUHP_AP_PERF_ARM_STARTING,
840 				       &cpu_pmu->node);
841 	if (err)
842 		goto out;
843 
844 	err = cpu_pm_pmu_register(cpu_pmu);
845 	if (err)
846 		goto out_unregister;
847 
848 	return 0;
849 
850 out_unregister:
851 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
852 					    &cpu_pmu->node);
853 out:
854 	return err;
855 }
856 
857 static void cpu_pmu_destroy(struct arm_pmu *cpu_pmu)
858 {
859 	cpu_pm_pmu_unregister(cpu_pmu);
860 	cpuhp_state_remove_instance_nocalls(CPUHP_AP_PERF_ARM_STARTING,
861 					    &cpu_pmu->node);
862 }
863 
864 static struct arm_pmu *__armpmu_alloc(gfp_t flags)
865 {
866 	struct arm_pmu *pmu;
867 	int cpu;
868 
869 	pmu = kzalloc(sizeof(*pmu), flags);
870 	if (!pmu)
871 		goto out;
872 
873 	pmu->hw_events = alloc_percpu_gfp(struct pmu_hw_events, flags);
874 	if (!pmu->hw_events) {
875 		pr_info("failed to allocate per-cpu PMU data.\n");
876 		goto out_free_pmu;
877 	}
878 
879 	pmu->pmu = (struct pmu) {
880 		.pmu_enable	= armpmu_enable,
881 		.pmu_disable	= armpmu_disable,
882 		.event_init	= armpmu_event_init,
883 		.add		= armpmu_add,
884 		.del		= armpmu_del,
885 		.start		= armpmu_start,
886 		.stop		= armpmu_stop,
887 		.read		= armpmu_read,
888 		.filter_match	= armpmu_filter_match,
889 		.attr_groups	= pmu->attr_groups,
890 		/*
891 		 * This is a CPU PMU potentially in a heterogeneous
892 		 * configuration (e.g. big.LITTLE). This is not an uncore PMU,
893 		 * and we have taken ctx sharing into account (e.g. with our
894 		 * pmu::filter_match callback and pmu::event_init group
895 		 * validation).
896 		 */
897 		.capabilities	= PERF_PMU_CAP_HETEROGENEOUS_CPUS | PERF_PMU_CAP_EXTENDED_REGS,
898 	};
899 
900 	pmu->attr_groups[ARMPMU_ATTR_GROUP_COMMON] =
901 		&armpmu_common_attr_group;
902 
903 	for_each_possible_cpu(cpu) {
904 		struct pmu_hw_events *events;
905 
906 		events = per_cpu_ptr(pmu->hw_events, cpu);
907 		raw_spin_lock_init(&events->pmu_lock);
908 		events->percpu_pmu = pmu;
909 	}
910 
911 	return pmu;
912 
913 out_free_pmu:
914 	kfree(pmu);
915 out:
916 	return NULL;
917 }
918 
919 struct arm_pmu *armpmu_alloc(void)
920 {
921 	return __armpmu_alloc(GFP_KERNEL);
922 }
923 
924 struct arm_pmu *armpmu_alloc_atomic(void)
925 {
926 	return __armpmu_alloc(GFP_ATOMIC);
927 }
928 
929 
930 void armpmu_free(struct arm_pmu *pmu)
931 {
932 	free_percpu(pmu->hw_events);
933 	kfree(pmu);
934 }
935 
936 int armpmu_register(struct arm_pmu *pmu)
937 {
938 	int ret;
939 
940 	ret = cpu_pmu_init(pmu);
941 	if (ret)
942 		return ret;
943 
944 	if (!pmu->set_event_filter)
945 		pmu->pmu.capabilities |= PERF_PMU_CAP_NO_EXCLUDE;
946 
947 	ret = perf_pmu_register(&pmu->pmu, pmu->name, -1);
948 	if (ret)
949 		goto out_destroy;
950 
951 	pr_info("enabled with %s PMU driver, %d counters available%s\n",
952 		pmu->name, pmu->num_events,
953 		has_nmi ? ", using NMIs" : "");
954 
955 	kvm_host_pmu_init(pmu);
956 
957 	return 0;
958 
959 out_destroy:
960 	cpu_pmu_destroy(pmu);
961 	return ret;
962 }
963 
964 static int arm_pmu_hp_init(void)
965 {
966 	int ret;
967 
968 	ret = cpuhp_setup_state_multi(CPUHP_AP_PERF_ARM_STARTING,
969 				      "perf/arm/pmu:starting",
970 				      arm_perf_starting_cpu,
971 				      arm_perf_teardown_cpu);
972 	if (ret)
973 		pr_err("CPU hotplug notifier for ARM PMU could not be registered: %d\n",
974 		       ret);
975 	return ret;
976 }
977 subsys_initcall(arm_pmu_hp_init);
978